Advertisement

Genomic Applications in Gynecologic Malignancies

  • Sarah Chiang
  • Luciano G. Martelotto
  • Britta WeigeltEmail author
Chapter

Abstract

Genomic approaches implemented in clinical practice to date for patients with gynecological cancers have been limited to human papillomavirus DNA testing, which is considered the molecular genetic basis of most cervical carcinomas, and to the identification of specific gene mutations associated with hereditary gynecological cancer syndromes such as BRCA1 and BRCA2 germline mutations in ovarian cancer patients. Over the past years, however, the advent of high-throughput genomic technologies allowed for substantial advances in our understanding of the molecular underpinning of sporadic gynecological malignancies, in particular of ovarian and uterine cancer, the two most frequently diagnosed malignancies of the female reproductive tract in the Western world. Genomic approaches applied to the study of these cancers have the potential to improve not only disease classification and diagnostic reproducibility but may also lead to the identification of novel prognostic and predictive subclasses of these diseases as well as novel therapeutic targets, ultimately providing an opportunity for the realization of precision medicine. This chapter focuses on recent advances in our understanding of endometrial carcinoma and uterine mesenchymal tumors with an emphasis on sarcomas, which are likely to affect clinical care in the near future, and we discuss the integration of genomic tests in the diagnostic armamentarium of these cancers.

Keywords

Endometrial cancer Uterine mesenchymal tumors Classification Next-generation sequencing Genetics PI3K pathway Translocation 

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.  https://doi.org/10.3322/caac.21442.PubMedGoogle Scholar
  2. 2.
    Jemal A, Ward EM, Johnson CJ, Cronin KA, Ma J, Ryerson B, Mariotto A, Lake AJ, Wilson R, Sherman RL, Anderson RN, Henley SJ, Kohler BA, Penberthy L, Feuer EJ, Weir HK. Annual report to the nation on the status of cancer, 1975–2014, featuring survival. J Natl Cancer Inst. 2017;109(9).  https://doi.org/10.1093/jnci/djx030.
  3. 3.
    Creasman WT, Odicino F, Maisonneuve P, Quinn MA, Beller U, Benedet JL, Heintz AP, Ngan HY, Pecorelli S. Carcinoma of the corpus uteri. FIGO 26th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet. 2006;1(95 Suppl):S105–43.  https://doi.org/10.1016/S0020-7292(06)60031-3.Google Scholar
  4. 4.
    Makker V, Hensley ML, Zhou Q, Iasonos A, Aghajanian CA. Treatment of advanced or recurrent endometrial carcinoma with doxorubicin in patients progressing after paclitaxel/carboplatin: memorial sloan-kettering cancer center experience from 1995 to 2009. Int J Gynecol Cancer. 2013;23:929–34.  https://doi.org/10.1097/IGC.0b013e3182915c20.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Carey MS, Gawlik C, Fung-Kee-Fung M, Chambers A, Oliver T. Systematic review of systemic therapy for advanced or recurrent endometrial cancer. Gynecol Oncol. 2006;101(1):158–67.  https://doi.org/10.1016/j.ygyno.2005.11.019.PubMedGoogle Scholar
  6. 6.
    Oza AM, Elit L, Tsao MS, Kamel-Reid S, Biagi J, Provencher DM, Gotlieb WH, Hoskins PJ, Ghatage P, Tonkin KS, Mackay HJ, Mazurka J, Sederias J, Ivy P, Dancey JE, Eisenhauer EA. Phase II study of temsirolimus in women with recurrent or metastatic endometrial cancer: a trial of the NCIC clinical trials group. J Clin Oncol. 2011;29(24):3278–85.  https://doi.org/10.1200/JCO.2010.34.1578.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet. 2009;105(2):103–4.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 1983;15(1):10–7.PubMedGoogle Scholar
  9. 9.
    Setiawan VW, Yang HP, Pike MC, McCann SE, Yu H, Xiang YB, Wolk A, Wentzensen N, Weiss NS, Webb PM, van den Brandt PA, van de Vijver K, Thompson PJ, Strom BL, Spurdle AB, Soslow RA, Shu XO, Schairer C, Sacerdote C, Rohan TE, Robien K, Risch HA, Ricceri F, Rebbeck TR, Rastogi R, Prescott J, Polidoro S, Park Y, Olson SH, Moysich KB, Miller AB, McCullough ML, Matsuno RK, Magliocco AM, Lurie G, Lu L, Lissowska J, Liang X, Lacey JV Jr, Kolonel LN, Henderson BE, Hankinson SE, Hakansson N, Goodman MT, Gaudet MM, Garcia-Closas M, Friedenreich CM, Freudenheim JL, Doherty J, De Vivo I, Courneya KS, Cook LS, Chen C, Cerhan JR, Cai H, Brinton LA, Bernstein L, Anderson KE, Anton-Culver H, Schouten LJ, Horn-Ross PL. Type I and II endometrial cancers: have they different risk factors? J Clin Oncol. 2013;31:2607–18.  https://doi.org/10.1200/JCO.2012.48.2596.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kurman RJ, Carcangiu ML, Herrington CS, Young RH. WHO classification of tumours of female reproductive organs, World health organization classification of tumors. Lyon: IARC Press; 2014.Google Scholar
  11. 11.
    Clement PB, Young RH. Atlas of gynecologic surgical pathology. 3rd ed. Philadelphia: Saunders/Elsevier; 2013.Google Scholar
  12. 12.
    Blaustein A, Kurman RJ. Blaustein’s pathology of the female genital tract. 6th ed. New York: Springer; 2011.Google Scholar
  13. 13.
    McCluggage WG. Uterine carcinosarcomas (malignant mixed Mullerian tumors) are metaplastic carcinomas. Int J Gynecol Cancer. 2002;12(6):687–90.PubMedGoogle Scholar
  14. 14.
    McCluggage WG. Malignant biphasic uterine tumours: carcinosarcomas or metaplastic carcinomas? J Clin Pathol. 2002;55(5):321–5.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Announcement. FIGO stages-1988 revision. Gynecol Oncol. 1989;35:125–6.Google Scholar
  16. 16.
    Zaino RJ, Kurman RJ, Diana KL, Morrow CP. The utility of the revised international federation of gynecology and obstetrics histologic grading of endometrial adenocarcinoma using a defined nuclear grading system. a gynecologic oncology group study. Cancer. 1995;75(1):81–6.PubMedGoogle Scholar
  17. 17.
    Alkushi A, Abdul-Rahman ZH, Lim P, Schulzer M, Coldman A, Kalloger SE, Miller D, Gilks CB. Description of a novel system for grading of endometrial carcinoma and comparison with existing grading systems. Am J Surg Pathol. 2005;29(3):295–304.PubMedGoogle Scholar
  18. 18.
    Lax SF, Kurman RJ, Pizer ES, Wu L, Ronnett BM. A binary architectural grading system for uterine endometrial endometrioid carcinoma has superior reproducibility compared with FIGO grading and identifies subsets of advance-stage tumors with favorable and unfavorable prognosis. Am J Surg Pathol. 2000;24(9):1201–8.PubMedGoogle Scholar
  19. 19.
    Prat J. Prognostic parameters of endometrial carcinoma. Hum Pathol. 2004;35(6):649–62.PubMedGoogle Scholar
  20. 20.
    Sorbe B. Predictive and prognostic factors in definition of risk groups in endometrial carcinoma. ISRN Obstet Gynecol. 2012;2012:325790.  https://doi.org/10.5402/2012/325790.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Gilks CB, Oliva E, Soslow RA. Poor interobserver reproducibility in the diagnosis of high-grade endometrial carcinoma. Am J Surg Pathol. 2013;37(6):874–81.  https://doi.org/10.1097/PAS.0b013e31827f576a.PubMedGoogle Scholar
  22. 22.
    Hoang LN, Kinloch MA, Leo JM, Grondin K, Lee CH, Ewanowich C, Kobel M, Cheng A, Talhouk A, McConechy M, Huntsman DG, McAlpine JN, Soslow RA, Gilks CB. Interobserver agreement in endometrial carcinoma histotype diagnosis varies depending on the cancer genome atlas (TCGA)-based molecular subgroup. Am J Surg Pathol. 2017;41(2):245–52.  https://doi.org/10.1097/PAS.0000000000000764.PubMedGoogle Scholar
  23. 23.
    Soslow RA. High-grade endometrial carcinomas – strategies for typing. Histopathology. 2013;62(1):89–110.  https://doi.org/10.1111/his.12029.PubMedGoogle Scholar
  24. 24.
    Clarke BA, Gilks CB. Endometrial carcinoma: controversies in histopathological assessment of grade and tumour cell type. J Clin Pathol. 2010;63(5):410–5.  https://doi.org/10.1136/jcp.2009.071225.PubMedGoogle Scholar
  25. 25.
    Mittal K, Soslow R, McCluggage WG. Application of immunohistochemistry to gynecologic pathology. Arch Pathol Lab Med. 2008;132(3):402–23.  https://doi.org/10.1043/1543-2165(2008)132[402,AOITGP]2.0.CO;2.PubMedGoogle Scholar
  26. 26.
    Fadare O, Liang SX. Diagnostic utility of hepatocyte nuclear factor 1-Beta immunoreactivity in endometrial carcinomas: lack of specificity for endometrial clear cell carcinoma. Appl Immunohistochem Mol Morphol. 2012;20(6):580–7.  https://doi.org/10.1097/PAI.0b013e31824973d1.PubMedGoogle Scholar
  27. 27.
    Lim D, Ip PP, Cheung AN, Kiyokawa T, Oliva E. Immunohistochemical comparison of ovarian and uterine endometrioid carcinoma, endometrioid carcinoma with clear cell change, and clear cell carcinoma. Am J Surg Pathol. 2015;39(8):1061–9.  https://doi.org/10.1097/PAS.0000000000000436.PubMedGoogle Scholar
  28. 28.
    Tafe LJ, Garg K, Chew I, Tornos C, Soslow RA. Endometrial and ovarian carcinomas with undifferentiated components: clinically aggressive and frequently underrecognized neoplasms. Mod Pathol. 2010;23(6):781–9.  https://doi.org/10.1038/modpathol.2010.41.PubMedGoogle Scholar
  29. 29.
    Ramalingam P, Masand RP, Euscher ED, Malpica A. Undifferentiated carcinoma of the endometrium: an expanded immunohistochemical analysis including PAX-8 and Basal-Like carcinoma surrogate markers. Int J Gynecol Pathol. 2016;35(5):410–8.  https://doi.org/10.1097/PGP.0000000000000248.PubMedGoogle Scholar
  30. 30.
    Hussein YR, Broaddus R, Weigelt B, Levine DA, Soslow RA. The genomic heterogeneity of FIGO grade 3 endometrioid carcinoma impacts diagnostic accuracy and reproducibility. Int J Gynecol Pathol. 2016;35(1):16–24.  https://doi.org/10.1097/PGP.0000000000000212.PubMedPubMedCentralGoogle Scholar
  31. 31.
    McAlpine J, Leon-Castillo A, Bosse T. The rise of a novel classification system for endometrial carcinoma; integration of molecular subclasses. J Pathol. 2018;244(5):538–49.  https://doi.org/10.1002/path.5034.PubMedGoogle Scholar
  32. 32.
    Simpkins SB, Bocker T, Swisher EM, Mutch DG, Gersell DJ, Kovatich AJ, Palazzo JP, Fishel R, Goodfellow PJ. MLH1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Hum Mol Genet. 1999;8(4):661–6.PubMedGoogle Scholar
  33. 33.
    Dedes KJ, Wetterskog D, Mendes-Pereira AM, Natrajan R, Lambros MB, Geyer FC, Vatcheva R, Savage K, Mackay A, Lord CJ, Ashworth A, Reis-Filho JS. PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci Transl Med. 2010;2(53):53ra75.  https://doi.org/10.1126/scitranslmed.3001538.PubMedGoogle Scholar
  34. 34.
    Urick ME, Rudd ML, Godwin AK, Sgroi D, Merino M, Bell DW. PIK3R1 (p85alpha) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res. 2011;71(12):4061–7.  https://doi.org/10.1158/0008-5472.CAN-11-0549.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Cheung LW, Hennessy BT, Li J, Yu S, Myers AP, Djordjevic B, Lu Y, Stemke-Hale K, Dyer MD, Zhang F, Ju Z, Cantley LC, Scherer SE, Liang H, Lu KH, Broaddus RR, Mills GB. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 2011;1(2):170–85.  https://doi.org/10.1158/2159-8290.CD-11-0039.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kalloger SE, Scott DW, Steidl C, Wiseman SM, Gascoyne RD, Gilks B, Huntsman DG. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 2011;224(3):328–33.  https://doi.org/10.1002/path.2911.PubMedGoogle Scholar
  37. 37.
