Advertisement

Transcriptome Sequencing (RNA-Seq)

  • Jacquelyn Reuther
  • Angshumoy Roy
  • Federico A. MonzonEmail author
Chapter

Abstract

The transcriptome is the entire assembly of RNA transcripts in a given cell type, including protein-coding and noncoding transcripts. Transcriptome sequencing (RNA-Seq) is a recently developed technology that uses high-throughput sequencing approaches (next-generation sequencing or NGS) to determine the sequence of all RNA transcripts in a given specimen. This chapter provides an overview of the development and technical background of transcriptomics and the advantages and limitations of RNA-Seq. This technology has rapidly increased our understanding of gene expression profiles of various cells and tissues and is allowing us to better understand alternative splicing and the functional elements of the genome and to identify single-nucleotide variants and new fusion transcripts in cancer. We also review current and potential clinical applications of RNA-Seq technology in inherited, chronic, neoplastic, and infectious diseases.

Keywords

RNA mRNA Transcriptome Transcriptomics RNA sequencing RNA-Seq Gene expression Microarrays Digital transcript profiling Next-generation sequencing NGS Sequence assembly Fusion transcripts 

Notes

Acknowledgments

The authors would like to thank Karen Prince of Texas Children’s Hospital for her help with the design of the figures for this chapter.

