Advertisement

Genomic Applications in Ovarian Cancer

  • Martin Köbel
  • James D. BrentonEmail author
Chapter

Abstract

Overall survival rates for women with advanced epithelial ovarian cancer (ovarian carcinoma) have remained unchanged over the past three decades, and fewer than 40% of patients remain alive at 5 years after diagnosis. High-grade serous ovarian carcinoma (HGSOC) accounts for the majority of these cases. Mortality for HGSOC has not been altered by the use of complex cytotoxic chemotherapy combinations, and the lack of progress in improving outcomes reflects its unique biology and extreme genomic complexity. Here, we review key approaches to diagnosis and stratification of HGSOC that are now needed to advance treatment options for patients. The most important clinical questions for the pathologist remain how to unequivocally classify the different histotypes of ovarian carcinoma and which additional genomic data may identify individuals with high risk of response or relapse. This section will concentrate on recent molecular insights that are likely to be highly relevant to clinical care over the next 5 years.

Keywords

Ovarian cancer Next-generation sequencing Expression profiling TP53 aCGH Copy number aberration 

References

  1. 1.
    Coleman MP, Forman D, Bryant H, Butler J, Rachet B, Maringe C, et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (the international cancer benchmarking partnership): an analysis of population-based cancer registry data. Lancet. 2011;377(9760):127–38.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bookman MA, Brady MF, McGuire WP, Harper PG, Alberts DS, Friedlander M, et al. Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a phase III trial of the gynecologic cancer intergroup. J Clin Oncol. 2009;27(9):1419–25.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    du Bois A, Weber B, Rochon J, Meier W, Goupil A, Olbricht S, et al. Addition of epirubicin as a third drug to carboplatin-paclitaxel in first-line treatment of advanced ovarian cancer: a prospectively randomized gynecologic cancer intergroup trial by the Arbeitsgemeinschaft Gynaekologische Onkologie Ovarian Cancer Study Group and the Groupe d’Investigateurs Nationaux pour l’Etude des Cancers Ovariens. J Clin Oncol. 2006;24(7):1127–35.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    du Bois A, Herrstedt J, Hardy-Bessard AC, Muller HH, Harter P, Kristensen G, et al. Phase III trial of carboplatin plus paclitaxel with or without gemcitabine in first-line treatment of epithelial ovarian cancer. J Clin Oncol. 2010;28(27):4162–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dubeau L. The cell of origin of ovarian epithelial tumors and the ovarian surface epithelium dogma: does the emperor have no clothes? Gynecol Oncol. 1999;72(3):437–42.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Piek JM, van Diest PJ, Zweemer RP, Kenemans P, Verheijen RH. Tubal ligation and risk of ovarian cancer. Lancet. 2001;358(9284):844.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Piek JM, van Diest PJ, Zweemer RP, Jansen JW, Poort-Keesom RJ, Menko FH, et al. Dysplastic changes in prophylactically removed fallopian tubes of women predisposed to developing ovarian cancer. J Pathol. 2001;195(4):451–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Leeper K, Garcia R, Swisher E, Goff B, Greer B, Paley P. Pathologic findings in prophylactic oophorectomy specimens in high-risk women. Gynecol Oncol. 2002;87(1):52–6.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Piek JM, Verheijen RH, Kenemans P, Massuger LF, Bulten H, van Diest PJ. BRCA1/2-related ovarian cancers are of tubal origin: a hypothesis. Gynecol Oncol. 2003;90(2):491.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee Y, Miron A, Drapkin R, Nucci MR, Medeiros F, Saleemuddin A, et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J Pathol. 2007;211(1):26–35.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Crum CP, Drapkin R, Kindelberger D, Medeiros F, Miron A, Lee Y. Lessons from BRCA: the tubal fimbria emerges as an origin for pelvic serous cancer. Clin Med Res. 2007;5(1):35–44.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Callahan MJ, Crum CP, Medeiros F, Kindelberger DW, Elvin JA, Garber JE, et al. Primary fallopian tube malignancies in BRCA-positive women undergoing surgery for ovarian cancer risk reduction. J Clin Oncol. 2007;25(25):3985–90.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kindelberger DW, Lee Y, Miron A, Hirsch MS, Feltmate C, Medeiros F, et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am J Surg Pathol. 2007;31(2):161–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vigano P, Somigliana E, Chiodo I, Abbiati A, Vercellini P. Molecular mechanisms and biological plausibility underlying the malignant transformation of endometriosis: a critical analysis. Hum Reprod Update. 2006;12(1):77–89.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ness RB. Endometriosis and ovarian cancer: thoughts on shared pathophysiology. Am J Obstet Gynecol. 