    McConechy MK, Anglesio MS, Kalloger SE, Yang W, Senz J, Chow C, Heravi-Moussavi A, Morin GB, Mes-Masson AM, Carey MS, McAlpine JN, Kwon JS, Prentice LM, Boyd N, Shah SP, Gilks CB, Huntsman DG. Subtype-specific mutation of PPP2R1A in endometrial and ovarian carcinomas. J Pathol. 2011;223(5):567–73.  https://doi.org/10.1002/path.2848.PubMedGoogle Scholar
  38. 38.
    Santin AD, Bellone S, Van Stedum S, Bushen W, Palmieri M, Siegel ER, De Las Casas LE, Roman JJ, Burnett A, Pecorelli S. Amplification of c-erbB2 oncogene: a major prognostic indicator in uterine serous papillary carcinoma. Cancer. 2005;104(7):1391–7.  https://doi.org/10.1002/cncr.21308.PubMedGoogle Scholar
  39. 39.
    Hetzel DJ, Wilson TO, Keeney GL, Roche PC, Cha SS, Podratz KC. HER-2/neu expression: a major prognostic factor in endometrial cancer. Gynecol Oncol. 1992;47(2):179–85.PubMedGoogle Scholar
  40. 40.
    McConechy MK, Ding J, Cheang MC, Wiegand KC, Senz J, Tone AA, Yang W, Prentice LM, Tse K, Zeng T, McDonald H, Schmidt AP, Mutch DG, McAlpine JN, Hirst M, Shah SP, Lee CH, Goodfellow PJ, Gilks CB, Huntsman DG. Use of mutation profiles to refine the classification of endometrial carcinomas. J Pathol. 2012;228(1):20–30.  https://doi.org/10.1002/path.4056.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Salvesen HB, Haldorsen IS, Trovik J. Markers for individualised therapy in endometrial carcinoma. Lancet Oncol. 2012;13(8):e353–61.  https://doi.org/10.1016/S1470-2045(12)70213-9.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.  https://doi.org/10.1038/35021093.PubMedGoogle Scholar
  43. 43.
    Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol. 2010;220(2):263–80.  https://doi.org/10.1002/path.2648.PubMedGoogle Scholar
  44. 44.
    Risinger JI, Maxwell GL, Chandramouli GV, Jazaeri A, Aprelikova O, Patterson T, Berchuck A, Barrett JC. Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res. 2003;63(1):6–11.PubMedGoogle Scholar
  45. 45.
    Maxwell GL, Chandramouli GV, Dainty L, Litzi TJ, Berchuck A, Barrett JC, Risinger JI. Microarray analysis of endometrial carcinomas and mixed mullerian tumors reveals distinct gene expression profiles associated with different histologic types of uterine cancer. Clin Cancer Res. 2005;11(11):4056–66.  https://doi.org/10.1158/1078-0432.CCR-04-2001.PubMedGoogle Scholar
  46. 46.
    Chen Y, Yao Y, Zhang L, Li X, Wang Y, Zhao L, Wang J, Wang G, Shen D, Wei L, Zhao J. cDNA microarray analysis and immunohistochemistry reveal a distinct molecular phenotype in serous endometrial cancer compared to endometrioid endometrial cancer. Exp Mol Pathol. 2011;91(1):373–84.  https://doi.org/10.1016/j.yexmp.2011.04.005.PubMedGoogle Scholar
  47. 47.
    Ratner ES, Tuck D, Richter C, Nallur S, Patel RM, Schultz V, Hui P, Schwartz PE, Rutherford TJ, Weidhaas JB. MicroRNA signatures differentiate uterine cancer tumor subtypes. Gynecol Oncol. 2010;118(3):251–7.  https://doi.org/10.1016/j.ygyno.2010.05.010.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Moreno-Bueno G, Sanchez-Estevez C, Cassia R, Rodriguez-Perales S, Diaz-Uriarte R, Dominguez O, Hardisson D, Andujar M, Prat J, Matias-Guiu X, Cigudosa JC, Palacios J. Differential gene expression profile in endometrioid and nonendometrioid endometrial carcinoma: STK15 is frequently overexpressed and amplified in nonendometrioid carcinomas. Cancer Res. 2003;63(18):5697–702.PubMedGoogle Scholar
  49. 49.
    Mhawech-Fauceglia P, Wang D, Kesterson J, Syriac S, Clark K, Frederick PJ, Lele S, Liu S. Gene expression profiles in stage I uterine serous carcinoma in comparison to grade 3 and grade 1 stage I endometrioid adenocarcinoma. PLoS One. 2011;6(3):e18066.  https://doi.org/10.1371/journal.pone.0018066.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Catasus L, D’Angelo E, Pons C, Espinosa I, Prat J. Expression profiling of 22 genes involved in the PI3K-AKT pathway identifies two subgroups of high-grade endometrial carcinomas with different molecular alterations. Mod Pathol. 2010;23(5):694–702.  https://doi.org/10.1038/modpathol.2010.44.PubMedGoogle Scholar
  51. 51.
    Ferguson SE, Olshen AB, Viale A, Barakat RR, Boyd J. Stratification of intermediate-risk endometrial cancer patients into groups at high risk or low risk for recurrence based on tumor gene expression profiles. Clin Cancer Res. 2005;11(6):2252–7.  https://doi.org/10.1158/1078-0432.CCR-04-1353.PubMedGoogle Scholar
  52. 52.
    Salvesen HB, Carter SL, Mannelqvist M, Dutt A, Getz G, Stefansson IM, Raeder MB, Sos ML, Engelsen IB, Trovik J, Wik E, Greulich H, Bo TH, Jonassen I, Thomas RK, Zander T, Garraway LA, Oyan AM, Sellers WR, Kalland KH, Meyerson M, Akslen LA, Beroukhim R. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci U S A. 2009;106(12):4834–9.  https://doi.org/10.1073/pnas.0806514106.PubMedPubMedCentralGoogle Scholar
  53. 53.
    O’Mara TA, Zhao M, Spurdle AB. Meta-analysis of gene expression studies in endometrial cancer identifies gene expression profiles associated with aggressive disease and patient outcome. Sci Rep. 2016;6:36677.  https://doi.org/10.1038/srep36677.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Fles R, Hoogendoorn WE, Platteel I, Scheerman CE, de Leeuw-Mantel G, Mourits MJ, Hollema H, van Leeuwen FE, van Boven HH, Nederlof PM. Genomic profile of endometrial tumors depends on morphological subtype, not on tamoxifen exposure. Genes Chromosomes Cancer. 2010;49(8):699–710.  https://doi.org/10.1002/gcc.20781.PubMedGoogle Scholar
  55. 55.
    Murayama-Hosokawa S, Oda K, Nakagawa S, Ishikawa S, Yamamoto S, Shoji K, Ikeda Y, Uehara Y, Fukayama M, McCormick F, Yano T, Taketani Y, Aburatani H. Genome-wide single-nucleotide polymorphism arrays in endometrial carcinomas associate extensive chromosomal instability with poor prognosis and unveil frequent chromosomal imbalances involved in the PI3-kinase pathway. Oncogene. 2010;29(13):1897–908.  https://doi.org/10.1038/onc.2009.474.PubMedGoogle Scholar
  56. 56.
    Le Gallo M, O’Hara AJ, Rudd ML, Urick ME, Hansen NF, O’Neil NJ, Price JC, Zhang S, England BM, Godwin AK, Sgroi DC, Hieter P, Mullikin JC, Merino MJ, Bell DW. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet. 2012;44(12):1310–5.  https://doi.org/10.1038/ng.2455.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Kuhn E, Wu RC, Guan B, Wu G, Zhang J, Wang Y, Song L, Yuan X, Wei L, Roden RB, Kuo KT, Nakayama K, Clarke B, Shaw P, Olvera N, Kurman RJ, Levine DA, Wang TL, Shih Ie M. Identification of molecular pathway aberrations in uterine serous carcinoma by genome-wide analyses. J Natl Cancer Inst. 2012;104(19):1503–13.  https://doi.org/10.1093/jnci/djs345.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhao S, Choi M, Overton JD, Bellone S, Roque DM, Cocco E, Guzzo F, English DP, Varughese J, Gasparrini S, Bortolomai I, Buza N, Hui P, Abu-Khalaf M, Ravaggi A, Bignotti E, Bandiera E, Romani C, Todeschini P, Tassi R, Zanotti L, Carrara L, Pecorelli S, Silasi DA, Ratner E, Azodi M, Schwartz PE, Rutherford TJ, Stiegler AL, Mane S, Boggon TJ, Schlessinger J, Lifton RP, Santin AD. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc Natl Acad Sci U S A. 2013;110(8):2916–21.  https://doi.org/10.1073/pnas.1222577110.PubMedPubMedCentralGoogle Scholar
  59. 59.
    The Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R, Mardis ER, Levine DA. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.  https://doi.org/10.1038/nature12113.PubMedCentralGoogle Scholar
  60. 60.
    Church DN, Briggs SE, Palles C, Domingo E, Kearsey SJ, Grimes JM, Gorman M, Martin L, Howarth KM, Hodgson SV, Kaur K, Taylor J, Tomlinson IP. DNA polymerase {varepsilon} and delta exonuclease domain mutations in endometrial cancer. Hum Mol Genet. 2013;  https://doi.org/10.1093/hmg/ddt131.
  61. 61.
    Church DN, Stelloo E, Nout RA, Valtcheva N, Depreeuw J, ter Haar N, Noske A, Amant F, Tomlinson IP, Wild PJ, Lambrechts D, Jurgenliemk-Schulz IM, Jobsen JJ, Smit VT, Creutzberg CL, Bosse T. Prognostic significance of POLE proofreading mutations in endometrial cancer. J Natl Cancer Inst. 2015;107(1):402.  https://doi.org/10.1093/jnci/dju402.PubMedGoogle Scholar
  62. 62.
    Billingsley CC, Cohn DE, Mutch DG, Hade EM, Goodfellow PJ. Prognostic significance of POLE exonuclease domain mutations in high-grade endometrioid endometrial cancer on survival and recurrence: a subanalysis. Int J Gynecol Cancer. 2016;26(5):933–8.  https://doi.org/10.1097/IGC.0000000000000681.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Billingsley CC, Cohn DE, Mutch DG, Stephens JA, Suarez AA, Goodfellow PJ. Polymerase varepsilon (POLE) mutations in endometrial cancer: clinical outcomes and implications for Lynch syndrome testing. Cancer. 2015;121(3):386–94.  https://doi.org/10.1002/cncr.29046.PubMedGoogle Scholar
  64. 64.
    McConechy MK, Talhouk A, Leung S, Chiu D, Yang W, Senz J, Reha-Krantz LJ, Lee CH, Huntsman DG, Gilks CB, McAlpine JN. Endometrial carcinomas with POLE exonuclease domain mutations have a favorable prognosis. Clin Cancer Res. 2016;22(12):2865–73.  https://doi.org/10.1158/1078-0432.CCR-15-2233.PubMedGoogle Scholar
  65. 65.
    Meng B, Hoang LN, McIntyre JB, Duggan MA, Nelson GS, Lee CH, Kobel M. POLE exonuclease domain mutation predicts long progression-free survival in grade 3 endometrioid carcinoma of the endometrium. Gynecol Oncol. 2014;134(1):15–9.  https://doi.org/10.1016/j.ygyno.2014.05.006.PubMedGoogle Scholar
  66. 66.
    Talhouk A, McConechy MK, Leung S, Li-Chang HH, Kwon JS, Melnyk N, Yang W, Senz J, Boyd N, Karnezis AN, Huntsman DG, Gilks CB, McAlpine JN. A clinically applicable molecular-based classification for endometrial cancers. Br J Cancer. 2015;113(2):299–310.  https://doi.org/10.1038/bjc.2015.190.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Kommoss S, McConechy MK, Kommoss F, Leung S, Bunz A, Magrill J, Britton H, Kommoss F, Grevenkamp F, Karnezis A, Yang W, Lum A, Kramer B, Taran F, Staebler A, Lax S, Brucker SY, Huntsman DG, Gilks CB, McAlpine JN, Talhouk A. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann Oncol. 2018;  https://doi.org/10.1093/annonc/mdy058.
  68. 68.
    Talhouk A, McConechy MK, Leung S, Yang W, Lum A, Senz J, Boyd N, Pike J, Anglesio M, Kwon JS, Karnezis AN, Huntsman DG, Gilks CB, McAlpine JN. Confirmation of ProMisE: a simple, genomics-based clinical classifier for endometrial cancer. Cancer. 2017;123(5):802–13.  https://doi.org/10.1002/cncr.30496.PubMedGoogle Scholar
  69. 69.