References

  1. 1.
    Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94.CrossRefGoogle Scholar
  2. 2.
    Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12(2):87–98.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet. 2016;17(5):257–71.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Roychowdhury S, Chinnaiyan AM. Translating cancer genomes and transcriptomes for precision oncology. CA Cancer J Clin. 2016;66(1):75–88.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rodriguez SA, Impey SD, Pelz C, Enestvedt B, Bakis G, Owens M, et al. RNA sequencing distinguishes benign from malignant pancreatic lesions sampled by EUS-guided FNA. Gastrointest Endosc. 2016;84(2):252–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li X, Quigg RJ, Zhou J, Gu W, Nagesh Rao P, Reed EF. Clinical utility of microarrays: current status, existing challenges and future outlook. Curr Genomics. 2008;9(7):466–74.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fedorowicz G, Guerrero S, Wu TD, Modrusan Z. Microarray analysis of RNA extracted from formalin-fixed, paraffin-embedded and matched fresh-frozen ovarian adenocarcinomas. BMC Med Genet. 2009;2:23.Google Scholar
  8. 8.
    Coudry RA, Meireles SI, Stoyanova R, Cooper HS, Carpino A, Wang X, et al. Successful application of microarray technology to microdissected formalin-fixed, paraffin-embedded tissue. J Mol Diagn. 2007;9(1):70–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Malone JH, Oliver B. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. 2011;9:34.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jaluria P, Konstantopoulos K, Betenbaugh M, Shiloach J. A perspective on microarrays: current applications, pitfalls, and potential uses. Microb Cell Factories. 2007;6:4.CrossRefGoogle Scholar
  11. 11.
    Dallas PB, Gottardo NG, Firth MJ, Beesley AH, Hoffmann K, Terry PA, et al. Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR -- how well do they correlate? BMC Genomics. 2005;6:59.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yuen T, Wurmbach E, Pfeffer RL, Ebersole BJ, Sealfon SC. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res. 2002;30(10):e48.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fan X, Lobenhofer EK, Chen M, Shi W, Huang J, Luo J, et al. Consistency of predictive signature genes and classifiers generated using different microarray platforms. Pharmacogenomics J. 2010;10(4):247–57.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dumur CI, Fuller CE, Blevins TL, Schaum JC, Wilkinson DS, Garrett CT, et al. Clinical verification of the performance of the pathwork tissue of origin test: utility and limitations. Am J Clin Pathol. 2011;136(6):924–33.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375(8):717–29.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.CrossRefGoogle Scholar
  17. 17.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Consortium M, Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24(9):1151–61.CrossRefGoogle Scholar
  19. 19.
    Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001;29(4):365–71.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ma C, Lyons-Weiler M, Liang W, LaFramboise W, Gilbertson JR, Becich MJ, et al. In vitro transcription amplification and labeling methods contribute to the variability of gene expression profiling with DNA microarrays. J Mol Diagn. 2006;8(2):183–92.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schulze A, Downward J. Navigating gene expression using microarrays–a technology review. Nat Cell Biol. 2001;3(8):E190–5.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kulkarni MM. Digital multiplexed gene expression analysis using the NanoString nCounter system. Curr Protoc Mol Biol. 2011;94;Chapter 25:Unit25B 10.Google Scholar
  24. 24.
    Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26(3):317–25.CrossRefGoogle Scholar
  25. 25.
    Richard AC, Lyons PA, Peters JE, Biasci D, Flint SM, Lee JC, et al. Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation. BMC Genomics. 2014;15:649.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Malkov VA, Serikawa KA, Balantac N, Watters J, Geiss G, Mashadi-Hossein A, et al. Multiplexed measurements of gene signatures in different analytes using the Nanostring nCounter Assay System. BMC Res Notes. 2009;2:80.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nielsen T, Wallden B, Schaper C, Ferree S, Liu S, Gao D, et al. Analytical validation of the PAM50-based Prosigna Breast Cancer Prognostic Gene Signature Assay and nCounter Analysis System using formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer. 2014;14:177.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Prokopec SD, Watson JD, Waggott DM, Smith AB, Wu AH, Okey AB, et al. Systematic evaluation of medium-throughput mRNA abundance platforms. RNA. 2013;19(1):51–62.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Reis PP, Waldron L, Goswami RS, Xu W, Xuan Y, Perez-Ordonez B, et al. mRNA transcript quantification in archival samples using multiplexed, color-coded probes. BMC Biotechnol. 2011;11:46.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.CrossRefGoogle Scholar
  31. 31.
    Consortium SM-I. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol. 2014;32(9):903–14.CrossRefGoogle Scholar
  32. 32.
    Cieslik M, Chinnaiyan AM. Cancer transcriptome profiling at the juncture of clinical translation. Nat Rev Genet. 2018;19(2):93–109.CrossRefGoogle Scholar
  33. 33.
    Feng H, Zhang X, Zhang C. mRIN for direct assessment of genome-wide and gene-specific mRNA integrity from large-scale RNA-sequencing data. Nat Commun. 2015;6:7816.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Morlan JD, Qu K, Sinicropi DV. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PLoS One. 2012;7(8):e42882.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics. 2014;15:419.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    O’Neil D, Glowatz H, Schlumpberger M. Ribosomal RNA depletion for efficient use of RNA-seq capacity. Curr Protoc Mol Biol. 2013;103;Chapter 4:Unit 4 19.Google Scholar
