Advertisement

Genomic Applications in Pulmonary Malignancies

  • Reinhard Büttner
  • Carina Heydt
  • Sabine Merkelbach-BruseEmail author
Chapter

Abstract

Lung cancer has been the subject of intensive research in the last decade resulting in the translation of basic scientific findings in clinical practice. Several molecular alterations have been defined as “driver mutations” in non-small cell lung cancer (NSCLC) providing novel targets for lung cancer treatment. This requires, besides a close interaction between researchers, clinicians, and pathologists, the implementation of high-quality molecular diagnostics. Two personalized therapy approaches are currently approved by the US and European drug administration agencies. The first is treatment of epidermal growth factor receptor (EGFR) and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutant NSCLC with EGFR-directed tyrosine kinase inhibitors or a combination of BRAF- and MEK-directed inhibitors, respectively. The second is targeting NSCLC tumors with rearrangements of the anaplastic lymphoma kinase (ALK) or v-ros avian UR2 sarcoma virus oncogene homolog 1 (ROS1) oncogene with the inhibitor crizotinib. A major issue of targeted treatment of lung tumors is the persistent development of resistance. The underlying mechanisms of resistance are currently an important subject of research. The clinical relevance of other alterations such as mutations and gene amplifications of KRAS, ERBB2, and MET and chromosomal translocations of RET and NTRK is currently under investigation in clinical trials. In this context, methods for the detection of these alterations are outlined in this chapter taking into account the suboptimal quality and quantity of DNA from formalin-fixed, paraffin-embedded (FFPE) tissue.

Keywords

Lung cancer Personalized treatment Molecular diagnostic EGFR BRAF EML4-ALK ROS1 Mutation analysis Parallel sequencing FISH 

References

  1. 1.
    Seidel DZT, Heukamp LC, Peifer M, Bos M, Fernández-Cuesta L, Leenders F, Lu X, Ansén S, Gardizi M, Nguyen C, Berg J, Russell P, Wainer Z, Schildhaus HU, Rogers TM, Solomon B, Pao W, Carter SL, Getz G, Hayes D, Wilkerson MD, Thunnissen E, Travis WD, Perner S, Wright G, Brambilla E, Büttner R, Wolf J, Thomas RK, Gabler F, Wilkening I, Müller C, Dahmen I, Menon R, König K, Albus K, Merkelbach-Bruse S, Fassunke J, Schmitz K, Kuenstlinger H, Kleine MA, Binot E, Querings S, Altmüller J, Bäßmann I, Nürnberg P, Schneider PM, Bogus M, Büttner R, Perner S, Russell P, Thunnissen E, Travis WD, Brambilla E, Soltermann A, Moch H, Brustugun OT, Solberg S, Lund-Iversen M, Helland Å, Muley T, Hoffmann H, Schnabel PA, Chen Y, Groen H, Timens W, Sietsma H, Clement JH, Weder W, Sänger J, Stoelben E, Ludwig C, Engel-Riedel W, Smit E, Heideman DA, Snijders PJ, Nogova L, Sos ML, Mattonet C, Töpelt K, Scheffler M, Goekkurt E, Kappes R, Krüger S, Kambartel K, Behringer D, Schulte W, Galetke W, Randerath W, Heldwein M, Schlesinger A, Serke M, Hekmat K, Frank KF, Schnell R, Reiser M, Hünerlitürkoglu AN, Schmitz S, Meffert L, Ko YD, Litt-Lampe M, Gerigk U, Fricke R, Besse B, Brambilla C, Lantuejoul S, Lorimier P, Moro-Sibilot D, Cappuzzo F, Ligorio C, Damiani S, Field JK, Hyde R, Validire P, Girard P, Muscarella LA, Fazio VM, Hallek M, Soria JC, Carter SL, Getz G, Hayes D, Wilkerson MD, Achter V, Lang U, Seidel D, Zander T, Heukamp LC, Peifer M, Bos M, Pao W, Travis WD, Brambilla E, Büttner R, Wolf J, Thomas RK, Büttner R, Wolf J, Thomas RK, CLCGP NGM. A genomics-based classification of human lung tumors. Sci Transl Med. 2013;5(209):209ra153.  https://doi.org/10.1126/scitranslmed.3006802.CrossRefGoogle Scholar
  2. 2.
    Buettner R, Wolf J, Thomas RK. Lessons learned from lung cancer genomics: the emerging concept of individualized diagnostics and treatment. J Clin Oncol. 2013;31(15):1858–65.  https://doi.org/10.1200/jco.2012.45.9867.CrossRefPubMedGoogle Scholar
  3. 3.
    Roskoski R Jr. The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys Res Commun. 2004;319(1):1–11.  https://doi.org/10.1016/j.bbrc.2004.04.150.CrossRefPubMedGoogle Scholar
  4. 4.
    Akca H, Tani M, Hishida T, Matsumoto S, Yokota J. Activation of the AKT and STAT3 pathways and prolonged survival by a mutant EGFR in human lung cancer cells. Lung Cancer. 2006;54(1):25–33.  https://doi.org/10.1016/j.lungcan.2006.06.007.CrossRefPubMedGoogle Scholar
  5. 5.
    Onn A, Correa AM, Gilcrease M, Isobe T, Massarelli E, Bucana CD, O'Reilly MS, Hong WK, Fidler IJ, Putnam JB, Herbst RS. Synchronous overexpression of epidermal growth factor receptor and HER2-neu protein is a predictor of poor outcome in patients with stage I non-small cell lung cancer. Clin Cancer Res. 2004;10(1 Pt 1):136–43.CrossRefGoogle Scholar
  6. 6.