2003;189(1):280–94.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11(7):481–92.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330(6001):228–31.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363(16):1532–43.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yamamoto S, Tsuda H, Takano M, Iwaya K, Tamai S, Matsubara O. PIK3CA mutation is an early event in the development of endometriosis-associated ovarian clear cell adenocarcinoma. J Pathol. 2011;225(2):189–94.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Anglesio MS, Papadopoulos N, Ayhan A, Nazeran TM, Noe M, Horlings HM, et al. Cancer-associated mutations in endometriosis without cancer. N Engl J Med. 2017;376(19):1835–48.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kobel M, Rahimi K, Rambau PF, Naugler C, Le Page C, Meunier L, et al. An immunohistochemical algorithm for ovarian carcinoma typing. Int J Gynecol Pathol. 2016;35(5):430–41.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kobel M, Bak J, Bertelsen BI, Carpen O, Grove A, Hansen ES, et al. Ovarian carcinoma histotype determination is highly reproducible, and is improved through the use of immunohistochemistry. Histopathology. 2014;64(7):1004–13.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kobel M, Piskorz AM, Lee S, Lui S, LePage C, Marass F, et al. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma. J Pathol Clin Res. 2016;2(4):247–58.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Altman AD, Nelson GS, Ghatage P, McIntyre JB, Capper D, Chu P, et al. The diagnostic utility of TP53 and CDKN2A to distinguish ovarian high-grade serous carcinoma from low-grade serous ovarian tumors. Mod Pathol. 2013;26(9):1255–63.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    McIntyre JB, Rambau PF, Chan A, Yap S, Morris D, Nelson GS, et al. Molecular alterations in indolent, aggressive and recurrent ovarian low-grade serous carcinoma. Histopathology. 2017;70(3):347–58.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Casey L, Kobel M, Ganesan R, Tam S, Prasad R, Bohm S, et al. A comparison of p53 and WT1 immunohistochemical expression patterns in tubo-ovarian high-grade serous carcinoma before and after neoadjuvant chemotherapy. Histopathology. 2017;71(5):736–42.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee S, Piskorz AM, Le Page C, Mes Masson AM, Provencher D, Huntsman D, et al. Calibration and optimization of p53, WT1, and napsin a immunohistochemistry ancillary tests for histotyping of ovarian carcinoma: Canadian immunohistochemistry quality control (CIQC) experience. Int J Gynecol Pathol. 2016;35(3):209–21.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bromley AB, Altman AD, Chu P, Nation JG, Nelson GS, Ghatage P, et al. Architectural patterns of ovarian/pelvic high-grade serous carcinoma. Int J Gynecol Pathol. 2012;31(5):397–404.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Assem H, Rambau PF, Lee S, Ogilvie T, Sienko A, Kelemen LE, et al. High-grade endometrioid carcinoma of the ovary: a clinicopathologic study of 30 cases. Am J Surg Pathol. 2018;42(4):534–44.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen W, Husain A, Nelson GS, Rambau PF, Liu S, Lee CH, et al. Immunohistochemical profiling of endometrial serous carcinoma. Int J Gynecol Pathol. 2017;36(2):128–39.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kommoss F, Faruqi A, Gilks CB, Lamshang Leen S, Singh N, Wilkinson N, et al. Uterine serous carcinomas frequently metastasize to the fallopian tube and can mimic serous tubal intraepithelial carcinoma. Am J Surg Pathol. 2017;41(2):161–70.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mackenzie R, Talhouk A, Eshragh S, Lau S, Cheung D, Chow C, et al. Morphologic and molecular characteristics of mixed epithelial ovarian Can cers. Am J Surg Pathol. 2015;39(11):1548–57.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    McAlpine JN, Porter H, Kobel M, Nelson BH, Prentice LM, Kalloger SE, et al. BRCA1 and BRCA2 mutations correlate with TP53 abnormalities and presence of immune cell infiltrates in ovarian high-grade serous carcinoma. Mod Pathol. 2012;25(5):740–50.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Spentzos D, Levine DA, Ramoni MF, Joseph M, Gu X, Boyd J, et al. Gene expression signature with independent prognostic significance in epithelial ovarian cancer. J Clin Oncol. 2004;22(23):4700–10.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Selvanayagam ZE, Cheung TH, Wei N, Vittal R, Lo KW, Yeo W, et al. Prediction of chemotherapeutic response in ovarian cancer with DNA microarray expression profiling. Cancer Genet Cytogenet. 2004;154(1):63–6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Spentzos D, Levine DA, Kolia S, Otu H, Boyd J, Libermann TA, et al. Unique gene expression profile based on pathologic response in epithelial ovarian cancer. J Clin Oncol. 