    Bosse T, Nout RA, McAlpine JN, McConechy MK, Britton H, Hussein YR, Gonzalez C, Ganesan R, Steele JC, Harrison BT, Oliva E, Vidal A, Matias-Guiu X, Abu-Rustum NR, Levine DA, Gilks CB, Soslow RA. Molecular classification of grade 3 endometrioid endometrial cancers identifies distinct prognostic subgroups. Am J Surg Pathol. 2018;42(5):561–8.  https://doi.org/10.1097/PAS.0000000000001020.PubMedGoogle Scholar
  70. 70.
    Kim HJ, Kim TJ, Lee YY, Choi CH, Lee JW, Bae DS, Kim BG. A comparison of uterine papillary serous, clear cell carcinomas, and grade 3 endometrioid corpus cancers using 2009 FIGO staging system. J Gynecol Oncol. 2013;24(2):120–7.  https://doi.org/10.3802/jgo.2013.24.2.120.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Wang J, Jia N, Li Q, Wang C, Tao X, Hua K, Feng W. Analysis of recurrence and survival rates in grade 3 endometrioid endometrial carcinoma. Oncol Lett. 2016;12(4):2860–7.  https://doi.org/10.3892/ol.2016.4918.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Espinosa I, Lee CH, D’Angelo E, Palacios J, Prat J. Undifferentiated and dedifferentiated endometrial carcinomas with POLE exonuclease domain mutations have a favorable prognosis. Am J Surg Pathol. 2017;41(8):1121–8.  https://doi.org/10.1097/PAS.0000000000000873.PubMedGoogle Scholar
  73. 73.
    DeLair DF, Burke KA, Selenica P, Lim RS, Scott SN, Middha S, Mohanty AS, Cheng DT, Berger MF, Soslow RA, Weigelt B. The genetic landscape of endometrial clear cell carcinomas. J Pathol. 2017;243(2):230–41.  https://doi.org/10.1002/path.4947.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Rosa-Rosa JM, Leskela S, Cristobal-Lana E, Santon A, Lopez-Garcia MA, Munoz G, Perez-Mies B, Biscuola M, Prat J, Esther OE, Soslow RA, Matias-Guiu X, Palacios J. Molecular genetic heterogeneity in undifferentiated endometrial carcinomas. Mod Pathol. 2016;29(11):1390–8.  https://doi.org/10.1038/modpathol.2016.132.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Le Gallo M, Rudd ML, Urick ME, Hansen NF, Zhang S, Program NCS, Lozy F, Sgroi DC, Vidal Bel A, Matias-Guiu X, Broaddus RR, Lu KH, Levine DA, Mutch DG, Goodfellow PJ, Salvesen HB, Mullikin JC, Bell DW. Somatic mutation profiles of clear cell endometrial tumors revealed by whole exome and targeted gene sequencing. Cancer. 2017;123(17):3261–8.  https://doi.org/10.1002/cncr.30745.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Jones S, Stransky N, McCord CL, Cerami E, Lagowski J, Kelly D, Angiuoli SV, Sausen M, Kann L, Shukla M, Makar R, Wood LD, Diaz LA Jr, Lengauer C, Velculescu VE. Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nat Commun. 2014;5:5006.  https://doi.org/10.1038/ncomms6006.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Cherniack AD, Shen H, Walter V, Stewart C, Murray BA, Bowlby R, Hu X, Ling S, Soslow RA, Broaddus RR, Zuna RE, Robertson G, Laird PW, Kucherlapati R, Mills GB, Cancer Genome Atlas Research Network, Weinstein JN, Zhang J, Akbani R, Levine DA. Integrated molecular characterization of uterine carcinosarcoma. Cancer Cell. 2017;31(3):411–23.  https://doi.org/10.1016/j.ccell.2017.02.010.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Zhao S, Bellone S, Lopez S, Thakral D, Schwab C, English DP, Black J, Cocco E, Choi J, Zammataro L, Predolini F, Bonazzoli E, Bi M, Buza N, Hui P, Wong S, Abu-Khalaf M, Ravaggi A, Bignotti E, Bandiera E, Romani C, Todeschini P, Tassi R, Zanotti L, Odicino F, Pecorelli S, Donzelli C, Ardighieri L, Facchetti F, Falchetti M, Silasi DA, Ratner E, Azodi M, Schwartz PE, Mane S, Angioli R, Terranova C, Quick CM, Edraki B, Bilguvar K, Lee M, Choi M, Stiegler AL, Boggon TJ, Schlessinger J, Lifton RP, Santin AD. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113(43):12238–43.  https://doi.org/10.1073/pnas.1614120113.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, Stover E, Strickland KC, D’Andrea AD, Wu CJ, Matulonis UA, Konstantinopoulos PA. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 2015;1(9):1319–23.  https://doi.org/10.1001/jamaoncol.2015.2151.PubMedGoogle Scholar
  80. 80.
    Eggink FA, Van Gool IC, Leary A, Pollock PM, Crosbie EJ, Mileshkin L, Jordanova ES, Adam J, Freeman-Mills L, Church DN, Creutzberg CL, De Bruyn M, Nijman HW, Bosse T. Immunological profiling of molecularly classified high-risk endometrial cancers identifies POLE-mutant and microsatellite unstable carcinomas as candidates for checkpoint inhibition. Oncoimmunology. 2017;6(2):e1264565.  https://doi.org/10.1080/2162402X.2016.1264565.PubMedGoogle Scholar
  81. 81.
    Ott PA, Bang YJ, Berton-Rigaud D, Elez E, Pishvaian MJ, Rugo HS, Puzanov I, Mehnert JM, Aung KL, Lopez J, Carrigan M, Saraf S, Chen M, Soria JC. Safety and antitumor activity of pembrolizumab in advanced programmed death ligand 1-positive endometrial cancer: results from the KEYNOTE-028 study. J Clin Oncol. 2017;35(22):2535–41.  https://doi.org/10.1200/JCO.2017.72.5952.PubMedGoogle Scholar
  82. 82.
    Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer C, Zhou S, Goldberg RM, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA Jr. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.  https://doi.org/10.1126/science.aan6733.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Lemery S, Keegan P, Pazdur R. First FDA approval agnostic of cancer site – when a biomarker defines the indication. N Engl J Med. 2017;377(15):1409–12.  https://doi.org/10.1056/NEJMp1709968.PubMedGoogle Scholar
  84. 84.
    Tao JJ, Schram AM, Hyman DM. Basket studies: redefining clinical trials in the era of genome-driven oncology. Annu Rev Med. 2018;69:319–31.  https://doi.org/10.1146/annurev-med-062016-050343.PubMedGoogle Scholar
  85. 85.
    Hyman DM, Taylor BS, Baselga J. Implementing genome-driven oncology. Cell. 2017;168(4):584–99.  https://doi.org/10.1016/j.cell.2016.12.015.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Fader AN, Roque DM, Siegel E, Buza N, Hui P, Abdelghany O, Chambers SK, Secord AA, Havrilesky L, O’Malley DM, Backes F, Nevadunsky N, Edraki B, Pikaart D, Lowery W, ElSahwi KS, Celano P, Bellone S, Azodi M, Litkouhi B, Ratner E, Silasi DA, Schwartz PE, Santin AD. Randomized phase II trial of carboplatin-paclitaxel versus carboplatin-paclitaxel-trastuzumab in uterine serous carcinomas that overexpress human epidermal growth factor receptor 2/neu. J Clin Oncol. 2018:JCO2017765966.  https://doi.org/10.1200/JCO.2017.76.5966.
  87. 87.
    Hyman DM, Smyth LM, Donoghue MTA, Westin SN, Bedard PL, Dean EJ, Bando H, El-Khoueiry AB, Perez-Fidalgo JA, Mita A, Schellens JHM, Chang MT, Reichel JB, Bouvier N, Selcuklu SD, Soumerai TE, Torrisi J, Erinjeri JP, Ambrose H, Barrett JC, Dougherty B, Foxley A, Lindemann JPO, McEwen R, Pass M, Schiavon G, Berger MF, Chandarlapaty S, Solit DB, Banerji U, Baselga J, Taylor BS. AKT inhibition in solid tumors with AKT1 mutations. J Clin Oncol. 2017;35(20):2251–9.  https://doi.org/10.1200/JCO.2017.73.0143.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B, Nye E, Stamp G, Alitalo K, Downward J. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell. 2007;129(5):957–68.  https://doi.org/10.1016/j.cell.2007.03.051.PubMedGoogle Scholar
  89. 89.
    Oda K, Stokoe D, Taketani Y, McCormick F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 2005;65(23):10669–73.  https://doi.org/10.1158/0008-5472.CAN-05-2620.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Jaiswal BS, Janakiraman V, Kljavin NM, Chaudhuri S, Stern HM, Wang W, Kan Z, Dbouk HA, Peters BA, Waring P, Dela Vega T, Kenski DM, Bowman KK, Lorenzo M, Li H, Wu J, Modrusan Z, Stinson J, Eby M, Yue P, Kaminker JS, de Sauvage FJ, Backer JM, Seshagiri S. Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Cancer Cell. 2009;16(6):463–74.  https://doi.org/10.1016/j.ccr.2009.10.016.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Cheung LW, Yu S, Zhang D, Li J, Ng PK, Panupinthu N, Mitra S, Ju Z, Yu Q, Liang H, Hawke DH, Lu Y, Broaddus RR, Mills GB. Naturally occurring neomorphic PIK3R1 mutations activate the MAPK pathway, dictating therapeutic response to MAPK pathway inhibitors. Cancer Cell. 2014;26(4):479–94.  https://doi.org/10.1016/j.ccell.2014.08.017.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Rudd ML, Price JC, Fogoros S, Godwin AK, Sgroi DC, Merino MJ, Bell DW. A unique spectrum of somatic PIK3CA (p110alpha) mutations within primary endometrial carcinomas. Clin Cancer Res. 2011;17(6):1331–40.  https://doi.org/10.1158/1078-0432.CCR-10-0540.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554.  https://doi.org/10.1126/science.1096502.PubMedGoogle Scholar
  94. 94.
    Slomovitz BM, Coleman RL. The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res. 2012;18(21):5856–64.  https://doi.org/10.1158/1078-0432.CCR-12-0662.PubMedGoogle Scholar
  95. 95.
    Tredan O, Treilleux I, Wang Q, Gane N, Pissaloux D, Bonnin N, Petit T, Cretin J, Bonichon-Lamichhane N, Priou F, Lavau-Denes S, Mari V, Freyer G, Lebrun D, Alexandre J, Ray-Coquard I. Predicting everolimus treatment efficacy in patients with advanced endometrial carcinoma: a GINECO group study. Target Oncol. 2012.  https://doi.org/10.1007/s11523-012-0242-9.
  96. 96.
    Ray-Coquard I, Favier L, Weber B, Roemer-Becuwe C, Bougnoux P, Fabbro M, Floquet A, Joly F, Plantade A, Paraiso D, Pujade-Lauraine E. Everolimus as second- or third-line treatment of advanced endometrial cancer: ENDORAD, a phase II trial of GINECO. Br J Cancer. 2013;108(9):1771–7.  https://doi.org/10.1038/bjc.2013.183.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Colombo N, McMeekin DS, Schwartz PE, Sessa C, Gehrig PA, Holloway R, Braly P, Matei D, Morosky A, Dodion PF, Einstein MH, Haluska F. Ridaforolimus as a single agent in advanced endometrial cancer: results of a single-arm, phase 2 trial. Br J Cancer. 2013;108(5):1021–6.  https://doi.org/10.1038/bjc.2013.59.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Weigelt B, Warne PH, Lambros MB, Reis-Filho JS, Downward J. PI3K pathway dependencies in endometrioid endometrial cancer cell lines. Clin Cancer Res. 2013;  https://doi.org/10.1158/1078-0432.CCR-12-3815.
  99. 99.
    Hampel H, Frankel W, Panescu J, Lockman J, Sotamaa K, Fix D, Comeras I, La Jeunesse J, Nakagawa H, Westman JA, Prior TW, Clendenning M, Penzone P, Lombardi J, Dunn P, Cohn DE, Copeland L, Eaton L, Fowler J, Lewandowski G, Vaccarello L, Bell J, Reid G, de la Chapelle A. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 2006;66(15):7810–7.  https://doi.org/10.1158/0008-5472.CAN-06-1114.PubMedGoogle Scholar
  100. 100.
    Ollikainen M, Abdel-Rahman WM, Moisio AL, Lindroos A, Kariola R, Jarvela I, Poyhonen M, Butzow R, Peltomaki P. Molecular analysis of familial endometrial carcinoma: a manifestation of hereditary nonpolyposis colorectal cancer or a separate syndrome? J Clin Oncol. 2005;23(21):4609–16.  https://doi.org/10.1200/JCO.2005.06.055.PubMedGoogle Scholar
  101. 101.
    Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, de la Chapelle A, Peltomaki P, Mecklin JP, Jarvinen HJ. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer. 1999;81(2):214–8.PubMedGoogle Scholar
  102. 102.
    Meyer LA, Broaddus RR, Lu KH. Endometrial cancer and Lynch syndrome: clinical and pathologic considerations. Cancer Control. 2009;16(1):14–22.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the international collaborative group on HNPCC. Gastroenterology. 1999;116(6):1453–6.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Lu KH, Dinh M, Kohlmann W, Watson P, Green J, Syngal S, Bandipalliam P, Chen LM, Allen B, Conrad P, Terdiman J, Sun C, Daniels M, Burke T, Gershenson DM, Lynch H, Lynch P, Broaddus RR. Gynecologic cancer as a “sentinel cancer” for women with hereditary nonpolyposis colorectal cancer syndrome. Obstet Gynecol. 2005;105(3):569–74.  https://doi.org/10.1097/01.AOG.0000154885.44002.ae.PubMedGoogle Scholar
  105. 105.
    Win AK, Lindor NM, Winship I, Tucker KM, Buchanan DD, Young JP, Rosty C, Leggett B, Giles GG, Goldblatt J, Macrae FA, Parry S, Kalady MF, Baron JA, Ahnen DJ, Marchand LL, Gallinger S, Haile RW, Newcomb PA, Hopper JL, Jenkins MA. Risks of colorectal and other cancers after endometrial cancer for women with Lynch syndrome. J Natl Cancer Inst. 2013;105(4):274–9.  https://doi.org/10.1093/jnci/djs525.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hiatt RA, Jass J, Lindblom A, Lynch HT, Peltomaki P, Ramsey SD, Rodriguez-Bigas MA, Vasen HF, Hawk ET, Barrett JC, Freedman AN, Srivastava S. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Folkins AK, Longacre TA. Hereditary gynaecological malignancies: advances in screening and treatment. Histopathology. 2013;62(1):2–30.  https://doi.org/10.1111/his.12028.PubMedGoogle Scholar
  108. 108.
    Garg K, Soslow RA. Lynch syndrome (hereditary non-polyposis colorectal cancer) and endometrial carcinoma. J Clin Pathol. 2009;62(8):679–84.  https://doi.org/10.1136/jcp.2009.064949.PubMedGoogle Scholar
  109. 109.
    Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S. A national cancer institute workshop on microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–57.PubMedGoogle Scholar
  110. 110.
    Suraweera N, Duval A, Reperant M, Vaury C, Furlan D, Leroy K, Seruca R, Iacopetta B, Hamelin R. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology. 2002;123(6):1804–11.  https://doi.org/10.1053/gast.2002.37070.PubMedGoogle Scholar
  111. 111.
    Wong YF, Cheung TH, Lo KW, Yim SF, Chan LK, Buhard O, Duval A, Chung TK, Hamelin R. Detection of microsatellite instability in endometrial cancer: advantages of a panel of five mononucleotide repeats over the national cancer institute panel of markers. Carcinogenesis. 2006;27(5):951–5.  https://doi.org/10.1093/carcin/bgi333.PubMedGoogle Scholar
  112. 112.
    Wijnen J, de Leeuw W, Vasen H, van der Klift H, Moller P, Stormorken A, Meijers-Heijboer H, Lindhout D, Menko F, Vossen S, Moslein G, Tops C, Brocker-Vriends A, Wu Y, Hofstra R, Sijmons R, Cornelisse C, Morreau H, Fodde R. Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet. 1999;23(2):142–4.  https://doi.org/10.1038/13773.PubMedGoogle Scholar
  113. 113.
    Hendriks YM, Wagner A, Morreau H, Menko F, Stormorken A, Quehenberger F, Sandkuijl L, Moller P, Genuardi M, Van Houwelingen H, Tops C, Van Puijenbroek M, Verkuijlen P, Kenter G, Van Mil A, Meijers-Heijboer H, Tan GB, Breuning MH, Fodde R, Wijnen JT, Brocker-Vriends AH, Vasen H. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology. 2004;127(1):17–25.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Wu Y, Berends MJ, Mensink RG, Kempinga C, Sijmons RH, van Der Zee AG, Hollema H, Kleibeuker JH, Buys CH, Hofstra RM. Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am J Hum Genet. 1999;65(5):1291–8.  https://doi.org/10.1086/302612.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Modica I, Soslow RA, Black D, Tornos C, Kauff N, Shia J. Utility of immunohistochemistry in predicting microsatellite instability in endometrial carcinoma. Am J Surg Pathol. 2007;31(5):744–51.  https://doi.org/10.1097/01.pas.0000213428.61374.06.PubMedGoogle Scholar
  116. 116.
    Goodfellow PJ, Billingsley CC, Lankes HA, Ali S, Cohn DE, Broaddus RJ, Ramirez N, Pritchard CC, Hampel H, Chassen AS, Simmons LV, Schmidt AP, Gao F, Brinton LA, Backes F, Landrum LM, Geller MA, DiSilvestro PA, Pearl ML, Lele SB, Powell MA, Zaino RJ, Mutch D. Combined microsatellite instability, MLH1 methylation analysis, and immunohistochemistry for Lynch syndrome screening in endometrial cancers from GOG210: an NRG oncology and gynecologic oncology group study. J Clin Oncol. 2015;33(36):4301–8.  https://doi.org/10.1200/JCO.2015.63.9518.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Buchanan DD, Tan YY, Walsh MD, Clendenning M, Metcalf AM, Ferguson K, Arnold ST, Thompson BA, Lose FA, Parsons MT, Walters RJ, Pearson SA, Cummings M, Oehler MK, Blomfield PB, Quinn MA, Kirk JA, Stewart CJ, Obermair A, Young JP, Webb PM, Spurdle AB. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing. J Clin Oncol. 2014;32(2):90–100.  https://doi.org/10.1200/JCO.2013.51.2129.PubMedGoogle Scholar
  118. 118.
    Domchek SM, Bradbury A, Garber JE, Offit K, Robson ME. Multiplex genetic testing for cancer susceptibility: out on the high wire without a net? J Clin Oncol. 2013;31(10):1267–70.  https://doi.org/10.1200/JCO.2012.46.9403.PubMedGoogle Scholar
  119. 119.
    Zimmermann A, Bernuit D, Gerlinger C, Schaefers M, Geppert K. Prevalence, symptoms and management of uterine fibroids: an international internet-based survey of 21,746 women. BMC Womens Health. 2012;12:6.  https://doi.org/10.1186/1472-6874-12-6.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol. 1990;94(4):435–8.PubMedGoogle Scholar
  121. 121.
    Perot G, Croce S, Ribeiro A, Lagarde P, Velasco V, Neuville A, Coindre JM, Stoeckle E, Floquet A, MacGrogan G, Chibon F. MED12 alterations in both human benign and malignant uterine soft tissue tumors. PLoS One. 2012;7(6):e40015.  https://doi.org/10.1371/journal.pone.0040015.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyosarcoma. Cancer Genet Cytogenet. 2005;161(1):1–19.PubMedGoogle Scholar
  123. 123.
    Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER cancer statistics review, 1975–2010. Bethesda: National Cancer Institute; 2013.Google Scholar
  124. 124.
    Bell SW, Kempson RL, Hendrickson MR. Problematic uterine smooth muscle neoplasms. a clinicopathologic study of 213 cases. Am J Surg Pathol. 1994;18(6):535–58.PubMedGoogle Scholar
  125. 125.
    Veras E, Malpica A, Deavers MT, Silva EG. Mitosis-specific marker phospho-histone H3 in the assessment of mitotic index in uterine smooth muscle tumors: a pilot study. Int J Gynecol Pathol. 2009;28(4):316–21.  https://doi.org/10.1097/PGP.0b013e318193df97.PubMedGoogle Scholar
  126. 126.
    Lim D, Alvarez T, Nucci MR, Gilks B, Longacre T, Soslow RA, Oliva E. Interobserver variability in the interpretation of tumor cell necrosis in uterine leiomyosarcoma. Am J Surg Pathol. 2013;37(5):650–8.  https://doi.org/10.1097/PAS.0b013e3182851162.PubMedGoogle Scholar
  127. 127.
    Soper JT, KS MC Jr, Hinshaw W, Creasman WT, KS MC Sr, Clarke-Pearson DL. Cytoplasmic estrogen and progesterone receptor content of uterine sarcomas. Am J Obstet Gynecol. 1984;150(4):342–8.PubMedGoogle Scholar
  128. 128.
    Sutton GP, Stehman FB, Michael H, Young PC, Ehrlich CE. Estrogen and progesterone receptors in uterine sarcomas. Obstet Gynecol. 1986;68(5):709–14.PubMedGoogle Scholar
  129. 129.
    Wade K, Quinn MA, Hammond I, Williams K, Cauchi M. Uterine sarcoma: steroid receptors and response to hormonal therapy. Gynecol Oncol. 1990;39(3):364–7.PubMedGoogle Scholar
  130. 130.
    Zhai YL, Kobayashi Y, Mori A, Orii A, Nikaido T, Konishi I, Fujii S. Expression of steroid receptors, Ki-67, and p53 in uterine leiomyosarcomas. Int J Gynecol Pathol. 1999;18(1):20–8.PubMedGoogle Scholar
  131. 131.
    Mittal K, Demopoulos RI. MIB-1 (Ki-67), p53, estrogen receptor, and progesterone receptor expression in uterine smooth muscle tumors. Hum Pathol. 2001;32(9):984–7.  https://doi.org/10.1053/hupa.2001.27113.PubMedGoogle Scholar
  132. 132.
    Bodner K, Bodner-Adler B, Kimberger O, Czerwenka K, Leodolter S, Mayerhofer K. Estrogen and progesterone receptor expression in patients with uterine leiomyosarcoma and correlation with different clinicopathological parameters. Anticancer Res. 2003;23(1B):729–32.PubMedGoogle Scholar
  133. 133.
    Leitao MM, Soslow RA, Nonaka D, Olshen AB, Aghajanian C, Sabbatini P, Dupont J, Hensley M, Sonoda Y, Barakat RR, Anderson S. Tissue microarray immunohistochemical expression of estrogen, progesterone, and androgen receptors in uterine leiomyomata and leiomyosarcoma. Cancer. 2004;101(6):1455–62.  https://doi.org/10.1002/cncr.20521.PubMedGoogle Scholar
  134. 134.
    Jeffers MD, Farquharson MA, Richmond JA, McNicol AM. p53 immunoreactivity and mutation of the p53 gene in smooth muscle tumours of the uterine corpus. J Pathol. 1995;177(1):65–70.  https://doi.org/10.1002/path.1711770111.PubMedGoogle Scholar
  135. 135.
    Bodner-Adler B, Bodner K, Czerwenka K, Kimberger O, Leodolter S, Mayerhofer K. Expression of p16 protein in patients with uterine smooth muscle tumors: an immunohistochemical analysis. Gynecol Oncol. 2005;96(1):62–6.  https://doi.org/10.1016/j.ygyno.2004.09.026.PubMedGoogle Scholar
  136. 136.
    Akhan SE, Yavuz E, Tecer A, Iyibozkurt CA, Topuz S, Tuzlali S, Bengisu E, Berkman S. The expression of Ki-67, p53, estrogen and progesterone receptors affecting survival in uterine leiomyosarcomas. a clinicopathologic study. Gynecol Oncol. 2005;99(1):36–42.  https://doi.org/10.1016/j.ygyno.2005.05.019.PubMedGoogle Scholar
  137. 137.
    O’Neill CJ, McBride HA, Connolly LE, McCluggage WG. Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumours of uncertain malignant potential. Histopathology. 2007;50(7):851–8.  https://doi.org/10.1111/j.1365-2559.2007.02699.x.PubMedGoogle Scholar
  138. 138.
    Atkins KA, Arronte N, Darus CJ, Rice LW. The Use of p16 in enhancing the histologic classification of uterine smooth muscle tumors. Am J Surg Pathol. 2008;32(1):98–102.  https://doi.org/10.1097/PAS.0b013e3181574d1e.PubMedGoogle Scholar
  139. 139.
    Gannon BR, Manduch M, Childs TJ. Differential immunoreactivity of p16 in leiomyosarcomas and leiomyoma variants. Int J Gynecol Pathol. 2008;27(1):68–73.  https://doi.org/10.1097/pgp.0b013e3180ca954f.PubMedGoogle Scholar
  140. 140.
    Chen L, Yang B. Immunohistochemical analysis of p16, p53, and Ki-67 expression in uterine smooth muscle tumors. Int J Gynecol Pathol. 2008;27(3):326–32.  https://doi.org/10.1097/PGP.0b013e31815ea7f5.PubMedGoogle Scholar
  141. 141.