  37. 37.
    Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, et al. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat Biotechnol. 2014;32(9):915–25.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sultan M, Amstislavskiy V, Risch T, Schuette M, Dokel S, Ralser M, et al. Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genomics. 2014;15:675.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cieslik M, Chugh R, Wu YM, Wu M, Brennan C, Lonigro R, et al. The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing. Genome Res. 2015;25(9):1372–81.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Li W, Turner A, Aggarwal P, Matter A, Storvick E, Arnett DK, et al. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis. BMC Genomics. 2015;16:1069.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zheng Z, Liebers M, Zhelyazkova B, Cao Y, Panditi D, Lynch KD, et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat Med. 2014;20(12):1479–84.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Levin JZ, Berger MF, Adiconis X, Rogov P, Melnikov A, Fennell T, et al. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol. 2009;10(10):R115.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nikiforov YE, Yip L, Nikiforova MN. New strategies in diagnosing cancer in thyroid nodules: impact of molecular markers. Clin Cancer Res. 2013;19(9):2283–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    National Human Genome Research Institute. Clinical Sequencing Evidence-Generating Research (CSER2) 2017 [updated 08/08/2017]. Available from: https://www.genome.gov/27546194/clinical-sequencing-exploratory-research-cser/.
  45. 45.
    Kivioja T, Vaharautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 2011;9(1):72–4.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011;12(10):671–82.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Babraham Bioinformatics. FastQC 2010 [updated 01/10/2018]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
  49. 49.
    Hannon GJ. FASTX-Toolkit 2009 [updated 02/02/2010]. Available from: http://hannonlab.cshl.edu/fastx_toolkit/index.html.
  50. 50.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.CrossRefGoogle Scholar
  53. 53.
    Engstrom PG, Steijger T, Sipos B, Grant GR, Kahles A, Ratsch G, et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods. 2013;10(12):1185–91.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.CrossRefGoogle Scholar
  56. 56.
    Martin J, Bruno VM, Fang Z, Meng X, Blow M, Zhang T, et al. Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics. 2010;11:663.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30(12):1660–6.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, et al. De novo assembly and analysis of RNA-seq data. Nat Methods. 2010;7(11):909–12.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Iyer MK, Chinnaiyan AM. RNA-Seq unleashed. Nat Biotechnol. 2011;29(7):599–600.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Broad Institute. Picard [Available from: http://broadinstitute.github.io/picard].
  62. 62.
    DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics. 2012;28(11):1530–2.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184–5.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    t Hoen PA, Friedlander MR, Almlof J, Sammeth M, Pulyakhina I, Anvar SY, et al. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nat Biotechnol. 2013;31(11):1015–22.CrossRefGoogle Scholar
  65. 65.
    Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15(2):121–32.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Nazarov PV, Muller A, Kaoma T, Nicot N, Maximo C, Birembaut P, et al. RNA sequencing and transcriptome arrays analyses show opposing results for alternative splicing in patient derived samples. BMC Genomics. 2017;18(1):443.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hardwick SA, Deveson IW, Mercer TR. Reference standards for next-generation sequencing. Nat Rev Genet. 2017;18(8):473–84.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    National Center for Biotechnology Information. Sequence read archive [Available from: https://www.ncbi.nlm.nih.gov/sra].
  69. 69.
    National Center for Biotechnology Information. Gene expression omnibus [Available from: https://www.ncbi.nlm.nih.gov/geo/].
  70. 70.
    Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 2011;21(9):1543–51.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Baker SC, Bauer SR, Beyer RP, Brenton JD, Bromley B, Burrill J, et al. The External RNA Controls Consortium: a progress report. Nat Methods. 2005;2(10):731–4.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hardwick SA, Chen WY, Wong T, Deveson IW, Blackburn J, Andersen SB, et al. Spliced synthetic genes as internal controls in RNA sequencing experiments. Nat Methods. 2016;13(9):792–8.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lutzmayer S, Enugutti B, Nodine MD. Novel small RNA spike-in oligonucleotides enable absolute normalization of small RNA-Seq data. Sci Rep. 2017;7(1):5913.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Lukas Paul PK, Horner G, Ante M, Hollaender I, Alexander S, Reda T. SIRVs: Spike-In RNA Variants as external isoform controls in RNA-sequencing. bioRxiv. Posted October 13, 2016.  https://doi.org/10.1101/080747.
  75. 75.
    National Institute of Standards and Technology. ERCC 2.0: developing a new suite of RNA controls 2017 [updated 02/17/2017]. Available from: https://www.nist.gov/programs-projects/ercc-20-developing-new-suite-rna-controls.