    Harari PM. Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer. 2004;11(4):689–708.  https://doi.org/10.1677/erc.1.00600.CrossRefPubMedGoogle Scholar
  7. 7.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.  https://doi.org/10.1056/NEJMoa040938.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.  https://doi.org/10.1126/science.1099314.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang X, Gureasko J, Shen K, PA Cole JK. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell. 2006;125(6):1137–49.  https://doi.org/10.1016/j.cell.2006.05.013.CrossRefPubMedGoogle Scholar
  10. 10.
    Carey KD, Garton AJ, Romero MS, Kahler J, Thomson S, Ross S, Park F, JD Haley NG, Sliwkowski MX. Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib. Cancer Res. 2006;66(16):8163–71.  https://doi.org/10.1158/0008-5472.can-06-0453.CrossRefPubMedGoogle Scholar
  11. 11.
    Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, Seto T, Satouchi M, Tada H, Hirashima T, Asami K, Katakami N, Takada M, Yoshioka H, Shibata K, Kudoh S, Shimizu E, Saito H, Toyooka S, Nakagawa K, Fukuoka M. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121–8.  https://doi.org/10.1016/s1470-2045(09)70364-x.CrossRefPubMedGoogle Scholar
  12. 12.
    Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM, Porta R, Cobo M, Garrido P, Longo F, Moran T, Insa A, De Marinis F, Corre R, Bover I, Illiano A, Dansin E, de Castro J, Milella M, Reguart N, Altavilla G, Jimenez U, Provencio M, Moreno MA, Terrasa J, Munoz-Langa J, Valdivia J, Isla D, Domine M, Molinier O, Mazieres J, Baize N, Garcia-Campelo R, Robinet G, Rodriguez-Abreu D, Lopez-Vivanco G, Gebbia V, Ferrera-Delgado L, Bombaron P, Bernabe R, Bearz A, Artal A, Cortesi E, Rolfo C, Sanchez-Ronco M, Drozdowskyj A, Queralt C, de Aguirre I, Ramirez JL, Sanchez JJ, Molina MA, Taron M, Paz-Ares L. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46.  https://doi.org/10.1016/s1470-2045(11)70393-x.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Novello S, Barlesi F, Califano R, Cufer T, Ekman S, MG Levra K, Kerr S, Popat M, Reck SS, Simo GV, Vansteenkiste J, Peters S. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(suppl 5):v1–v27.  https://doi.org/10.1093/annonc/mdw326.CrossRefPubMedGoogle Scholar
  14. 14.
    Tan DS, Yom SS, Tsao MS, Pass HI, Kelly K, Peled N, Yung RC, Wistuba II, Yatabe Y, Unger M, Mack PC, Wynes MW, Mitsudomi T, Weder W, Yankelevitz D, Herbst RS, Gandara DR, Carbone DP, Bunn PA Jr, Mok TS, Hirsch FR. The International Association for the Study of Lung Cancer Consensus Statement on optimizing management of EGFR mutation-positive non-small cell lung cancer: status in 2016. J Thorac Oncol. 2016;11(7):946–63.  https://doi.org/10.1016/j.jtho.2016.05.008.CrossRefPubMedGoogle Scholar
  15. 15.
    Brevet M, Arcila M, Ladanyi M. Assessment of EGFR mutation status in lung adenocarcinoma by immunohistochemistry using antibodies specific to the two major forms of mutant EGFR. J Mol Diagn. 2010;12(2):169–76.  https://doi.org/10.2353/jmoldx.2010.090140.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Huang S-F, Liu H-P, Li L-H, Ku Y-C, Fu Y-N, Tsai H-Y, Chen Y-T, Lin Y-F, Chang W-C, Kuo H-P, Wu Y-C, Chen Y-R, Tsai S-F. High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancers related to gefitinib responsiveness in Taiwan. Clin Cancer Res. 2004;10(24):8195–203.  https://doi.org/10.1158/1078-0432.ccr-04-1245.CrossRefPubMedGoogle Scholar
  17. 17.
    Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, Zakowski MF, Kris MG, Ladanyi M. EGFR Exon 20 Insertion Mutations in Lung Adenocarcinomas: Prevalence, Molecular Heterogeneity, and Clinicopathologic Characteristics. Mol Cancer Ther. 2013;12(2):220–9.  https://doi.org/10.1158/1535-7163.mct-12-0620.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, Stefancsik R, Harsha B, Kok CY, Jia M, Jubb H, Sondka Z, Thompson S, De T, Campbell PJ. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):D777–D83.  https://doi.org/10.1093/nar/gkw1121.CrossRefPubMedGoogle Scholar
  19. 19.
    He M, Capelletti M, Nafa K, Yun CH, Arcila ME, Miller VA, Ginsberg MS, Zhao B, Kris MG, Eck MJ, Janne PA, Ladanyi M, Oxnard GR. EGFR exon 19 insertions: a new family of sensitizing EGFR mutations in lung adenocarcinoma. Clin Cancer Res. 2012;18(6):1790–7.  https://doi.org/10.1158/1078-0432.ccr-11-2361.CrossRefPubMedGoogle Scholar
  20. 20.
    Lin YT, Liu YN, Wu SG, Yang JC, Shih JY. Epidermal growth factor receptor tyrosine kinase inhibitor-sensitive exon 19 insertion and exon 20 insertion in patients with advanced non-small-cell lung cancer. Clin Lung Cancer. 2017;18(3):324–32 e1.  https://doi.org/10.1016/j.cllc.2016.12.014.CrossRefPubMedGoogle Scholar
  21. 21.