2005;23(31):7911–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Berchuck A, Iversen ES, Lancaster JM, Pittman J, Luo J, Lee P, et al. Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers. Clin Cancer Res. 2005;11(10):3686–96.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hartmann LC, Lu KH, Linette GP, Cliby WA, Kalli KR, Gershenson D, et al. Gene expression profiles predict early relapse in ovarian cancer after platinum-paclitaxel chemotherapy. Clin Cancer Res. 2005;11(6):2149–55.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bernardini M, Lee CH, Beheshti B, Prasad M, Albert M, Marrano P, et al. High-resolution mapping of genomic imbalance and identification of gene expression profiles associated with differential chemotherapy response in serous epithelial ovarian cancer. Neoplasia. 2005;7(6):603–13.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jazaeri AA, Awtrey CS, Chandramouli GV, Chuang YE, Khan J, Sotiriou C, et al. Gene expression profiles associated with response to chemotherapy in epithelial ovarian cancers. Clin Cancer Res. 2005;11(17):6300–10.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Helleman J, Jansen MP, Span PN, van Staveren IL, Massuger LF, Meijer-van Gelder ME, et al. Molecular profiling of platinum resistant ovarian cancer. Int J Cancer. 2006;118(8):1963–71.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dressman HK, Berchuck A, Chan G, Zhai J, Bild A, Sayer R, et al. An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol. 2007;25(5):517–25.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Crijns AP, Fehrmann RS, de Jong S, Gerbens F, Meersma GJ, Klip HG, et al. Survival-related profile, pathways, and transcription factors in ovarian cancer. PLoS Med. 2009;6(2):e24.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008;14(16):5198–208.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fehrmann RS, Li XY, van der Zee AG, de Jong S, Te Meerman GJ, de Vries EG, et al. Profiling studies in ovarian cancer: a review. Oncologist. 2007;12(8):960–6.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Agarwal R, Kaye SB. Expression profiling and individualisation of treatment for ovarian cancer. Curr Opin Pharmacol. 2006;6(4):345–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Na YJ, Farley J, Zeh A, del Carmen M, Penson R, Birrer MJ. Ovarian cancer: markers of response. Int J Gynecol Cancer. 2009;19(Suppl 2):S21–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A. 2003;100(18):10393–8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.CrossRefGoogle Scholar
  51. 51.
    Sieh W, Kobel M, Longacre TA, Bowtell DD, deFazio A, Goodman MT, et al. Hormone-receptor expression and ovarian cancer survival: an ovarian tumor tissue analysis consortium study. Lancet Oncol. 2013;14(9):853–62.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Andersen CL, Sikora MJ, Boisen MM, Ma T, Christie A, Tseng G, et al. Active estrogen receptor-alpha signaling in ovarian cancer models and clinical specimens. Clin Cancer Res. 2017;23(14):3802–12.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Verhaak RG, Tamayo P, Yang JY, Hubbard D, Zhang H, Creighton CJ, et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest. 2013;123(1):517–25.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol. 2014;232(2):199–209.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Mlecnik B, Bindea G, Angell HK, Maby P, Angelova M, Tougeron D, et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity. 2016;44(3):698–711.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mlecnik B, Bindea G, Kirilovsky A, Angell HK, Obenauf AC, Tosolini M, et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med. 2016;8(327):327ra26.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, et al. CD20+ tumor-infiltrating lymphocytes have an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res. 2012;18(12):3281–92.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Webb JR, Milne K, Watson P, Deleeuw RJ, Nelson BH. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res. 2014;20(2):434–44.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kroeger DR, Milne K, Nelson BH. Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer. Clin Cancer Res. 2016;22(12):3005–15.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Clarke B, Tinker AV, Lee CH, Subramanian S, van de Rijn M, Turbin D, et al. Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss. Mod Pathol. 2009;22(3):393–402.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20(6):607–15.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lan C, Heindl A, Huang X, Xi S, Banerjee S, Liu J, et al. Quantitative histology analysis of the ovarian tumour microenvironment. Sci Rep. 2015;5:16317.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ovarian Tumor Tissue Analysis C, Goode EL, Block MS, Kalli KR, Vierkant RA, Chen W, et al. Dose-response association of CD8+ tumor-infiltrating lymphocytes and survival time in high-grade serous ovarian cancer. JAMA Oncol. 2017;3:e173290.CrossRefGoogle Scholar
  65. 65.