  76. 76.
    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.CrossRefGoogle Scholar
  77. 77.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Tarazona S, Furio-Tari P, Turra D, Pietro AD, Nueda MJ, Ferrer A, et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 2015;43(21):e140.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31(1):46–53.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wang W, Qin Z, Feng Z, Wang X, Zhang X. Identifying differentially spliced genes from two groups of RNA-seq samples. Gene. 2013;518(1):164–70.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A. 2014;111(51):E5593–601.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Steijger T, Abril JF, Engstrom PG, Kokocinski F, Consortium R, Hubbard TJ, et al. Assessment of transcript reconstruction methods for RNA-seq. Nat Methods. 2013;10(12):1177–84.CrossRefGoogle Scholar
  83. 83.
    Bradford JR, Hey Y, Yates T, Li Y, Pepper SD, Miller CJ. A comparison of massively parallel nucleotide sequencing with oligonucleotide microarrays for global transcription profiling. BMC Genomics. 2010;11:282.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Rehrauer H, Opitz L, Tan G, Sieverling L, Schlapbach R. Blind spots of quantitative RNA-seq: the limits for assessing abundance, differential expression, and isoform switching. BMC Bioinformatics. 2013;14:370.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Sahraeian SME, Mohiyuddin M, Sebra R, Tilgner H, Afshar PT, Au KF, et al. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat Commun. 2017;8(1):59.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. Posted November 14, 2017.  https://doi.org/10.1101/201178.
  87. 87.
    Piskol R, Ramaswami G, Li JB. Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet. 2013;93(4):641–51.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Schram AM, Chang MT, Jonsson P, Drilon A. Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. Nat Rev Clin Oncol. 2017;14(12):735–48.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol. 2011;7(5):e1001138.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12(8):R72.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Li Y, Chien J, Smith DI, Ma J. FusionHunter: identifying fusion transcripts in cancer using paired-end RNA-seq. Bioinformatics. 2011;27(12):1708–10.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Torres-Garcia W, Zheng S, Sivachenko A, Vegesna R, Wang Q, Yao R, et al. PRADA: pipeline for RNA sequencing data analysis. Bioinformatics. 2014;30(15):2224–6.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Jia W, Qiu K, He M, Song P, Zhou Q, Zhou F, et al. SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biol. 2013;14(2):R12.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Beccuti M, Carrara M, Cordero F, Lazzarato F, Donatelli S, Nadalin F, et al. Chimera: a Bioconductor package for secondary analysis of fusion products. Bioinformatics. 2014;30(24):3556–7.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Kumar S, Vo AD, Qin F, Li H. Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data. Sci Rep. 2016;6:21597.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Davila JI, Fadra NM, Wang X, McDonald AM, Nair AA, Crusan BR, et al. Impact of RNA degradation on fusion detection by RNA-seq. BMC Genomics. 2016;17(1):814.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Rogers TM, Arnau GM, Ryland GL, Huang S, Lira ME, Emmanuel Y, et al. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer. Sci Rep. 2017;7:42259.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW, Lincoln SE, et al. Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the Association for Molecular Pathology and the College of American Pathologists. J Mol Diagn. 2018;20(1):4–27.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Monzon FA, Lyons-Weiler M, Buturovic LJ, Rigl CT, Henner WD, Sciulli C, et al. Multicenter validation of a 1,550-gene expression profile for identification of tumor tissue of origin. J Clin Oncol. 2009;27(15):2503–8.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Prat A, Ellis MJ, Perou CM. Practical implications of gene-expression-based assays for breast oncologists. Nat Rev Clin Oncol. 2011;9(1):48–57.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Baehner FL, Lee M, Demeure MJ, Bussey KJ, Kiefer JA, Barrett MT. Genomic signatures of cancer: basis for individualized risk assessment, selective staging and therapy. J Surg Oncol. 2011;103(6):563–73.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Chibon F. Cancer gene expression signatures – the rise and fall? Eur J Cancer. 2013;49(8):2000–9.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Pham MX, Teuteberg JJ, Kfoury AG, Starling RC, Deng MC, Cappola TP, et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med. 2010;362(20):1890–900.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Cooper-Knock J, Kirby J, Ferraiuolo L, Heath PR, Rattray M, Shaw PJ. Gene expression profiling in human neurodegenerative disease. Nat Rev Neurol. 2012;8(9):518–30.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Drew JE. Cellular defense system gene expression profiling of human whole blood: opportunities to predict health benefits in response to diet. Adv Nutr. 2012;3(4):499–505.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Shih B, Watson S, Bayat A. Whole genome and global expression profiling of Dupuytren's disease: systematic review of current findings and future perspectives. Ann Rheum Dis. 2012;71(9):1440–7.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Meldrum C, Doyle MA, Tothill RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev. 2011;32(4):177–95.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4(154):154ra35.CrossRefGoogle Scholar