    Lee CH, Turbin DA, Sung YC, Espinosa I, Montgomery K, van de Rijn M, Gilks CB. A panel of antibodies to determine site of origin and malignancy in smooth muscle tumors. Mod Pathol. 2009;22(12):1519–31.  https://doi.org/10.1038/modpathol.2009.122.PubMedGoogle Scholar
  142. 142.
    Ip PP, Cheung AN, Clement PB. Uterine smooth muscle tumors of uncertain malignant potential (STUMP): a clinicopathologic analysis of 16 cases. Am J Surg Pathol. 2009;33(7):992–1005.  https://doi.org/10.1097/PAS.0b013e3181a02d1c.PubMedGoogle Scholar
  143. 143.
    D’Angelo E, Espinosa I, Ali R, Gilks CB, Rijn M, Lee CH, Prat J. Uterine leiomyosarcomas: tumor size, mitotic index, and biomarkers Ki67, and Bcl-2 identify two groups with different prognosis. Gynecol Oncol. 2011;121(2):328–33.  https://doi.org/10.1016/j.ygyno.2011.01.022.PubMedGoogle Scholar
  144. 144.
    Hakverdi S, Gungoren A, Yaldiz M, Hakverdi AU, Toprak S. Immunohistochemical analysis of p16 expression in uterine smooth muscle tumors. Eur J Gynaecol Oncol. 2011;32(5):513–5.PubMedGoogle Scholar
  145. 145.
    Makinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, Gentile M, Yan J, Enge M, Taipale M, Aavikko M, Katainen R, Virolainen E, Bohling T, Koski TA, Launonen V, Sjoberg J, Taipale J, Vahteristo P, Aaltonen LA. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334(6053):252–5.  https://doi.org/10.1126/science.1208930.PubMedGoogle Scholar
  146. 146.
    Makinen N, Heinonen HR, Moore S, Tomlinson IP, van der Spuy ZM, Aaltonen LA. MED12 exon 2 mutations are common in uterine leiomyomas from South African patients. Oncotarget. 2011;2(12):966–9.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Je EM, Kim MR, Min KO, Yoo NJ, Lee SH. Mutational analysis of MED12 exon 2 in uterine leiomyoma and other common tumors. Int J Cancer. 2012;131(6):E1044–7.  https://doi.org/10.1002/ijc.27610.PubMedGoogle Scholar
  148. 148.
    McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U, Rajkovic A. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS One. 2012;7(3):e33251.  https://doi.org/10.1371/journal.pone.0033251.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Markowski DN, Huhle S, Nimzyk R, Stenman G, Loning T, Bullerdiek J. MED12 mutations occurring in benign and malignant mammalian smooth muscle tumors. Genes Chromosomes Cancer. 2013;52(3):297–304.  https://doi.org/10.1002/gcc.22029.PubMedGoogle Scholar
  150. 150.
    Matsubara A, Sekine S, Yoshida M, Yoshida A, Taniguchi H, Kushima R, Tsuda H, Kanai Y. Prevalence of MED12 mutations in uterine and extrauterine smooth muscle tumours. Histopathology. 2013;62(4):657–61.  https://doi.org/10.1111/his.12039.PubMedGoogle Scholar
  151. 151.
    de Graaff MA, Cleton-Jansen AM, Szuhai K, Bovee JV. Mediator complex subunit 12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms genetic heterogeneity. Hum Pathol. 2013;44(8):1597–604.  https://doi.org/10.1016/j.humpath.2013.01.006.PubMedGoogle Scholar
  152. 152.
    Conaway RC, Conaway JW. Function and regulation of the mediator complex. Curr Opin Genet Dev. 2011;21(2):225–30.  https://doi.org/10.1016/j.gde.2011.01.013.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Kim S, Xu X, Hecht A, Boyer TG. Mediator is a transducer of Wnt/beta-catenin signaling. J Biol Chem. 2006;281(20):14066–75.  https://doi.org/10.1074/jbc.M602696200.PubMedGoogle Scholar
  154. 154.
    Zhou H, Kim S, Ishii S, Boyer TG. Mediator modulates Gli3-dependent Sonic hedgehog signaling. Mol Cell Biol. 2006;26(23):8667–82.  https://doi.org/10.1128/MCB.00443-06.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Tutter AV, Kowalski MP, Baltus GA, Iourgenko V, Labow M, Li E, Kadam S. Role for Med12 in regulation of Nanog and Nanog target genes. J Biol Chem. 2009;284(6):3709–18.  https://doi.org/10.1074/jbc.M805677200.PubMedGoogle Scholar
  156. 156.
    Makinen N, Vahteristo P, Kampjarvi K, Arola J, Butzow R, Aaltonen LA. MED12 exon 2 mutations in histopathological uterine leiomyoma variants. Eur J Hum Genet. 2013;  https://doi.org/10.1038/ejhg.2013.33.
  157. 157.
    Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma. Cancer Genet Cytogenet. 2005;158(1):1–26.  https://doi.org/10.1016/j.cancergencyto.2004.08.025.PubMedGoogle Scholar
  158. 158.
    Mehine M, Kaasinen E, Makinen N, Katainen R, Kampjarvi K, Pitkanen E, Heinonen HR, Butzow R, Kilpivaara O, Kuosmanen A, Ristolainen H, Gentile M, Sjoberg J, Vahteristo P, Aaltonen LA. Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 2013;  https://doi.org/10.1056/NEJMoa1302736.
  159. 159.
    Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, McLaren S, Lin ML, McBride DJ, Varela I, Nik-Zainal S, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Quail MA, Burton J, Swerdlow H, Carter NP, Morsberger LA, Iacobuzio-Donahue C, Follows GA, Green AR, Flanagan AM, Stratton MR, Futreal PA, Campbell PJ. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144(1):27–40.  https://doi.org/10.1016/j.cell.2010.11.055.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Lehtonen R, Kiuru M, Vanharanta S, Sjoberg J, Aaltonen LM, Aittomaki K, Arola J, Butzow R, Eng C, Husgafvel-Pursiainen K, Isola J, Jarvinen H, Koivisto P, Mecklin JP, Peltomaki P, Salovaara R, Wasenius VM, Karhu A, Launonen V, Nupponen NN, Aaltonen LA. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am J Pathol. 2004;164(1):17–22.  https://doi.org/10.1016/S0002-9440(10)63091-X.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Nagai R, Brock JW, Blatnik M, Baatz JE, Bethard J, Walla MD, Thorpe SR, Baynes JW, Frizzell N. Succination of protein thiols during adipocyte maturation: a biomarker of mitochondrial stress. J Biol Chem. 2007;282(47):34219–28.  https://doi.org/10.1074/jbc.M703551200.PubMedGoogle Scholar
  162. 162.
    Bennett JA, Weigelt B, Chiang S, Selenica P, Chen YB, Bialik A, Bi R, Schultheis AM, Lim RS, Ng CKY, Morales-Oyarvide V, Young RH, Reuter VE, Soslow RA, Oliva E. Leiomyoma with bizarre nuclei: a morphological, immunohistochemical and molecular analysis of 31 cases. Mod Pathol. 2017;30(10):1476–88.  https://doi.org/10.1038/modpathol.2017.56.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Harrison WJ, Andrici J, Maclean F, Madadi-Ghahan R, Farzin M, Sioson L, Toon CW, Clarkson A, Watson N, Pickett J, Field M, Crook A, Tucker K, Goodwin A, Anderson L, Srinivasan B, Grossmann P, Martinek P, Ondic O, Hes O, Trpkov K, Clifton-Bligh RJ, Dwight T, Gill AJ. Fumarate hydratase-deficient uterine leiomyomas occur in both the syndromic and sporadic settings. Am J Surg Pathol. 2016;40(5):599–607.  https://doi.org/10.1097/PAS.0000000000000573.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Joseph NM, Solomon DA, Frizzell N, Rabban JT, Zaloudek C, Garg K. Morphology and immunohistochemistry for 2SC and FH Aid in detection of fumarate hydratase gene aberrations in uterine leiomyomas from young patients. Am J Surg Pathol. 2015;39(11):1529–39.  https://doi.org/10.1097/PAS.0000000000000520.PubMedGoogle Scholar
  165. 165.
    Chudasama P, Mughal SS, Sanders MA, Hubschmann D, Chung I, Deeg KI, Wong SH, Rabe S, Hlevnjak M, Zapatka M, Ernst A, Kleinheinz K, Schlesner M, Sieverling L, Klink B, Schrock E, Hoogenboezem RM, Kasper B, Heilig CE, Egerer G, Wolf S, von Kalle C, Eils R, Stenzinger A, Weichert W, Glimm H, Groschel S, Kopp HG, Omlor G, Lehner B, Bauer S, Schimmack S, Ulrich A, Mechtersheimer G, Rippe K, Brors B, Hutter B, Renner M, Hohenberger P, Scholl C, Frohling S. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat Commun. 2018;9(1):144.  https://doi.org/10.1038/s41467-017-02602-0.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Hodge JC, Morton CC. Genetic heterogeneity among uterine leiomyomata: insights into malignant progression. Hum Mol Genet. 2007;16:R7–13.  https://doi.org/10.1093/hmg/ddm043.PubMedGoogle Scholar
  167. 167.
    Kuhn E, Yemelyanova A, Wang TL, Kurman R, Shih Ie M Abstract 5536: TP53 and MED12 mutations in uterine smooth muscle tumors. In: AACR 103rd annual meeting, Chicago, IL, USA. vol 8, Supplement 1. Cancer Research. 2012.Google Scholar
  168. 168.
    de Vos S, Wilczynski SP, Fleischhacker M, Koeffler P. p53 alterations in uterine leiomyosarcomas versus leiomyomas. Gynecol Oncol. 1994;54(2):205–8.  https://doi.org/10.1006/gyno.1994.1194.PubMedGoogle Scholar
  169. 169.
    Makinen N, Aavikko M, Heikkinen T, Taipale M, Taipale J, Koivisto-Korander R, Butzow R, Vahteristo P. Exome sequencing of uterine leiomyosarcomas identifies frequent mutations in TP53, ATRX, and MED12. PLoS Genet. 2016;12(2):e1005850.  https://doi.org/10.1371/journal.pgen.1005850.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Network. CGAR. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell. 2017;171(4):950–965.e928.  https://doi.org/10.1016/j.cell.2017.10.014.Google Scholar
  171. 171.
    Lee PJ, Yoo NS, Hagemann IS, Pfeifer JD, Cottrell CE, Abel HJ, Duncavage EJ. Spectrum of mutations in leiomyosarcomas identified by clinical targeted next-generation sequencing. Exp Mol Pathol. 2017;102(1):156–61.  https://doi.org/10.1016/j.yexmp.2017.01.012.PubMedGoogle Scholar
  172. 172.
    Chew I, Oliva E. Endometrial stromal sarcomas: a review of potential prognostic factors. Adv Anat Pathol. 2010;17(2):113–21.  https://doi.org/10.1097/PAP.0b013e3181cfb7c2.PubMedGoogle Scholar
  173. 173.
    Nucci MR, O’Connell JT, Huettner PC, Cviko A, Sun D, Quade BJ. h-Caldesmon expression effectively distinguishes endometrial stromal tumors from uterine smooth muscle tumors. Am J Surg Pathol. 2001;25(4):455–63.PubMedGoogle Scholar
  174. 174.
    Oliva E, Young RH, Amin MB, Clement PB. An immunohistochemical analysis of endometrial stromal and smooth muscle tumors of the uterus: a study of 54 cases emphasizing the importance of using a panel because of overlap in immunoreactivity for individual antibodies. Am J Surg Pathol. 2002;26(4):403–12.PubMedGoogle Scholar
  175. 175.
    de Leval L, Waltregny D, Boniver J, Young RH, Castronovo V, Oliva E. Use of histone deacetylase 8 (HDAC8), a new marker of smooth muscle differentiation, in the classification of mesenchymal tumors of the uterus. Am J Surg Pathol. 2006;30(3):319–27.  https://doi.org/10.1097/01.pas.0000188029.63706.31.PubMedGoogle Scholar
  176. 176.
    McCluggage WG, Date A, Bharucha H, Toner PG. Endometrial stromal sarcoma with sex cord-like areas and focal rhabdoid differentiation. Histopathology. 1996;29(4):369–74.PubMedGoogle Scholar
  177. 177.
    Fukunaga M, Miyazawa Y, Ushigome S. Endometrial low-grade stromal sarcoma with ovarian sex cord-like differentiation: report of two cases with an immunohistochemical and flow cytometric study. Pathol Int. 1997;47(6):412–5.PubMedGoogle Scholar
  178. 178.
    Zamecnik M, Michal M. Endometrial stromal nodule with retiform sex-cord-like differentiation. Pathol Res Pract. 1998;194(6):449–53.PubMedGoogle Scholar
  179. 179.