    Parkes EE, Walker SM, Taggart LE, McCabe N, Knight LA, Wilkinson R, et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J Natl Cancer Inst 2017;109(1).  https://doi.org/10.1093/jnci/djw199.
  66. 66.
    Yang JY, Yoshihara K, Tanaka K, Hatae M, Masuzaki H, Itamochi H, et al. Predicting time to ovarian carcinoma recurrence using protein markers. J Clin Invest. 2013;123(9):3740–50.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature. 1989;342(6250):705–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.CrossRefGoogle Scholar
  69. 69.
    de Graeff P, Crijns AP, de Jong S, Boezen M, Post WJ, de Vries EG, et al. Modest effect of p53, EGFR and HER-2/neu on prognosis in epithelial ovarian cancer: a meta-analysis. Br J Cancer. 2009;101(1):149–59.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Stewart RL, Royds JA, Burton JL, Heatley MK, Wells M. Direct sequencing of the p53 gene shows absence of mutations in endometrioid endometrial adenocarcinomas expressing p53 protein. Histopathology. 1998;33(5):440–5.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Singer G, Stohr R, Cope L, Dehari R, Hartmann A, Cao DF, et al. Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am J Surg Pathol. 2005;29(2):218–24.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL, et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol. 2009;174(5):1597–601.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010;221(1):49–56.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer. 2009;9(12):862–73.CrossRefGoogle Scholar
  75. 75.
    Cheok CF, Verma CS, Je B, Lane DP. Translating p53 into the clinic. Nat Rev Clin Oncol. 2011;8(1):25–37.CrossRefGoogle Scholar
  76. 76.
    Carrassa L, Chila R, Lupi M, Ricci F, Celenza C, Mazzoletti M, et al. Combined inhibition of Chk1 and Wee1: in vitro synergistic effect translates to tumor growth inhibition in vivo. Cell Cycle. 2012;11(13):2507–17.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Emerling BM, Hurov JB, Poulogiannis G, Tsukazawa KS, Choo-Wing R, Wulf GM, et al. Depletion of a putatively druggable class of phosphatidylinositol kinases inhibits growth of p53-null tumors. Cell. 2013;155(4):844–57.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45(10):1127–33.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Nakayama K, Nakayama N, Jinawath N, Salani R, Kurman RJ, Shih Ie M, et al. Amplicon profiles in ovarian serous carcinomas. Int J Cancer. 2007;120(12):2613–7.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Farley J, Smith LM, Darcy KM, Sobel E, O’Connor D, Henderson B, et al. Cyclin E expression is a significant predictor of survival in advanced, suboptimally debulked ovarian epithelial cancers: a gynecologic oncology group study. Cancer Res. 2003;63(6):1235–41.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Etemadmoghadam D, deFazio A, Beroukhim R, Mermel C, George J, Getz G, et al. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res. 2009;15(4):1417–27.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Etemadmoghadam D, George J, Cowin PA, Cullinane C, Kansara M, Group AOCS, et al. Amplicon-dependent CCNE1 expression is critical for clonogenic survival after cisplatin treatment and is correlated with 20q11 gain in ovarian cancer. PLoS One. 2010;5(11):e15498.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Theurillat JP, Metzler SC, Henzi N, Djouder N, Helbling M, Zimmermann AK, et al. URI is an oncogene amplified in ovarian cancer cells and is required for their survival. Cancer Cell. 2011;19(3):317–32.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Etemadmoghadam D, Weir BA, Au-Yeung G, Alsop K, Mitchell G, George J, et al. Synthetic lethality between CCNE1 amplification and loss of BRCA1. Proc Natl Acad Sci U S A. 2013;110(48):19489–94.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Etemadmoghadam D, Au-Yeung G, Wall M, Mitchell C, Kansara M, Loehrer E, et al. Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer. Clin Cancer Res. 2013;19(21):5960–71.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Markman M, Rothman R, Hakes T, Reichman B, Hoskins W, Rubin S, et al. Second-line platinum therapy in patients with ovarian cancer previously treated with cisplatin. J Clin Oncol. 1991;9(3):389–93.CrossRefGoogle Scholar
  87. 87.