    Ackerman A, Goldstein MA, Kobayashi S, Costa DB. EGFR delE709_T710insD: a rare but potentially EGFR inhibitor responsive mutation in non-small-cell lung cancer. J Thorac Oncol. 2012;7(10):e19–20.  https://doi.org/10.1097/JTO.0b013e3182635ab4.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kobayashi Y, Togashi Y, Yatabe Y, Mizuuchi H, Jangchul P, Kondo C, Shimoji M, Sato K, Suda K, Tomizawa K, Takemoto T, Hida T, Nishio K, Mitsudomi T. EGFR exon 18 mutations in lung cancer: molecular predictors of augmented sensitivity to afatinib or neratinib as compared with first- or third-generation TKIs. Clin Cancer Res. 2015;21(23):5305–13.  https://doi.org/10.1158/1078-0432.ccr-15-1046.CrossRefPubMedGoogle Scholar
  23. 23.
    Yang JC, Sequist LV, Geater SL, Tsai CM, Mok TS, Schuler M, N Yamamoto CJY, Ou SH, Zhou C, Massey D, V Zazulina YLW. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 2015;16(7):830–8.  https://doi.org/10.1016/s1470-2045(15)00026-1.CrossRefPubMedGoogle Scholar
  24. 24.
    Baik CS, D W, Smith C, Martins RG, Pritchard CC. Durable response to tyrosine kinase inhibitor therapy in a lung cancer patient harboring epidermal growth factor receptor tandem kinase domain duplication. J Thorac Oncol. 2015;10(10):e97–9.  https://doi.org/10.1097/jto.0000000000000586.CrossRefPubMedGoogle Scholar
  25. 25.
    Gallant JN, Sheehan JH, Shaver TM, Bailey M, Lipson D, Chandramohan R, Red Brewer M, York SJ, Kris MG, Pietenpol JA, Ladanyi M, Miller VA, Ali SM, Meiler J, Lovly CM. EGFR kinase domain duplication (EGFR-KDD) is a novel oncogenic driver in lung cancer that is clinically responsive to afatinib. Cancer Discov. 2015;5(11):1155–63.  https://doi.org/10.1158/2159-8290.cd-15-0654.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Konduri K, Gallant JN, Chae YK, Giles FJ, Gitlitz BJ, Gowen K, Ichihara E, Owonikoko TK, Peddareddigari V, Ramalingam SS, Reddy SK, Eaby-Sandy B, Vavala T, Whiteley A, Chen H, Yan Y, Sheehan JH, Meiler J, Morosini D, Ross JS, Stephens PJ, Miller VA, Ali SM, Lovly CM. EGFR fusions as novel therapeutic targets in lung cancer. Cancer Discov. 2016;6(6):601–11.  https://doi.org/10.1158/2159-8290.cd-16-0075.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol. 2012;13(1):e23–31.  https://doi.org/10.1016/s1470-2045(11)70129-2.CrossRefPubMedGoogle Scholar
  28. 28.
    Yasuda H, Park E, Yun CH, Sng NJ, Lucena-Araujo AR, Yeo WL, Huberman MS, Cohen DW, Nakayama S, Ishioka K, Yamaguchi N, Hanna M, Oxnard GR, Lathan CS, Moran T, Sequist LV, Chaft JE, Riely GJ, Arcila ME, Soo RA, Meyerson M, Eck MJ, Kobayashi SS, Costa DB. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013;5(216):216ra177.  https://doi.org/10.1126/scitranslmed.3007205.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jia Y, Juarez J, Li J, Manuia M, Niederst MJ, Tompkins C, Timple N, Vaillancourt MT, Pferdekamper AC, Lockerman EL, Li C, Anderson J, Costa C, Liao D, Murphy E, DiDonato M, Bursulaya B, Lelais G, Barretina J, McNeill M, Epple R, Marsilje TH, Pathan N, Engelman JA, Michellys PY, McNamara P, Harris J, Bender S, Kasibhatla S. EGF816 exerts anticancer effects in non-small cell lung cancer by irreversibly and selectively targeting primary and acquired activating mutations in the EGF receptor. Cancer Res. 2016;76(6):1591–602.  https://doi.org/10.1158/0008-5472.can-15-2581.CrossRefPubMedGoogle Scholar
  30. 30.
    Leventakos K, Kipp BR, Rumilla KM, Winters JL, Yi ES, Mansfield AS. S768I mutation in EGFR in patients with lung cancer. J Thorac Oncol. 2016;11(10):1798–801.  https://doi.org/10.1016/j.jtho.2016.05.007.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352(8):786–92.  https://doi.org/10.1056/NEJMoa044238.CrossRefPubMedGoogle Scholar
  32. 32.
    Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3):e73.  https://doi.org/10.1371/journal.pmed.0020073.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A. 2008;105(6):2070–5.  https://doi.org/10.1073/pnas.0709662105.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, Orme JP, Finlay MR, Ward RA, Mellor MJ, Hughes G, Rahi A, Jacobs VN, Red Brewer M, Ichihara E, Sun J, Jin H, Ballard P, Al-Kadhimi K, Rowlinson R, Klinowska T, Richmond GH, Cantarini M, Kim DW, Ranson MR, Pao W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4(9):1046–61.  https://doi.org/10.1158/2159-8290.cd-14-0337.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Janne PA, Yang JC, Kim DW, Planchard D, Ohe Y, Ramalingam SS, Ahn MJ, Kim SW, Su WC, Horn L, Haggstrom D, Felip E, Kim JH, Frewer P, Cantarini M, Brown KH, Dickinson PA, Ghiorghiu S, Ranson M. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372(18):1689–99.  https://doi.org/10.1056/NEJMoa1411817.CrossRefPubMedGoogle Scholar
  36. 36.
    Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, Akhavanfard S, Heist RS, Temel J, Christensen JG, Wain JC, Lynch TJ, Vernovsky K, Mark EJ, Lanuti M, Iafrate AJ, Mino-Kenudson M, Engelman JA. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26.  https://doi.org/10.1126/scitranslmed.3002003.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Takezawa K, Pirazzoli V, Arcila ME, Nebhan CA, Song X, de Stanchina E, Ohashi K, Janjigian YY, Spitzler PJ, Melnick MA, Riely GJ, Kris MG, Miller VA, Ladanyi M, Politi K, Pao W. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov. 2012;2(10):922–33.  https://doi.org/10.1158/2159-8290.cd-12-0108.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.  https://doi.org/10.1126/science.1141478.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, Balak M, Chang WC, Yu CJ, Gazdar A, Pass H, Rusch V, Gerald W, Huang SF, Yang PC, Miller V, Ladanyi M, Yang CH, Pao W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007;104(52):20932–7.  https://doi.org/10.1073/pnas.0710370104.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gou LY, Li AN, Yang JJ, Zhang XC, Su J, Yan HH, Xie Z, Lou NN, Liu SY, Dong ZY, Gao HF, Zhou Q, Zhong WZ, Xu CR, Wu YL. The coexistence of MET over-expression and an EGFR T790M mutation is related to acquired resistance to EGFR tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget. 2016;7(32):51311–9.  https://doi.org/10.18632/oncotarget.9697.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gatzemeier U, Groth G, Butts C, Van Zandwijk N, Shepherd F, Ardizzoni A, Barton C, Ghahramani P, Hirsh V. Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann Oncol. 2004;15(1):19–27.CrossRefGoogle Scholar
  42. 42.
    Ross HJ, Blumenschein GR Jr, Aisner J, Damjanov N, Dowlati A, Garst J, Rigas JR, Smylie M, Hassani H, Allen KE, Leopold L, Zaks TZ, Shepherd FA. Randomized phase II multicenter trial of two schedules of lapatinib as first- or second-line monotherapy in patients with advanced or metastatic non-small cell lung cancer. Clin Cancer Res. 2010;16(6):1938–49.  https://doi.org/10.1158/1078-0432.ccr-08-3328.CrossRefPubMedGoogle Scholar
  43. 43.
    Ohashi K, Sequist LV, Arcila ME, Moran T, Chmielecki J, Lin YL, Pan Y, Wang L, de Stanchina E, Shien K, Aoe K, Toyooka S, Kiura K, Fernandez-Cuesta L, Fidias P, Yang JC, Miller VA, Riely GJ, Kris MG, Engelman JA, Vnencak-Jones CL, Dias-Santagata D, Ladanyi M, Pao W. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci U S A. 2012;109(31):E2127–33.  https://doi.org/10.1073/pnas.1203530109.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang J, Wang B, Chu H, Yao Y. Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations. Onco Targets Ther. 2016;9:3711–26.  https://doi.org/10.2147/ott.s106399.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ham JS, Kim S, Kim HK, Byeon S, Sun JM, Lee SH, Ahn JS, Park K, Choi YL, Han J, Park W, Ahn MJ. Two cases of small cell lung cancer transformation from EGFR mutant adenocarcinoma during AZD9291 treatment. J Thorac Oncol. 2016;11(1):e1–4.  https://doi.org/10.1016/j.jtho.2015.09.013.CrossRefPubMedGoogle Scholar
  46. 46.
    Chabon JJ, Simmons AD, Lovejoy AF, Esfahani MS, Newman AM, Haringsma HJ, Kurtz DM, Stehr H, Scherer F, Karlovich CA, Harding TC, Durkin KA, Otterson GA, Purcell WT, Camidge DR, Goldman JW, Sequist LV, Piotrowska Z, Wakelee HA, Neal JW, Alizadeh AA, Diehn M. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun. 2016;7:11815.  https://doi.org/10.1038/ncomms11815.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ortiz-Cuaran S, Scheffler M, Plenker D, Dahmen L, Scheel AH, Fernandez-Cuesta L, Meder L, Lovly CM, Persigehl T, Merkelbach-Bruse S, Bos M, Michels S, Fischer R, Albus K, Konig K, Schildhaus HU, Fassunke J, Ihle MA, Pasternack H, Heydt C, Becker C, Altmuller J, Ji H, Muller C, Florin A, Heuckmann JM, Nuernberg P, Ansen S, Heukamp LC, Berg J, Pao W, Peifer M, Buettner R, Wolf J, Thomas RK, Sos ML. Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors. Clin Cancer Res. 2016;22(19):4837–47.  https://doi.org/10.1158/1078-0432.ccr-15-1915.CrossRefPubMedGoogle Scholar
  48. 48.
    Planchard D, Loriot Y, Andre F, Gobert A, Auger N, Lacroix L, Soria JC. EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. Ann Oncol. 2015;26(10):2073–8.  https://doi.org/10.1093/annonc/mdv319.CrossRefPubMedGoogle Scholar
  49. 49.
    Nanjo S, Yamada T, Nishihara H, Takeuchi S, Sano T, Nakagawa T, Ishikawa D, Zhao L, Ebi H, Yasumoto K, Matsumoto K, Yano S. Ability of the Met kinase inhibitor crizotinib and new generation EGFR inhibitors to overcome resistance to EGFR inhibitors. PLoS One. 2013;8(12):e84700.  https://doi.org/10.1371/journal.pone.0084700.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Normanno N, Denis MG, Thress KS, Ratcliffe M, Reck M. Guide to detecting epidermal growth factor receptor (EGFR) mutations in ctDNA of patients with advanced non-small-cell lung cancer. Oncotarget. 2017;8(7):12501–16.  https://doi.org/10.18632/oncotarget.13915.CrossRefPubMedGoogle Scholar
  51. 51.
    Oxnard GR, Thress KS, Alden RS, Lawrance R, Paweletz CP, Cantarini M, Yang JC, Barrett JC, Janne PA. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol. 2016;34(28):3375–82.  https://doi.org/10.1200/jco.2016.66.7162.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Reck M, Hagiwara K, Han B, Tjulandin S, Grohe C, Yokoi T, Morabito A, Novello S, Arriola E, Molinier O, McCormack R, Ratcliffe M, Normanno N. ctDNA determination of EGFR mutation status in European and Japanese patients with advanced NSCLC: the ASSESS study. J Thorac Oncol. 2016;11(10):1682–9.  https://doi.org/10.1016/j.jtho.2016.05.036.CrossRefPubMedGoogle Scholar
  53. 53.
    Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, Tzivion G. Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta. 2007;1773(8):1196–212.  https://doi.org/10.1016/j.bbamcr.2007.05.001.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Marchetti A, Felicioni L, Malatesta S, Grazia Sciarrotta M, Guetti L, Chella A, Viola P, Pullara C, Mucilli F, Buttitta F. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol. 2011;29(26):3574–9.  https://doi.org/10.1200/jco.2011.35.9638.CrossRefPubMedGoogle Scholar
  55. 55.
    Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, Roth JA, Albelda SM, Davies H, Cox C, Brignell G, Stephens P, Futreal PA, Wooster R, Stratton MR, Weber BL. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 2002;62(23):6997–7000.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Naoki K, Chen TH, Richards WG, Sugarbaker DJ, Meyerson M. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res. 2002;62(23):7001–3.PubMedGoogle Scholar
  57. 57.
    Tissot C, Couraud S, Tanguy R, Bringuier PP, Girard N, Souquet PJ. Clinical characteristics and outcome of patients with lung cancer harboring BRAF mutations. Lung Cancer. 2016;91:23–8.  https://doi.org/10.1016/j.lungcan.2015.11.006.CrossRefPubMedGoogle Scholar
  58. 58.
    Ross JS, Wang K, Chmielecki J, Gay L, Johnson A, Chudnovsky J, Yelensky R, Lipson D, Ali SM, Elvin JA, Vergilio JA, Roels S, Miller VA, Nakamura BN, Gray A, Wong MK, Stephens PJ. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int J Cancer. 2016;138(4):881–90.  https://doi.org/10.1002/ijc.29825.CrossRefPubMedGoogle Scholar
  59. 59.
    Jang JS, Lee A, Li J, Liyanage H, Yang Y, Guo L, Asmann YW, Li PW, Erickson-Johnson M, Sakai Y, Sun Z, Jeon HS, Hwang H, Bungum AO, Edell ES, Simon VA, Kopp KJ, Eckloff B, Oliveira AM, Wieben E, Aubry MC, Yi E, Wigle D, Diasio RB, Yang P, Jen J. Common oncogene mutations and novel SND1-BRAF transcript fusion in lung adenocarcinoma from never smokers. Sci Rep. 2015;5:9755.  https://doi.org/10.1038/srep09755.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Peters S, Michielin O, Zimmermann S. Dramatic response induced by vemurafenib in a BRAF V600E-mutated lung adenocarcinoma. J Clin Oncol. 2013;31(20):e341–4.  https://doi.org/10.1200/jco.2012.47.6143.CrossRefPubMedGoogle Scholar
  61. 61.
    Robinson SD, O'Shaughnessy JA, Cowey CL, Konduri K. BRAF V600E-mutated lung adenocarcinoma with metastases to the brain responding to treatment with vemurafenib. Lung Cancer. 2014;85(2):326–30.  https://doi.org/10.1016/j.lungcan.2014.05.009.CrossRefPubMedGoogle Scholar
  62. 62.
    Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, Wolf J, Raje NS, Diamond EL, Hollebecque A, Gervais R, Elez-Fernandez ME, Italiano A, Hofheinz RD, Hidalgo M, Chan E, Schuler M, Lasserre SF, Makrutzki M, Sirzen F, Veronese ML, Tabernero J, Baselga J. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373(8):726–36.  https://doi.org/10.1056/NEJMoa1502309.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Planchard D, Kim TM, Mazieres J, Quoix E, Riely G, Barlesi F, Souquet PJ, Smit EF, Groen HJ, Kelly RJ, Cho BC, Socinski MA, Pandite L, Nase C, Ma B, D'Amelio A Jr, Mookerjee B, Curtis CM Jr, Johnson BE. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(5):642–50.  https://doi.org/10.1016/s1470-2045(16)00077-2.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Gautschi O, Milia J, Cabarrou B, Bluthgen MV, Besse B, Smit EF, Wolf J, Peters S, Fruh M, Koeberle D, Oulkhouir Y, Schuler M, Curioni-Fontecedro A, Huret B, Kerjouan M, Michels S, Pall G, Rothschild S, Schmid-Bindert G, Scheffler M, Veillon R, Wannesson L, Diebold J, Zalcman G, Filleron T, Mazieres J. Targeted therapy for patients with BRAF-mutant lung cancer: results from the European EURAF Cohort. J Thorac Oncol. 2015;10(10):1451–7.  https://doi.org/10.1097/jto.0000000000000625.CrossRefPubMedGoogle Scholar
  65. 65.
    Planchard D, Besse B, Groen HJ, Souquet PJ, Quoix E, Baik CS, Barlesi F, Kim TM, Mazieres J, Novello S, Rigas JR, Upalawanna A, D'Amelio AM Jr, Zhang P, Mookerjee B, Johnson BE. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 2016;17(7):984–93.  https://doi.org/10.1016/s1470-2045(16)30146-2.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Yao Z, Torres NM, Tao A, Gao Y, Luo L, Li Q, de Stanchina E, Abdel-Wahab O, Solit DB, Poulikakos PI, Rosen N. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell. 2015;28(3):370–83.  https://doi.org/10.1016/j.ccell.2015.08.001.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Joshi M, Rice SJ, Liu X, Miller B, Belani CP. Trametinib with or without vemurafenib in BRAF mutated non-small cell lung cancer. PLoS One. 2015;10(2):e0118210.  https://doi.org/10.1371/journal.pone.0118210.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–4.CrossRefGoogle Scholar
  69. 69.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.  https://doi.org/10.1038/nature05945.CrossRefPubMedGoogle Scholar
  70. 70.