    Baker RJ, Hildebrandt RH, Rouse RV, Hendrickson MR, Longacre TA. Inhibin and CD99 (MIC2) expression in uterine stromal neoplasms with sex-cord-like elements. Hum Pathol. 1999;30(6):671–9.PubMedGoogle Scholar
  180. 180.
    Ohta Y, Suzuki T, Kojima M, Shiokawa A, Mitsuya T. Low-grade endometrial stromal sarcoma with an extensive epithelial-like element. Pathol Int. 2003;53(4):246–51.PubMedGoogle Scholar
  181. 181.
    Sumathi VP, Al-Hussaini M, Connolly LE, Fullerton L, McCluggage WG. Endometrial stromal neoplasms are immunoreactive with WT-1 antibody. Int J Gynecol Pathol. 2004;23(3):241–7.PubMedGoogle Scholar
  182. 182.
    Irving JA, Carinelli S, Prat J. Uterine tumors resembling ovarian sex cord tumors are polyphenotypic neoplasms with true sex cord differentiation. Mod Pathol. 2006;19(1):17–24.  https://doi.org/10.1038/modpathol.3800475.PubMedGoogle Scholar
  183. 183.
    Reich O, Regauer S, Urdl W, Lahousen M, Winter R. Expression of oestrogen and progesterone receptors in low-grade endometrial stromal sarcomas. Br J Cancer. 2000;82(5):1030–4.  https://doi.org/10.1054/bjoc.1999.1038.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Chu MC, Mor G, Lim C, Zheng W, Parkash V, Schwartz PE. Low-grade endometrial stromal sarcoma: hormonal aspects. Gynecol Oncol. 2003;90(1):170–6.PubMedGoogle Scholar
  185. 185.
    Balleine RL, Earls PJ, Webster LR, Mote PA, deFazio A, Harnett PR, Clarke CL. Expression of progesterone receptor A and B isoforms in low-grade endometrial stromal sarcoma. Int J Gynecol Pathol. 2004;23(2):138–44.PubMedGoogle Scholar
  186. 186.
    Kurihara S, Oda Y, Ohishi Y, Iwasa A, Takahira T, Kaneki E, Kobayashi H, Wake N, Tsuneyoshi M. Endometrial stromal sarcomas and related high-grade sarcomas: immunohistochemical and molecular genetic study of 31 cases. Am J Surg Pathol. 2008;32(8):1228–38.  https://doi.org/10.1097/PAS.0b013e31816a3b42.PubMedGoogle Scholar
  187. 187.
    Lee CH, Marino-Enriquez A, Ou W, Zhu M, Ali RH, Chiang S, Amant F, Gilks CB, van de Rijn M, Oliva E, Debiec-Rychter M, Dal Cin P, Fletcher JA, Nucci MR. The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas: a histologically high-grade and clinically aggressive tumor. Am J Surg Pathol. 2012;36(5):641–53.  https://doi.org/10.1097/PAS.0b013e31824a7b1a.PubMedGoogle Scholar
  188. 188.
    Jakate K, Azimi F, Ali RH, Lee CH, Clarke BA, Rasty G, Shaw PA, Melnyk N, Huntsman DG, Laframboise S, Rouzbahman M. Endometrial sarcomas: an immunohistochemical and JAZF1 re-arrangement study in low-grade and undifferentiated tumors. Mod Pathol. 2013;26(1):95–105.  https://doi.org/10.1038/modpathol.2012.136.PubMedGoogle Scholar
  189. 189.
    Ng TL, Gown AM, Barry TS, Cheang MC, Chan AK, Turbin DA, Hsu FD, West RB, Nielsen TO. Nuclear beta-catenin in mesenchymal tumors. Mod Pathol. 2005;18(1):68–74.  https://doi.org/10.1038/modpathol.3800272.PubMedGoogle Scholar
  190. 190.
    Jung CK, Jung JH, Lee A, Lee YS, Choi YJ, Yoon SK, Lee KY. Diagnostic use of nuclear beta-catenin expression for the assessment of endometrial stromal tumors. Mod Pathol. 2008;21(6):756–63.  https://doi.org/10.1038/modpathol.2008.53.PubMedGoogle Scholar
  191. 191.
    Kildal W, Pradhan M, Abeler VM, Kristensen GB, Danielsen HE. Beta-catenin expression in uterine sarcomas and its relation to clinicopathological parameters. Eur J Cancer. 2009;45(13):2412–7.  https://doi.org/10.1016/j.ejca.2009.06.017.PubMedGoogle Scholar
  192. 192.
    Kurihara S, Oda Y, Ohishi Y, Kaneki E, Kobayashi H, Wake N, Tsuneyoshi M. Coincident expression of beta-catenin and cyclin D1 in endometrial stromal tumors and related high-grade sarcomas. Mod Pathol. 2010;23(2):225–34.  https://doi.org/10.1038/modpathol.2009.162.PubMedGoogle Scholar
  193. 193.
    Moinfar F, Gogg-Kamerer M, Sommersacher A, Regitnig P, Man YG, Zatloukal K, Denk H, Tavassoli FA. Endometrial stromal sarcomas frequently express epidermal growth factor receptor (EGFR, HER-1): potential basis for a new therapeutic approach. Am J Surg Pathol. 2005;29(4):485–9.PubMedGoogle Scholar
  194. 194.
    Cossu-Rocca P, Contini M, Uras MG, Muroni MR, Pili F, Carru C, Bosincu L, Massarelli G, Nogales FF, De Miglio MR. Tyrosine kinase receptor status in endometrial stromal sarcoma: an immunohistochemical and genetic-molecular analysis. Int J Gynecol Pathol. 2012;31(6):570–9.  https://doi.org/10.1097/PGP.0b013e31824fe289.PubMedGoogle Scholar
  195. 195.
    Sardinha R, Hernandez T, Fraile S, Tresserra F, Vidal A, Gomez MC, Astudillo A, Hernandez N, Saenz de Santamaria J, Ordi J, Goncalves L, Ramos R, Balana C, de Alava E. Endometrial stromal tumors: immunohistochemical and molecular analysis of potential targets of tyrosine kinase inhibitors. Clin Sarcoma Res. 2013;3(1):3.  https://doi.org/10.1186/2045-3329-3-3.PubMedPubMedCentralGoogle Scholar
  196. 196.
    Cheng X, Yang G, Schmeler KM, Coleman RL, Tu X, Liu J, Kavanagh JJ. Recurrence patterns and prognosis of endometrial stromal sarcoma and the potential of tyrosine kinase-inhibiting therapy. Gynecol Oncol. 2011;121(2):323–7.  https://doi.org/10.1016/j.ygyno.2010.12.360.PubMedGoogle Scholar
  197. 197.
    Moinfar F, Regitnig P, Tabrizi AD, Denk H, Tavassoli FA. Expression of androgen receptors in benign and malignant endometrial stromal neoplasms. Virchows Arch. 2004;444(5):410–4.  https://doi.org/10.1007/s00428-004-0981-9.PubMedGoogle Scholar
  198. 198.
    Reich O, Regauer S. Aromatase expression in low-grade endometrial stromal sarcomas: an immunohistochemical study. Mod Pathol. 2004;17(1):104–8.  https://doi.org/10.1038/sj.modpathol.3800031.PubMedGoogle Scholar
  199. 199.
    Liegl B, Reich O, Nogales FF, Regauer S. PDGF-alpha and PDGF-beta are expressed in endometrial stromal sarcoma: a potential therapeutic target for tyrosine kinase inhibitors? Histopathology. 2006;49(5):545–6.  https://doi.org/10.1111/j.1365-2559.2006.02529.x.PubMedGoogle Scholar
  200. 200.
    Chiang S, Oliva E. Recent developments in uterine mesenchymal neoplasms. Histopathology. 2013;62(1):124–37.  https://doi.org/10.1111/his.12048.PubMedGoogle Scholar
  201. 201.
    Micci F, Brunetti M, Dal Cin P, Nucci MR, Gorunova L, Heim S, Panagopoulos I. Fusion of the genes BRD8 and PHF1 in endometrial stromal sarcoma. Genes Chromosomes Cancer. 2017;56(12):841–5.  https://doi.org/10.1002/gcc.22485.PubMedPubMedCentralGoogle Scholar
  202. 202.
    Koontz JI, Soreng AL, Nucci M, Kuo FC, Pauwels P, van Den Berghe H, Dal Cin P, Fletcher JA, Sklar J. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci U S A. 2001;98(11):6348–53.  https://doi.org/10.1073/pnas.101132598.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Huang HY, Ladanyi M, Soslow RA. Molecular detection of JAZF1-JJAZ1 gene fusion in endometrial stromal neoplasms with classic and variant histology: evidence for genetic heterogeneity. Am J Surg Pathol. 2004;28(2):224–32.PubMedGoogle Scholar
  204. 204.
    Hrzenjak A, Moinfar F, Tavassoli FA, Strohmeier B, Kremser ML, Zatloukal K, Denk H. JAZF1/JJAZ1 gene fusion in endometrial stroemal sarcomas: molecular analysis by reverse transcriptase-polymerase chain reaction optimized for paraffin-embedded tissue. J Mol Diagn. 2005;7(3):388–95.  https://doi.org/10.1016/S1525-1578(10)60568-5.PubMedPubMedCentralGoogle Scholar
  205. 205.
    Oliva E, de Leval L, Soslow RA, Herens C. High frequency of JAZF1-JJAZ1 gene fusion in endometrial stromal tumors with smooth muscle differentiation by interphase FISH detection. Am J Surg Pathol. 2007;31(8):1277–84.  https://doi.org/10.1097/PAS.0b013e318031f012.PubMedGoogle Scholar
  206. 206.
    Nucci MR, Harburger D, Koontz J, Dal Cin P, Sklar J. Molecular analysis of the JAZF1-JJAZ1 gene fusion by RT-PCR and fluorescence in situ hybridization in endometrial stromal neoplasms. Am J Surg Pathol. 2007;31(1):65–70.  https://doi.org/10.1097/01.pas.0000213327.86992.d1.PubMedGoogle Scholar
  207. 207.
    Chiang S, Ali R, Melnyk N, McAlpine JN, Huntsman DG, Gilks CB, Lee CH, Oliva E. Frequency of known gene rearrangements in endometrial stromal tumors. Am J Surg Pathol. 2011;35(9):1364–72.  https://doi.org/10.1097/PAS.0b013e3182262743.PubMedGoogle Scholar
  208. 208.
    D’Angelo E, Ali RH, Espinosa I, Lee CH, Huntsman DG, Gilks B, Prat J. Endometrial stromal sarcomas with sex cord differentiation are associated with PHF1 rearrangement. Am J Surg Pathol. 2013;37(4):514–21.  https://doi.org/10.1097/PAS.0b013e318272c612.PubMedGoogle Scholar
  209. 209.
    Micci F, Walter CU, Teixeira MR, Panagopoulos I, Bjerkehagen B, Saeter G, Heim S. Cytogenetic and molecular genetic analyses of endometrial stromal sarcoma: nonrandom involvement of chromosome arms 6p and 7p and confirmation of JAZF1/JJAZ1 gene fusion in t(7;17). Cancer Genet Cytogenet. 2003;144(2):119–24.PubMedGoogle Scholar
  210. 210.
    Panagopoulos I, Micci F, Thorsen J, Gorunova L, Eibak AM, Bjerkehagen B, Davidson B, Heim S. Novel fusion of MYST/Esa1-associated factor 6 and PHF1 in endometrial stromal sarcoma. PLoS One. 2012;7(6):e39354.  https://doi.org/10.1371/journal.pone.0039354.PubMedPubMedCentralGoogle Scholar
  211. 211.
    Panagopoulos I, Thorsen J, Gorunova L, Haugom L, Bjerkehagen B, Davidson B, Heim S, Micci F. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer. 2013;52(7):610–8.  https://doi.org/10.1002/gcc.22057.PubMedGoogle Scholar
  212. 212.
    Dewaele B, Przybyl J, Quattrone A, Finalet Ferreiro J, Vanspauwen V, Geerdens E, Gianfelici V, Kalender Z, Wozniak A, Moerman P, Sciot R, Croce S, Amant F, Vandenberghe P, Cools J, Debiec-Rychter M. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer. 2014;134(5):1112–22.  https://doi.org/10.1002/ijc.28440.PubMedGoogle Scholar
  213. 213.
    Li H, Ma X, Wang J, Koontz J, Nucci M, Sklar J. Effects of rearrangement and allelic exclusion of JJAZ1/SUZ12 on cell proliferation and survival. Proc Natl Acad Sci U S A. 2007;104(50):20001–6.  https://doi.org/10.1073/pnas.0709986104.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Li H, Wang J, Mor G, Sklar J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science. 2008;321(5894):1357–61.  https://doi.org/10.1126/science.1156725.PubMedGoogle Scholar
  215. 215.