    Borst P, Rottenberg S, Jonkers J. How do real tumors become resistant to cisplatin? Cell Cycle. 2008;7(10):1353–9.CrossRefGoogle Scholar
  88. 88.
    Trainer AH, Meiser B, Watts K, Mitchell G, Tucker K, Friedlander M. Moving toward personalized medicine: treatment-focused genetic testing of women newly diagnosed with ovarian cancer. Int J Gynecol Cancer. 2010;20(5):704–16.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Hennessy BTJ, Timms KM, Carey MS, Gutin A, Meyer LA, Flake n DD, et al. Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. J Clin Oncol. 2010;28(22):3570–6.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Alsop K, Fereday S, Meldrum C, deFazio A, Emmanuel C, George J, et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian ovarian cancer study group. J Clin Oncol. 2012;30(21):2654–63.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Chetrit A, Hirsh-Yechezkel G, Ben-David Y, Lubin F, Friedman E, Sadetzki S. Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer. J Clin Oncol. 2008;26(1):20–5.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Tan DS, Rothermundt C, Thomas K, Bancroft E, Eeles R, Shanley S, et al. “BRCAness” syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol. 2008;26(34):5530–6.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK, et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA. 2011;306(14):1557–65.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Bolton KL, Chenevix-Trench G, Goh C, Sadetzki S, Ramus SJ, Karlan BY, et al. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA. 2012;307(4):382–90.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42(5):410–4.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Pelttari LM, Heikkinen T, Thompson D, Kallioniemi A, Schleutker J, Holli K, et al. RAD51C is a susceptibility gene for ovarian cancer. Hum Mol Genet. 2011;20(16):3278–88.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Loveday C, Turnbull C, Ramsay E, Hughes D, Ruark E, Frankum JR, et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet. 2011;43(9):879–82.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Rafnar T, Gudbjartsson DF, Sulem P, Jonasdottir A, Sigurdsson A, Jonasdottir A, et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet. 2011;43(11):1104–7.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Mukhopadhyay A, Elattar A, Cerbinskaite A, Wilkinson SJ, Drew Y, Kyle S, et al. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clin Cancer Res. 2010;16(8):2344–51.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA, et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer. 2012;107(10):1776–82.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22(15):3764–73.CrossRefGoogle Scholar
  102. 102.
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Davies H, Glodzik D, Morganella S, Yates LR, Staaf J, Zou X, et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017;23(4):517–25.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai W, et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol. 2011;29(22):3008–15.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Sakai W, Swisher EM, Jacquemont C, Chandramohan KV, Couch FJ, Langdon SP, et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res. 2009;69(16):6381–6.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 2008;68(8):2581–6.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature. 2008;451(7182):1116–20.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature. 2008;451(7182):1111–5.CrossRefGoogle Scholar
  109. 109.
    Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Cooke SL, Temple J, Macarthur S, Zahra MA, Tan LT, Crawford RA, et al. Intra-tumour genetic heterogeneity and poor chemoradiotherapy response in cervical cancer. Br J Cancer. 2011;104(2):361–8.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Cooke SL, Ng CK, Melnyk N, Garcia MJ, Hardcastle T, Temple J, et al. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma. Oncogene. 2010;29(35):4905–13.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R, Heppner GH. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res. 1978;38(10):3174–81.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Khalique L, Ayhan A, Weale ME, Jacobs IJ, Ramus SJ, Gayther SA. Genetic intra-tumour heterogeneity in epithelial ovarian cancer and its implications for molecular diagnosis of tumours. J Pathol. 2007;211(3):286–95.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Khalique L, Ayhan A, Whittaker JC, Singh N, Jacobs IJ, Gayther SA, et al. The clonal evolution of metastases from primary serous epithelial ovarian cancers. Int J Cancer. 2009;124(7):1579–86.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 2010;20(1):68–80.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature. 2009;461(7265):809–13.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Wu X, Northcott PA, Dubuc A, Dupuy AJ, Shih DJ, Witt H, et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature. 2012;482(7386):529–33.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Vermaat JS, Nijman IJ, Koudijs MJ, Gerritse FL, Scherer SJ, Mokry M, et al. Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clin Cancer Res. 2012;18(3):688–99.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol. 2012;30(5):413–21.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467(7319):1109–13.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Choi S, Henderson MJ, Kwan E, Beesley AH, Sutton R, Bahar AY, et al. Relapse in children with acute lymphoblastic leukemia involving selection of a preexisting drug-resistant subclone. Blood. 2007;110(2):632–9.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002;2(2):117–25.CrossRefGoogle Scholar
  126. 126.
    Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, Laï J-L, Philippe N, Facon T, et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood. 2002;100(3):1014–8.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA, et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science. 2008;322(5906):1377–80.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Micci F, Haugom L, Ahlquist T, Abeler VM, Trope CG, Lothe RA, et al. Tumor spreading to the contralateral ovary in bilateral ovarian carcinoma is a late event in clonal evolution. J Oncol. 2010;2010:646340.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol. 2013;231(1):21–34.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    McPherson A, Roth A, Laks E, Masud T, Bashashati A, Zhang AW, et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat Genet. 2016;48(7):758–67.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Schwarz RF, Ng CK, Cooke SL, Newman S, Temple J, Piskorz AM, et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 2015;12(2):e1001789.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    McAlpine JN, Eisenkop SM, Spirtos NM. Tumor heterogeneity in ovarian cancer as demonstrated by in vitro chemoresistance assays. Gynecol Oncol. 2008;110(3):360–4.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Griffin N, Grant LA, Freeman SJ, Jimenez-Linan M, Berman LH, Earl H, et al. Image-guided biopsy in patients with suspected ovarian carcinoma: a safe and effective technique? Eur Radiol. 2009;19(1):230–5.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Spencer JA, Weston MJ, Saidi SA, Wilkinson N, Hall GD. Clinical utility of image-guided peritoneal and omental biopsy. Nat Rev Clin Oncol. 2010;7(11):623–31.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37(3):646–50.Google Scholar
  138. 138.
    Kamat AA, Baldwin M, Urbauer D, Dang D, Han LY, Godwin A, et al. Plasma cell-free DNA in ovarian cancer: an independent prognostic biomarker. Cancer. 2010;116(8):1918–25.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med. 2010;2(20):20ra14.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Yung TK, Chan KC, Mok TS, Tong J, To KF, Lo YM. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res. 2009;15(6):2076–84.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Chen Z, Feng J, Buzin CH, Liu Q, Weiss L, Kernstine K, et al. Analysis of cancer mutation signatures in blood by a novel ultra-sensitive assay: monitoring of therapy or recurrence in non-metastatic breast cancer. PLoS One. 2009;4(9):e7220.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Poveda A, Kaye SB, McCormack R, Wang S, Parekh T, Ricci D, et al. Circulating tumor cells predict progression free survival and overall survival in patients with relapsed/recurrent advanced ovarian cancer. Gynecol Oncol. 2011;122(3):567–72.CrossRefGoogle Scholar
  144. 144.
    Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136ra68.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497(7447):108–12.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Parkinson CA, Gale D, Piskorz AM, Biggs H, Hodgkin C, Addley H, et al. Exploratory analysis of TP53 mutations in circulating tumour DNA as biomarkers of treatment response for patients with relapsed high-grade serous ovarian carcinoma: a retrospective study. PLoS Med. 2016;13(12):e1002198.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Pathology and Laboratory MedicineFoothills Medical CentreCalgaryCanada
  2. 2.Functional Genomics of Ovarian Cancer Laboratory, Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK

Personalised recommendations