  109. 109.
    Adam M, Ardinger H, Pagon R, Wallace S, Bean L, Stephens K, et al. GeneReviews®. Seattle: University of Washington; 1993–2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1116/.
  110. 110.
    Xue Y, Chen Y, Ayub Q, Huang N, Ball EV, Mort M, et al. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am J Hum Genet. 2012;91(6):1022–32.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Naidoo N, Pawitan Y, Soong R, Cooper DN, Ku CS. Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics. 2011;5(6):577–622.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Teekakirikul P, Kelly MA, Rehm HL, Lakdawala NK, Funke BH. Inherited cardiomyopathies: molecular genetics and clinical genetic testing in the postgenomic era. J Mol Diagn. 2013;15(2):158–70.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Mayer AN, Dimmock DP, Arca MJ, Bick DP, Verbsky JW, Worthey EA, et al. A timely arrival for genomic medicine. Genet Med. 2011;13(3):195–6.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Schrijver I, Aziz N, Farkas DH, Furtado M, Gonzalez AF, Greiner TC, et al. Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the Association for Molecular Pathology. J Mol Diagn. 2012;14(6):525–40.CrossRefGoogle Scholar
  115. 115.
    Chandrasekharappa SC, Lach FP, Kimble DC, Kamat A, Teer JK, Donovan FX, et al. Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. Blood. 2013;121(22):e138–48.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Costa V, Angelini C, D'Apice L, Mutarelli M, Casamassimi A, Sommese L, et al. Massive-scale RNA-Seq analysis of non ribosomal transcriptome in human trisomy 21. PLoS One. 2011;6(4):e18493.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Freedman ML, Monteiro AN, Gayther SA, Coetzee GA, Risch A, Plass C, et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet. 2011;43(6):513–8.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Costa V, Aprile M, Esposito R, Ciccodicola A. RNA-Seq and human complex diseases: recent accomplishments and future perspectives. Eur J Hum Genet. 2013;21(2):134–42.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Majewski J, Pastinen T. The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet. 2011;27(2):72–9.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–9.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Peters TL, Kumar V, Polikepahad S, Lin FY, Sarabia SF, Liang Y, et al. BCOR-CCNB3 fusions are frequent in undifferentiated sarcomas of male children. Mod Pathol. 2015;28(4):575–86.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Vendrell JA, Taviaux S, Beganton B, Godreuil S, Audran P, Grand D, et al. Detection of known and novel ALK fusion transcripts in lung cancer patients using next-generation sequencing approaches. Sci Rep. 2017;7(1):12510.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Kim HP, Cho GA, Han SW, Shin JY, Jeong EG, Song SH, et al. Novel fusion transcripts in human gastric cancer revealed by transcriptome analysis. Oncogene. 2014;33(47):5434–41.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6(8):827–37.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Jamieson NB, Maker AV. Gene-expression profiling to predict responsiveness to immunotherapy. Cancer Gene Ther. 2017;24(3):134–40.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35–44.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Harris MH, DuBois SG, Glade Bender JL, Kim A, Crompton BD, Parker E, et al. Multicenter feasibility study of tumor molecular profiling to inform therapeutic decisions in advanced pediatric solid tumors: the individualized cancer therapy (iCat) study. JAMA Oncol. 2016;2:608.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Mody RJ, Wu YM, Lonigro RJ, Cao X, Roychowdhury S, Vats P, et al. Integrative clinical sequencing in the management of refractory or relapsed cancer in youth. JAMA. 2015;314(9):913–25.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J, et al. Integrative clinical genomics of metastatic cancer. Nature. 2017;548(7667):297–303.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
  131. 131.
    Clinical Sequencing Evidence-Gathering Research Consortium. KidsCanSeq [Available from: https://cser-consortium.org/projects/27].
  132. 132.
    Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.CrossRefGoogle Scholar
  133. 133.
    Santoro M, Melillo RM, Fusco A. RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur J Endocrinol. 2006;155(5):645–53.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, et al. Transcriptome sequencing to detect gene fusions in cancer. Nature. 2009;458(7234):97–101.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K, et al. Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol. 2011;12(1):R6.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B, et al. Functionally recurrent rearrangements of the MAST kinase and notch gene families in breast cancer. Nat Med. 2011;17(12):1646–51.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488(7413):660–4.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013;3(6):636–47.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn. 2013;15(4):415–53.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer. 2018;124:1682.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Monzon FA, Koen TJ. Diagnosis of metastatic neoplasms: molecular approaches for identification of tissue of origin. Arch Pathol Lab Med. 2010;134(2):216–24.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Erlander MG, Ma XJ, Kesty NC, Bao L, Salunga R, Schnabel CA. Performance and clinical evaluation of the 92-gene real-time PCR assay for tumor classification. J Mol Diagn. 2011;13(5):493–503.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Varadhachary G. New strategies for carcinoma of unknown primary: the role of tissue-of-origin molecular profiling. Clin Cancer Res. 2013;19(15):4027–33.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.CrossRefGoogle Scholar