    Amant F, Tousseyn T, Coenegrachts L, Decloedt J, Moerman P, Debiec-Rychter M. Case report of a poorly differentiated uterine tumour with t(10;17) translocation and neuroectodermal phenotype. Anticancer Res. 2011;31(6):2367–71.PubMedGoogle Scholar
  216. 216.
    Lee CH, Ou WB, Marino-Enriquez A, Zhu M, Mayeda M, Wang Y, Guo X, Brunner AL, Amant F, French CA, West RB, McAlpine JN, Gilks CB, Yaffe MB, Prentice LM, McPherson A, Jones SJ, Marra MA, Shah SP, van de Rijn M, Huntsman DG, Dal Cin P, Debiec-Rychter M, Nucci MR, Fletcher JA. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci U S A. 2012;109(3):929–34.  https://doi.org/10.1073/pnas.1115528109.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Croce S, Hostein I, Ribeiro A, Garbay D, Velasco V, Stoeckle E, Guyon F, Floquet A, Neuville A, Coindre JM, Macgrogan G, Chibon F. YWHAE rearrangement identified by FISH and RT-PCR in endometrial stromal sarcomas: genetic and pathological correlations. Mod Pathol. 2013;  https://doi.org/10.1038/modpathol.2013.69.
  218. 218.
    Attygalle AD, Vroobel K, Wren D, Barton DP, Hazell SJ, Cin PD, Koelble K, McCluggage WG. An unusual case of YWHAE-NUTM2A/B endometrial stromal sarcoma with confinement to the endometrium and lack of high-grade morphology. Int J Gynecol Pathol. 2017;36(2):165–71.  https://doi.org/10.1097/PGP.0000000000000286.PubMedGoogle Scholar
  219. 219.
    Aisagbonhi O, Harrison B, Zhao L, Osgood R, Chebib I, Oliva E. YWHAE rearrangement in a purely conventional low-grade endometrial stromal sarcoma that transformed over time to high-grade sarcoma: importance of molecular testing. Int J Gynecol Pathol. 2017;  https://doi.org/10.1097/PGP.0000000000000451.
  220. 220.
    Lee CH, Ali RH, Rouzbahman M, Marino-Enriquez A, Zhu M, Guo X, Brunner AL, Chiang S, Leung S, Nelnyk N, Huntsman DG, Blake Gilks C, Nielsen TO, Dal Cin P, van de Rijn M, Oliva E, Fletcher JA, Nucci MR. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol. 2012;36(10):1562–70.  https://doi.org/10.1097/PAS.0b013e31825fa931.PubMedPubMedCentralGoogle Scholar
  221. 221.
    Chiang S, Lee CH, Stewart CJR, Oliva E, Hoang LN, Ali RH, Hensley ML, Arias-Stella JA 3rd, Frosina D, Jungbluth AA, Benayed R, Ladanyi M, Hameed M, Wang L, Kao YC, Antonescu CR, Soslow RA. BCOR is a robust diagnostic immunohistochemical marker of genetically diverse high-grade endometrial stromal sarcoma, including tumors exhibiting variant morphology. Mod Pathol. 2017;30(9):1251–61.  https://doi.org/10.1038/modpathol.2017.42.PubMedPubMedCentralGoogle Scholar
  222. 222.
    Fehr A, Hansson MC, Kindblom LG, Stenman G. YWHAE-FAM22 gene fusion in clear cell sarcoma of the kidney. J Pathol. 2012;227(4):e5–7.  https://doi.org/10.1002/path.4040.PubMedGoogle Scholar
  223. 223.
    O’Meara E, Stack D, Lee CH, Garvin AJ, Morris T, Argani P, Han JS, Karlsson J, Gisselson D, Leuschner I, Gessler M, Graf N, Fletcher JA, O’Sullivan MJ. Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. J Pathol. 2012;227(1):72–80.  https://doi.org/10.1002/path.3985.PubMedGoogle Scholar
  224. 224.
    Lewis N, Soslow RA, Delair DF, Park KJ, Murali R, Hollmann TJ, Davidson B, Micci F, Panagopoulos I, Hoang LN, Arias-Stella JA 3rd, Oliva E, Young RH, Hensley ML, Leitao MM Jr, Hameed M, Benayed R, Ladanyi M, Frosina D, Jungbluth AA, Antonescu CR, Chiang S. ZC3H7B-BCOR high-grade endometrial stromal sarcomas: a report of 17 cases of a newly defined entity. Mod Pathol. 2018;31(4):674–84.  https://doi.org/10.1038/modpathol.2017.162.PubMedGoogle Scholar
  225. 225.
    Hoang LN, Aneja A, Conlon N, Delair DF, Middha S, Benayed R, Hensley ML, Park KJ, Hollmann TJ, Hameed MR, Antonescu CR, Soslow RA, Chiang S. Novel high-grade endometrial stromal sarcoma: a morphologic mimicker of myxoid leiomyosarcoma. Am J Surg Pathol. 2017;41(1):12–24.  https://doi.org/10.1097/PAS.0000000000000721.PubMedPubMedCentralGoogle Scholar
  226. 226.
    Marino-Enriquez A, Lauria A, Przybyl J, Ng TL, Kowalewska M, Debiec-Rychter M, Ganesan R, Sumathi V, George S, McCluggage WG, Nucci MR, Lee CH, Fletcher JA. BCOR internal tandem duplication in high-grade uterine sarcomas. Am J Surg Pathol. 2018;42(3):335–41.  https://doi.org/10.1097/PAS.0000000000000993.PubMedGoogle Scholar
  227. 227.
    Huynh KD, Fischle W, Verdin E, Bardwell VJ. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 2000;14(14):1810–23.PubMedPubMedCentralGoogle Scholar
  228. 228.
    Fan Z, Yamaza T, Lee JS, Yu J, Wang S, Fan G, Shi S, Wang CY. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol. 2009;11(8):1002–9.  https://doi.org/10.1038/ncb1913.PubMedPubMedCentralGoogle Scholar
  229. 229.
    Ng D, Thakker N, Corcoran CM, Donnai D, Perveen R, Schneider A, Hadley DW, Tifft C, Zhang L, Wilkie AO, van der Smagt JJ, Gorlin RJ, Burgess SM, Bardwell VJ, Black GC, Biesecker LG. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet. 2004;36(4):411–6.  https://doi.org/10.1038/ng1321.PubMedGoogle Scholar
  230. 230.
    Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W, Spanhol-Rosseto A, Klein HU, Dugas M, Schindela S, Trifonov V, Schnittger S, Haferlach C, Bassan R, Wells VA, Spinelli O, Chan J, Rossi R, Baldoni S, De Carolis L, Goetze K, Serve H, Peceny R, Kreuzer KA, Oruzio D, Specchia G, Di Raimondo F, Fabbiano F, Sborgia M, Liso A, Farinelli L, Rambaldi A, Pasqualucci L, Rabadan R, Haferlach T, Falini B. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood. 2011;118(23):6153–63.  https://doi.org/10.1182/blood-2011-07-365320.PubMedGoogle Scholar
  231. 231.
    Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, Pigneux A, Wetzler M, Stuart RK, Erba HP, Damon LE, Powell BL, Lindeman N, Steensma DP, Wadleigh M, DeAngelo DJ, Neuberg D, Stone RM, Ebert BL. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(9):1367–76.  https://doi.org/10.1182/blood-2014-11-610543.PubMedPubMedCentralGoogle Scholar
  232. 232.
    Damm F, Chesnais V, Nagata Y, Yoshida K, Scourzic L, Okuno Y, Itzykson R, Sanada M, Shiraishi Y, Gelsi-Boyer V, Renneville A, Miyano S, Mori H, Shih LY, Park S, Dreyfus F, Guerci-Bresler A, Solary E, Rose C, Cheze S, Prebet T, Vey N, Legentil M, Duffourd Y, de Botton S, Preudhomme C, Birnbaum D, Bernard OA, Ogawa S, Fontenay M, Kosmider O. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood. 2013;122(18):3169–77.  https://doi.org/10.1182/blood-2012-11-469619.PubMedGoogle Scholar
  233. 233.
    Dobashi A, Tsuyama N, Asaka R, Togashi Y, Ueda K, Sakata S, Baba S, Sakamoto K, Hatake K, Takeuchi K. Frequent BCOR aberrations in extranodal NK/T-Cell lymphoma, nasal type. Genes Chromosomes Cancer. 2016;55(5):460–71.  https://doi.org/10.1002/gcc.22348.PubMedGoogle Scholar
  234. 234.
    Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, Ambrogio L, Auclair D, Wang J, Song YK, Tolman C, Hurd L, Liao H, Zhang S, Bogen D, Brohl AS, Sindiri S, Catchpoole D, Badgett T, Getz G, Mora J, Anderson JR, Skapek SX, Barr FG, Meyerson M, Hawkins DS, Khan J. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014;4(2):216–31.  https://doi.org/10.1158/2159-8290.CD-13-0639.PubMedPubMedCentralGoogle Scholar
  235. 235.
    Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, Ulyanov A, Wu G, Wilson M, Wang J, Brennan R, Rusch M, Manning AL, Ma J, Easton J, Shurtleff S, Mullighan C, Pounds S, Mukatira S, Gupta P, Neale G, Zhao D, Lu C, Fulton RS, Fulton LL, Hong X, Dooling DJ, Ochoa K, Naeve C, Dyson NJ, Mardis ER, Bahrami A, Ellison D, Wilson RK, Downing JR, Dyer MA. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature. 2012;481(7381):329–34.  https://doi.org/10.1038/nature10733.PubMedPubMedCentralGoogle Scholar
  236. 236.
    Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J, Carneiro MO, Carter SL, Cibulskis K, Erlich RL, Greulich H, Lawrence MS, Lennon NJ, McKenna A, Meldrim J, Ramos AH, Ross MG, Russ C, Shefler E, Sivachenko A, Sogoloff B, Stojanov P, Tamayo P, Mesirov JP, Amani V, Teider N, Sengupta S, Francois JP, Northcott PA, Taylor MD, Yu F, Crabtree GR, Kautzman AG, Gabriel SB, Getz G, Jager N, Jones DT, Lichter P, Pfister SM, Roberts TM, Meyerson M, Pomeroy SL, Cho YJ. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature. 2012;488(7409):106–10.  https://doi.org/10.1038/nature11329.PubMedPubMedCentralGoogle Scholar
  237. 237.
    Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, Sill M, Buchhalter I, Northcott PA, Leis I, Ryzhova M, Koelsche C, Pfaff E, Allen SJ, Balasubramanian G, Worst BC, Pajtler KW, Brabetz S, Johann PD, Sahm F, Reimand J, Mackay A, Carvalho DM, Remke M, Phillips JJ, Perry A, Cowdrey C, Drissi R, Fouladi M, Giangaspero F, Lastowska M, Grajkowska W, Scheurlen W, Pietsch T, Hagel C, Gojo J, Lotsch D, Berger W, Slavc I, Haberler C, Jouvet A, Holm S, Hofer S, Prinz M, Keohane C, Fried I, Mawrin C, Scheie D, Mobley BC, Schniederjan MJ, Santi M, Buccoliero AM, Dahiya S, Kramm CM, von Bueren AO, von Hoff K, Rutkowski S, Herold-Mende C, Fruhwald MC, Milde T, Hasselblatt M, Wesseling P, Rossler J, Schuller U, Ebinger M, Schittenhelm J, Frank S, Grobholz R, Vajtai I, Hans V, Schneppenheim R, Zitterbart K, Collins VP, Aronica E, Varlet P, Puget S, Dufour C, Grill J, Figarella-Branger D, Wolter M, Schuhmann MU, Shalaby T, Grotzer M, van Meter T, Monoranu CM, Felsberg J, Reifenberger G, Snuderl M, Forrester LA, Koster J, Versteeg R, Volckmann R, van Sluis P, Wolf S, Mikkelsen T, Gajjar A, Aldape K, Moore AS, Taylor MD, Jones C, Jabado N, Karajannis MA, Eils R, Schlesner M, Lichter P, von Deimling A, Pfister SM, Ellison DW, Korshunov A, Kool M. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell. 2016;164(5):1060–72.  https://doi.org/10.1016/j.cell.2016.01.015.PubMedPubMedCentralGoogle Scholar
  238. 238.
    Appay R, Macagno N, Padovani L, Korshunov A, Kool M, Andre N, Scavarda D, Pietsch T, Figarella-Branger D. HGNET-BCOR tumors of the cerebellum: clinicopathologic and molecular characterization of 3 cases. Am J Surg Pathol. 2017;41(9):1254–60.  https://doi.org/10.1097/PAS.0000000000000866.PubMedGoogle Scholar
  239. 239.