    Koivunen JP, Mermel C, Zejnullahu K, Murphy C, Lifshits E, Holmes AJ, Choi HG, Kim J, Chiang D, Thomas R, Lee J, Richards WG, Sugarbaker DJ, Ducko C, Lindeman N, Marcoux JP, Engelman JA, Gray NS, Lee C, Meyerson M, Janne PA. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res. 2008;14(13):4275–83.  https://doi.org/10.1158/1078-0432.ccr-08-0168.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Martelli MP, Sozzi G, Hernandez L, Pettirossi V, Navarro A, Conte D, Gasparini P, Perrone F, Modena P, Pastorino U, Carbone A, Fabbri A, Sidoni A, Nakamura S, Gambacorta M, Fernandez PL, Ramirez J, Chan JK, Grigioni WF, Campo E, Pileri SA, Falini B. EML4-ALK rearrangement in non-small cell lung cancer and non-tumor lung tissues. Am J Pathol. 2009;174(2):661–70.  https://doi.org/10.2353/ajpath.2009.080755.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sasaki T, Rodig SJ, Chirieac LR, Janne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46(10):1773–80.  https://doi.org/10.1016/j.ejca.2010.04.002.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Le AT, Varella-Garcia M, Doebele RC. Oncogenic fusions involving exon 19 of ALK. J Thorac Oncol. 2012;7(12):e44.; author reply e.  https://doi.org/10.1097/JTO.0b013e31826bb94d.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Penzel R, Schirmacher P, Warth A. A novel EML4-ALK variant: exon 6 of EML4 fused to exon 19 of ALK. J Thorac Oncol. 2012;7(7):1198–9.  https://doi.org/10.1097/JTO.0b013e3182598af3.CrossRefPubMedGoogle Scholar
  75. 75.
    Katayama R, Lovly CM, Shaw AT. Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Cancer Res. 2015;21(10):2227–35.  https://doi.org/10.1158/1078-0432.ccr-14-2791.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kim HR, Shim HS, Chung JH, Lee YJ, Hong YK, Rha SY, Kim SH, Ha SJ, Kim SK, Chung KY, Soo R, Kim JH, Cho BC. Distinct clinical features and outcomes in never-smokers with nonsmall cell lung cancer who harbor EGFR or KRAS mutations or ALK rearrangement. Cancer. 2012;118(3):729–39.  https://doi.org/10.1002/cncr.26311.CrossRefPubMedGoogle Scholar
  77. 77.
    Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, Solomon B, Stubbs H, Admane S, McDermott U, Settleman J, Kobayashi S, Mark EJ, Rodig SJ, Chirieac LR, Kwak EL, Lynch TJ, Iafrate AJ. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27(26):4247–53.  https://doi.org/10.1200/jco.2009.22.6993.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Janne PA, Costa DB, Varella-Garcia M, Kim WH, Lynch TJ, Fidias P, Stubbs H, Engelman JA, Sequist LV, Tan W, Gandhi L, Mino-Kenudson M, Wei GC, Shreeve SM, Ratain MJ, Settleman J, Christensen JG, Haber DA, Wilner K, Salgia R, Shapiro GI, Clark JW, Iafrate AJ. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703.  https://doi.org/10.1056/NEJMoa1006448.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, De Pas T, Besse B, Solomon BJ, Blackhall F, Wu YL, Thomas M, O'Byrne KJ, Moro-Sibilot D, Camidge DR, Mok T, Hirsh V, Riely GJ, Iyer S, Tassell V, Polli A, Wilner KD, Janne PA. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94.  https://doi.org/10.1056/NEJMoa1214886.CrossRefPubMedGoogle Scholar
  80. 80.
    Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, Felip E, Cappuzzo F, Paolini J, Usari T, Iyer S, Reisman A, Wilner KD, Tursi J, Blackhall F. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77.  https://doi.org/10.1056/NEJMoa1408440.CrossRefPubMedGoogle Scholar
  81. 81.
    Takeuchi K, Choi YL, Togashi Y, Soda M, Hatano S, Inamura K, Takada S, Ueno T, Yamashita Y, Satoh Y, Okumura S, Nakagawa K, Ishikawa Y, Mano H. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 2009;15(9):3143–9.  https://doi.org/10.1158/1078-0432.ccr-08-3248.CrossRefPubMedGoogle Scholar
  82. 82.
    Fang DD, Zhang B, Gu Q, Lira M, Xu Q, Sun H, Qian M, Sheng W, Ozeck M, Wang Z, Zhang C, Chen X, Chen KX, Li J, Chen SH, Christensen J, Mao M, Chan CC. HIP1-ALK, a novel ALK fusion variant that responds to crizotinib. J Thorac Oncol. 2014;9(3):285–94.  https://doi.org/10.1097/jto.0000000000000087.CrossRefPubMedGoogle Scholar
  83. 83.
    Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190–203.  https://doi.org/10.1016/j.cell.2007.11.025.CrossRefPubMedGoogle Scholar
  84. 84.
    Yoshida T, Oya Y, Tanaka K, Shimizu J, Horio Y, Kuroda H, Sakao Y, Hida T, Yatabe Y. Differential crizotinib response duration among ALK fusion variants in ALK-positive non-small-cell lung cancer. J Clin Oncol. 2016;34(28):3383–9.  https://doi.org/10.1200/jco.2015.65.8732.CrossRefPubMedGoogle Scholar
  85. 85.
    Marchetti A, Di Lorito A, Pace MV, Iezzi M, Felicioni L, D'Antuono T, Filice G, Guetti L, Mucilli F, Buttitta F. ALK protein analysis by IHC staining after recent regulatory changes: a comparison of two widely used approaches, revision of the literature, and a new testing algorithm. J Thorac Oncol. 2016;11(4):487–95.  https://doi.org/10.1016/j.jtho.2015.12.111.CrossRefPubMedGoogle Scholar
  86. 86.