  147. 147.
    Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med. 2015;373(21):2005–14.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Silvestri GA, Vachani A, Whitney D, Elashoff M, Porta Smith K, Ferguson JS, et al. A bronchial genomic classifier for the diagnostic evaluation of lung cancer. N Engl J Med. 2015;373(3):243–51.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–15.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Gerami P, Cook RW, Wilkinson J, Russell MC, Dhillon N, Amaria RN, et al. Development of a prognostic genetic signature to predict the metastatic risk associated with cutaneous melanoma. Clin Cancer Res. 2015;21(1):175–83.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Berger AC, Davidson RS, Poitras JK, Chabra I, Hope R, Brackeen A, et al. Clinical impact of a 31-gene expression profile test for cutaneous melanoma in 156 prospectively and consecutively tested patients. Curr Med Res Opin. 2016;32(9):1599–604.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Zager JS, Gastman BR, Leachman S, Gonzalez RC, Fleming MD, Ferris LK, et al. Performance of a prognostic 31-gene expression profile in an independent cohort of 523 cutaneous melanoma patients. BMC Cancer. 2018;18:130.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Spratt DE, Zhang J, Santiago-Jimenez M, Dess RT, Davis JW, Den RB, et al. Development and validation of a novel integrated clinical-genomic risk group classification for localized prostate cancer. J Clin Oncol. 2017;36:581:JCO2017742940.CrossRefGoogle Scholar
  154. 154.
    Sinicropi D, Qu K, Collin F, Crager M, Liu ML, Pelham RJ, et al. Whole transcriptome RNA-Seq analysis of breast cancer recurrence risk using formalin-fixed paraffin-embedded tumor tissue. PLoS One. 2012;7(7):e40092.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Mardis ER. Applying next-generation sequencing to pancreatic cancer treatment. Nat Rev Gastroenterol Hepatol. 2012;9(8):477–86.CrossRefGoogle Scholar
  156. 156.
    Downing JR, Wilson RK, Zhang J, Mardis ER, Pui CH, Ding L, et al. The pediatric cancer genome project. Nat Genet. 2012;44(6):619–22.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.CrossRefGoogle Scholar
  158. 158.
    Li E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One. 2012;7(6):e26284.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Woo PC, Lau SK, Teng JL, Tse H, Yuen KY. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect. 2008;14(10):908–34.CrossRefGoogle Scholar
  160. 160.
    Croucher NJ, Thomson NR. Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol. 2010;13(5):619–24.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Pinto AC, Melo-Barbosa HP, Miyoshi A, Silva A, Azevedo V. Application of RNA-seq to reveal the transcript profile in bacteria. Genet Mol Res. 2011;10(3):1707–18.CrossRefGoogle Scholar
  162. 162.
    Guell M, Yus E, Lluch-Senar M, Serrano L. Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat Rev Microbiol. 2011;9(9):658–69.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    van Vliet AH. Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett. 2010;302(1):1–7.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Condon C. Maturation and degradation of RNA in bacteria. Curr Opin Microbiol. 2007;10(3):271–8.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Deutscher MP. Degradation of stable RNA in bacteria. J Biol Chem. 2003;278(46):45041–4.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, Zwick ME, Bergman NH. Structure and complexity of a bacterial transcriptome. J Bacteriol. 2009;191(10):3203–11.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, Yu L, et al. A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet. 2009;5(7):e1000569.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Yoder-Himes DR, Chain PS, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, et al. Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci U S A. 2009;106(10):3976–81.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Pallen MJ, Loman NJ, Penn CW. High-throughput sequencing and clinical microbiology: progress, opportunities and challenges. Curr Opin Microbiol. 2010;13(5):625–31.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Sorek R, Cossart P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet. 2010;11(1):9–16.CrossRefGoogle Scholar
  171. 171.
    Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature. 2009;459(7249):950–6.CrossRefGoogle Scholar
  172. 172.
    Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature. 2010;464(7286):250–5.CrossRefGoogle Scholar
  173. 173.
    Westermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen and host. Nat Rev Microbiol. 2012;10(9):618–30.CrossRefGoogle Scholar
  174. 174.
    Westermann AJ, Barquist L, Vogel J. Resolving host-pathogen interactions by dual RNA-seq. PLoS Pathog. 2017;13(2):e1006033.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    He J, Abdel-Wahab O, Nahas MK, Wang K, Rampal RK, Intlekofer AM, et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood. 2016;127(24):3004–14.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Kolata G. In treatment for leukemia, glimpses of the future. New York Times. 2012 July 8, 2012;Sect. A1.Google Scholar
  177. 177.
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jacquelyn Reuther
    • 1
  • Angshumoy Roy
    • 2
  • Federico A. Monzon
    • 1
    • 3
    Email author
  1. 1.Department of Pathology and ImmunologyBaylor College of MedicineHoustonUSA
  2. 2.Department of Pathology and Immunology and PediatricsBaylor College of MedicineHoustonUSA
  3. 3.Castle BiosciencesFriendswoodUSA

Personalised recommendations