    Astolfi A, Melchionda F, Perotti D, Fois M, Indio V, Urbini M, Genovese CG, Collini P, Salfi N, Nantron M, D’Angelo P, Spreafico F, Pession A. Whole transcriptome sequencing identifies BCOR internal tandem duplication as a common feature of clear cell sarcoma of the kidney. Oncotarget. 2015;6(38):40934–9.  https://doi.org/10.18632/oncotarget.5882.PubMedPubMedCentralGoogle Scholar
  240. 240.
    Karlsson J, Valind A, Gisselsson D. BCOR internal tandem duplication and YWHAE-NUTM2B/E fusion are mutually exclusive events in clear cell sarcoma of the kidney. Genes Chromosomes Cancer. 2016;55(2):120–3.  https://doi.org/10.1002/gcc.22316.PubMedGoogle Scholar
  241. 241.
    Ueno-Yokohata H, Okita H, Nakasato K, Akimoto S, Hata J, Koshinaga T, Fukuzawa M, Kiyokawa N. Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nat Genet. 2015;47(8):861–3.  https://doi.org/10.1038/ng.3338.PubMedGoogle Scholar
  242. 242.
    Argani P, Kao YC, Zhang L, Bacchi C, Matoso A, Alaggio R, Epstein JI, Antonescu CR. Primary renal sarcomas with BCOR-CCNB3 gene fusion: a report of 2 cases showing histologic overlap with clear cell sarcoma of kidney, suggesting further link between BCOR-related sarcomas of the kidney and soft tissues. Am J Surg Pathol. 2017;41(12):1702–12.  https://doi.org/10.1097/PAS.0000000000000926.PubMedPubMedCentralGoogle Scholar
  243. 243.
    Wong MK, Ng CCY, Kuick CH, Aw SJ, Rajasegaran V, Lim JQ, Sudhanshi J, Loh E, Yin M, Ma J, Zhang Z, Iyer P, Loh AHP, Lian DWQ, Wang S, Goh SGH, Lim TH, Lim AST, Ng T, Goytain A, Loh AHL, Tan PH, Teh BT, Chang KTE. Clear cell sarcomas of the kidney are characterised by BCOR gene abnormalities, including exon 15 internal tandem duplications and BCOR-CCNB3 gene fusion. Histopathology. 2018;72(2):320–9.  https://doi.org/10.1111/his.13366.PubMedGoogle Scholar
  244. 244.
    Specht K, Zhang L, Sung YS, Nucci M, Dry S, Vaiyapuri S, Richter GH, Fletcher CD, Antonescu CR. Novel BCOR-MAML3 and ZC3H7B-BCOR gene fusions in undifferentiated small blue round cell sarcomas. Am J Surg Pathol. 2016;40(4):433–42.  https://doi.org/10.1097/PAS.0000000000000591.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Peters TL, Kumar V, Polikepahad S, Lin FY, Sarabia SF, Liang Y, Wang WL, Lazar AJ, Doddapaneni H, Chao H, Muzny DM, Wheeler DA, Okcu MF, Plon SE, Hicks MJ, Lopez-Terrada D, Parsons DW, Roy A. BCOR-CCNB3 fusions are frequent in undifferentiated sarcomas of male children. Mod Pathol. 2015;28(4):575–86.  https://doi.org/10.1038/modpathol.2014.139.PubMedGoogle Scholar
  246. 246.
    Kao YC, Owosho AA, Sung YS, Zhang L, Fujisawa Y, Lee JC, Wexler L, Argani P, Swanson D, Dickson BC, Fletcher CDM, Antonescu CR. BCOR-CCNB3 fusion positive sarcomas: a clinicopathologic and molecular analysis of 36 cases with comparison to morphologic spectrum and clinical behavior of other round cell sarcomas. Am J Surg Pathol. 2018;42(5):604–15.  https://doi.org/10.1097/PAS.0000000000000965.PubMedGoogle Scholar
  247. 247.
    Matsuyama A, Shiba E, Umekita Y, Nosaka K, Kamio T, Yanai H, Miyasaka C, Watanabe R, Ito I, Tamaki T, Hayashi S, Hisaoka M. Clinicopathologic diversity of undifferentiated sarcoma with BCOR-CCNB3 fusion: analysis of 11 cases with a reappraisal of the utility of immunohistochemistry for BCOR and CCNB3. Am J Surg Pathol. 2017;41(12):1713–21.  https://doi.org/10.1097/PAS.0000000000000934.PubMedGoogle Scholar
  248. 248.
    Antonescu CR, Sung YS, Chen CL, Zhang L, Chen HW, Singer S, Agaram NP, Sboner A, Fletcher CD. Novel ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions in ossifying fibromyxoid tumors–molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer. 2014;53(2):183–93.  https://doi.org/10.1002/gcc.22132.PubMedGoogle Scholar
  249. 249.
    Tanner EJ, Garg K, Leitao MM Jr, Soslow RA, Hensley ML. High grade undifferentiated uterine sarcoma: surgery, treatment, and survival outcomes. Gynecol Oncol. 2012;127(1):27–31.  https://doi.org/10.1016/j.ygyno.2012.06.030.PubMedGoogle Scholar
  250. 250.
    Malouf GG, Lhomme C, Duvillard P, Morice P, Haie-Meder C, Pautier P. Prognostic factors and outcome of undifferentiated endometrial sarcoma treated by multimodal therapy. Int J Gynaecol Obstet. 2013;122(1):57–61.  https://doi.org/10.1016/j.ijgo.2013.01.025.PubMedGoogle Scholar
  251. 251.
    Jin Y, Pan L, Wang X, Dai Z, Huang H, Guo L, Shen K, Lian L. Clinical characteristics of endometrial stromal sarcoma from an academic medical hospital in China. Int J Gynecol Cancer. 2010;20(9):1535–9.PubMedGoogle Scholar
  252. 252.
    Sciallis AP, Bedroske PP, Schoolmeester JK, Sukov WR, Keeney GL, Hodge JC, Bell DA. High-grade endometrial stromal sarcomas: a clinicopathologic study of a group of tumors with heterogenous morphologic and genetic features. Am J Surg Pathol. 2014;38(9):1161–72.  https://doi.org/10.1097/PAS.0000000000000256.PubMedGoogle Scholar
  253. 253.
    Cotzia P, Benayed R, Mullaney K, Oliva E, Felix A, Ferreira J, Soslow R, Antonescu CR, Ladanyi M, Chiang S. Undifferentiated uterine sarcomas represent underrecognized high-grade endometrial stromal sarcomas. Lab Invest. 2018;98:415–6.Google Scholar
  254. 254.
    Chiang S, Cotzia P, Hyman DM, Drilon A, Tap WD, Zhang L, Hechtman JF, Frosina D, Jungbluth AA, Murali R, Park KJ, Soslow RA, Oliva E, Iafrate AJ, Benayed R, Ladanyi M, Antonescu CR. NTRK fusions define a novel uterine sarcoma subtype with features of fibrosarcoma. Am J Surg Pathol. 2018;42(6):791–8.  https://doi.org/10.1097/PAS.0000000000001055.PubMedGoogle Scholar
  255. 255.
    Kaplan DR, Martin-Zanca D, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature. 1991;350(6314):158–60.  https://doi.org/10.1038/350158a0.PubMedGoogle Scholar
  256. 256.
    Barbacid M. Structural and functional properties of the TRK family of neurotrophin receptors. Ann N Y Acad Sci. 1995;766:442–58.PubMedGoogle Scholar
  257. 257.
    Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000;10(3):381–91.PubMedGoogle Scholar
  258. 258.
    Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS, Turpin B, Dowlati A, Brose MS, Mascarenhas L, Federman N, Berlin J, El-Deiry WS, Baik C, Deeken J, Boni V, Nagasubramanian R, Taylor M, Rudzinski ER, Meric-Bernstam F, Sohal DPS, Ma PC, Raez LE, Hechtman JF, Benayed R, Ladanyi M, Tuch BB, Ebata K, Cruickshank S, Ku NC, Cox MC, Hawkins DS, Hong DS, Hyman DM. Efficacy of Larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9.  https://doi.org/10.1056/NEJMoa1714448.PubMedPubMedCentralGoogle Scholar
  259. 259.
    Drilon A, Nagasubramanian R, Blake JF, Ku N, Tuch BB, Ebata K, Smith S, Lauriault V, Kolakowski GR, Brandhuber BJ, Larsen PD, Bouhana KS, Winski SL, Hamor R, Wu WI, Parker A, Morales TH, Sullivan FX, DeWolf WE, Wollenberg LA, Gordon PR, Douglas-Lindsay DN, Scaltriti M, Benayed R, Raj S, Hanusch B, Schram AM, Jonsson P, Berger MF, Hechtman JF, Taylor BS, Andrews S, Rothenberg SM, Hyman DM. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov. 2017;7(9):963–72.  https://doi.org/10.1158/2159-8290.CD-17-0507.PubMedPubMedCentralGoogle Scholar
  260. 260.
    Bennett JA, Nardi V, Rouzbahman M, Morales-Oyarvide V, Nielsen GP, Oliva E. Inflammatory myofibroblastic tumor of the uterus: a clinicopathological, immunohistochemical, and molecular analysis of 13 cases highlighting their broad morphologic spectrum. Mod Pathol. 2017;30(10):1489–503.  https://doi.org/10.1038/modpathol.2017.69.PubMedGoogle Scholar
  261. 261.
    Haimes JD, Stewart CJR, Kudlow BA, Culver BP, Meng B, Koay E, Whitehouse A, Cope N, Lee JC, Ng T, McCluggage WG, Lee CH. Uterine inflammatory myofibroblastic tumors frequently harbor ALK fusions with IGFBP5 and THBS1. Am J Surg Pathol. 2017;41(6):773–80.  https://doi.org/10.1097/PAS.0000000000000801.PubMedGoogle Scholar
  262. 262.
    Parra-Herran C, Quick CM, Howitt BE, Dal Cin P, Quade BJ, Nucci MR. Inflammatory myofibroblastic tumor of the uterus: clinical and pathologic review of 10 cases including a subset with aggressive clinical course. Am J Surg Pathol. 2015;39(2):157–68.  https://doi.org/10.1097/PAS.0000000000000330.PubMedGoogle Scholar
  263. 263.
    Kinde I, Bettegowda C, Wang Y, Wu J, Agrawal N, Shih Ie M, Kurman R, Dao F, Levine DA, Giuntoli R, Roden R, Eshleman JR, Carvalho JP, Marie SK, Papadopoulos N, Kinzler KW, Vogelstein B, Diaz LA Jr. Evaluation of DNA from the papanicolaou test to detect ovarian and endometrial cancers. Sci Transl Med. 2013;5(167):167ra164.  https://doi.org/10.1126/scitranslmed.3004952.Google Scholar
  264. 264.
    Wang Y, Li L, Douville C, Cohen JD, Yen TT, Kinde I, Sundfelt K, Kjaer SK, Hruban RH, Shih IM, Wang TL, Kurman RJ, Springer S, Ptak J, Popoli M, Schaefer J, Silliman N, Dobbyn L, Tanner EJ, Angarita A, Lycke M, Jochumsen K, Afsari B, Danilova L, Levine DA, Jardon K, Zeng X, Arseneau J, Fu L, Diaz LA, Jr., Karchin R, Tomasetti C, Kinzler KW, Vogelstein B, Fader AN, Gilbert L, Papadopoulos N. Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers. Sci Transl Med. 2018;10(433).  https://doi.org/10.1126/scitranslmed.aap8793
  265. 265.
    Gibson WJ, Hoivik EA, Halle MK, Taylor-Weiner A, Cherniack AD, Berg A, Holst F, Zack TI, Werner HM, Staby KM, Rosenberg M, Stefansson IM, Kusonmano K, Chevalier A, Mauland KK, Trovik J, Krakstad C, Giannakis M, Hodis E, Woie K, Bjorge L, Vintermyr OK, Wala JA, Lawrence MS, Getz G, Carter SL, Beroukhim R, Salvesen HB. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nat Genet. 2016;48(8):848–55.  https://doi.org/10.1038/ng.3602.PubMedPubMedCentralGoogle Scholar
  266. 266.
    Boronow RC. Endometrial cancer: not a benign disease. Obstet Gynecol. 1976;47(5):630–4.PubMedGoogle Scholar
  267. 267.
    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.  https://doi.org/10.1158/2159-8290.CD-12-0095.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Sarah Chiang
    • 1
  • Luciano G. Martelotto
    • 1
    • 2
  • Britta Weigelt
    • 1
    Email author
  1. 1.Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.The University of Melbourne Centre for Cancer ResearchUniversity of Melbourne, Victorian Comprehensive Cancer CenterMelbourneAustralia

Personalised recommendations