    Minca EC, Portier BP, Wang Z, Lanigan C, Farver CF, Feng Y, Ma PC, Arrossi VA, Pennell NA, Tubbs RR. ALK status testing in non-small cell lung carcinoma: correlation between ultrasensitive IHC and FISH. J Mol Diagn. 2013;15(3):341–6.  https://doi.org/10.1016/j.jmoldx.2013.01.004.CrossRefPubMedGoogle Scholar
  87. 87.
    von Laffert M, Schirmacher P, Warth A, Weichert W, Buttner R, Huber RM, Wolf J, Griesinger F, Dietel M, Grohe C. ALK-Testing in non-small cell lung cancer (NSCLC): Immunohistochemistry (IHC) and/or fluorescence in-situ Hybridisation (FISH)?: Statement of the Germany Society for Pathology (DGP) and the Working Group Thoracic Oncology (AIO) of the German Cancer Society e.V. (Stellungnahme der Deutschen Gesellschaft fur Pathologie und der AG Thorakale Onkologie der Arbeitsgemeinschaft Onkologie/Deutsche Krebsgesellschaft e.V.). Lung Cancer. 2017;103:1–5.  https://doi.org/10.1016/j.lungcan.2016.11.008.CrossRefGoogle Scholar
  88. 88.
    Lira ME, Choi YL, Lim SM, Deng S, Huang D, Ozeck M, Han J, Jeong JY, Shim HS, Cho BC, Kim J, Ahn MJ, Mao M. A single-tube multiplexed assay for detecting ALK, ROS1, and RET fusions in lung cancer. J Mol Diagn. 2014;16(2):229–43.  https://doi.org/10.1016/j.jmoldx.2013.11.007.CrossRefPubMedGoogle Scholar
  89. 89.
    Moskalev EA, Frohnauer J, Merkelbach-Bruse S, Schildhaus HU, Dimmler A, Schubert T, Boltze C, Konig H, Fuchs F, Sirbu H, Rieker RJ, Agaimy A, Hartmann A, Haller F. Sensitive and specific detection of EML4-ALK rearrangements in non-small cell lung cancer (NSCLC) specimens by multiplex amplicon RNA massive parallel sequencing. Lung Cancer. 2014;84(3):215–21.  https://doi.org/10.1016/j.lungcan.2014.03.002.CrossRefPubMedGoogle Scholar
  90. 90.
    Pfarr N, Stenzinger A, Penzel R, Warth A, Dienemann H, Schirmacher P, Weichert W, Endris V. High-throughput diagnostic profiling of clinically actionable gene fusions in lung cancer. Genes Chromosomes Cancer. 2016;55(1):30–44.  https://doi.org/10.1002/gcc.22297.CrossRefPubMedGoogle Scholar
  91. 91.
    Reguart N, Teixido C, Gimenez-Capitan A, Pare L, Galvan P, Viteri S, Rodriguez S, Peg V, Aldeguer E, Vinolas N, Remon J, Karachaliou N, Conde E, Lopez-Rios F, Nadal E, Merkelbach-Bruse S, Buttner R, Rosell R, Molina-Vila MA, Prat A. Identification of ALK, ROS1, and RET fusions by a multiplexed mRNA-based assay in formalin-fixed, paraffin-embedded samples from advanced non-small-cell lung cancer patients. Clin Chem. 2017;63(3):751–60.  https://doi.org/10.1373/clinchem.2016.265314.CrossRefPubMedGoogle Scholar
  92. 92.
    Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H, Ishikawa Y, Kimura H, Mitsudomi T, Tanio Y, Mano H. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 2010;363(18):1734–9.  https://doi.org/10.1056/NEJMoa1007478.CrossRefPubMedGoogle Scholar
  93. 93.
    Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ, Heasley LE, Franklin WA, Varella-Garcia M, Camidge DR. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012;18(5):1472–82.  https://doi.org/10.1158/1078-0432.ccr-11-2906.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W, Lathan C, Marcoux JP, Du J, Okuda K, Capelletti M, Shimamura T, Ercan D, Stumpfova M, Xiao Y, Weremowicz S, Butaney M, Heon S, Wilner K, Christensen JG, Eck MJ, Wong KK, Lindeman N, Gray NS, Rodig SJ, Janne PA. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 2011;71(18):6051–60.  https://doi.org/10.1158/0008-5472.can-11-1340.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, Drew L, Saeh JC, Crosby K, Sequist LV, Iafrate AJ, Engelman JA. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4(120):120ra17.  https://doi.org/10.1126/scitranslmed.3003316.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Costa DB, Shaw AT, Ou SH, Solomon BJ, Riely GJ, Ahn MJ, Zhou C, Shreeve SM, Selaru P, Polli A, Schnell P, Wilner KD, Wiltshire R, Camidge DR, Crino L. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol. 2015;33(17):1881–8.  https://doi.org/10.1200/jco.2014.59.0539.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Crino L, Ahn MJ, De Marinis F, Groen HJ, Wakelee H, Hida T, Mok T, Spigel D, Felip E, Nishio M, Scagliotti G, Branle F, Emeremni C, Quadrigli M, Zhang J, Shaw AT. Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non-small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2. J Clin Oncol. 2016;34(24):2866–73.  https://doi.org/10.1200/jco.2015.65.5936.CrossRefPubMedGoogle Scholar
  98. 98.
    Shaw AT, Gandhi L, Gadgeel S, Riely GJ, Cetnar J, West H, Camidge DR, Socinski MA, Chiappori A, Mekhail T, Chao BH, Borghaei H, Gold KA, Zeaiter A, Bordogna W, Balas B, Puig O, Henschel V, Ou SH. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol. 2016;17(2):234–42.  https://doi.org/10.1016/s1470-2045(15)00488-x.CrossRefPubMedGoogle Scholar
  99. 99.
    Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, Dagogo-Jack I, Gadgeel S, Schultz K, Singh M, Chin E, Parks M, Lee D, DiCecca RH, Lockerman E, Huynh T, Logan J, Ritterhouse LL, Le LP, Muniappan A, Digumarthy S, Channick C, Keyes C, Getz G, Dias-Santagata D, Heist RS, Lennerz J, Sequist LV, Benes CH, Iafrate AJ, Mino-Kenudson M, Engelman JA, Shaw AT. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 2016;6(10):1118–33.  https://doi.org/10.1158/2159-8290.cd-16-0596.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R, Mark EJ, Batten JM, Chen H, Wilner KD, Kwak EL, Clark JW, Carbone DP, Ji H, Engelman JA, Mino-Kenudson M, Pao W, Iafrate AJ. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–70.  https://doi.org/10.1200/jco.2011.35.6345.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Li C, Fang R, Sun Y, Han X, Li F, Gao B, Iafrate AJ, Liu XY, Pao W, Chen H, Ji H. Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers. PLoS One. 2011;6(11):e28204.  https://doi.org/10.1371/journal.pone.0028204.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H, Lim Choi Y, Satoh Y, Okumura S, Nakagawa K, Mano H, Ishikawa Y. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18(3):378–81.  https://doi.org/10.1038/nm.2658.CrossRefPubMedGoogle Scholar
  103. 103.
    Jun HJ, Johnson H, Bronson RT, de Feraudy S, White F, Charest A. The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Res. 2012;72(15):3764–74.  https://doi.org/10.1158/0008-5472.can-11-3990.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Rimkunas VM, Crosby KE, Li D, Hu Y, Kelly ME, Gu TL, Mack JS, Silver MR, Zhou X, Haack H. Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion. Clin Cancer Res. 2012;18(16):4449–57.  https://doi.org/10.1158/1078-0432.ccr-11-3351.CrossRefPubMedGoogle Scholar
  105. 105.
    Lin JJ, Ritterhouse LL, Ali SM, Bailey M, Schrock AB, Gainor JF, Ferris LA, Mino-Kenudson M, Miller VA, Iafrate AJ, Lennerz JK, Shaw AT. ROS1 fusions rarely overlap with other oncogenic drivers in non-small cell lung cancer. J Thorac Oncol. 2017;12(5):872–7.  https://doi.org/10.1016/j.jtho.2017.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Scheffler M, Schultheis A, Teixido C, Michels S, Morales-Espinosa D, Viteri S, Hartmann W, Merkelbach-Bruse S, Fischer R, Schildhaus HU, Fassunke J, Sebastian M, Serke M, Kaminsky B, Randerath W, Gerigk U, Ko YD, Kruger S, Schnell R, Rothe A, Kropf-Sanchen C, Heukamp L, Rosell R, Buttner R, Wolf J. ROS1 rearrangements in lung adenocarcinoma: prognostic impact, therapeutic options and genetic variability. Oncotarget. 2015;6(12):10577–85.  https://doi.org/10.18632/oncotarget.3387.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    McDermott U, Iafrate AJ, Gray NS, Shioda T, Classon M, Maheswaran S, Zhou W, Choi HG, Smith SL, Dowell L, Ulkus LE, Kuhlmann G, Greninger P, Christensen JG, Haber DA, Settleman J. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 2008;68(9):3389–95.  https://doi.org/10.1158/0008-5472.can-07-6186.CrossRefPubMedGoogle Scholar
  108. 108.
    Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, Riely GJ, Varella-Garcia M, Shapiro GI, Costa DB, Doebele RC, Le LP, Zheng Z, Tan W, Stephenson P, Shreeve SM, Tye LM, Christensen JG, Wilner KD, Clark JW, Iafrate AJ. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71.  https://doi.org/10.1056/NEJMoa1406766.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Bubendorf L, Buttner R, Al-Dayel F, Dietel M, Elmberger G, Kerr K, Lopez-Rios F, Marchetti A, Oz B, Pauwels P, Penault-Llorca F, Rossi G, Ryska A, Thunnissen E. Testing for ROS1 in non-small cell lung cancer: a review with recommendations. Virchows Arch. 2016;469(5):489–503.  https://doi.org/10.1007/s00428-016-2000-3.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Sholl LM, Sun H, Butaney M, Zhang C, Lee C, Janne PA, Rodig SJ. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am J Surg Pathol. 2013;37(9):1441–9.  https://doi.org/10.1097/PAS.0b013e3182960fa7.CrossRefPubMedGoogle Scholar
  111. 111.
    Awad MM, Katayama R, McTigue M, Liu W, Deng YL, Brooun A, Friboulet L, Huang D, Falk MD, Timofeevski S, Wilner KD, Lockerman EL, Khan TM, Mahmood S, Gainor JF, Digumarthy SR, Stone JR, Mino-Kenudson M, Christensen JG, Iafrate AJ, Engelman JA, Shaw AT. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med. 2013;368(25):2395–401.  https://doi.org/10.1056/NEJMoa1215530.CrossRefPubMedGoogle Scholar
  112. 112.
    Davare MA, Vellore NA, Wagner JP, Eide CA, Goodman JR, Drilon A, Deininger MW, O’Hare T, Druker BJ. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2015;112(39):E5381–90.  https://doi.org/10.1073/pnas.1515281112.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Song A, Kim TM, Kim DW, Kim S, Keam B, Lee SH, Heo DS. Molecular changes associated with acquired resistance to crizotinib in ROS1-rearranged non-small cell lung cancer. Clin Cancer Res. 2015;21(10):2379–87.  https://doi.org/10.1158/1078-0432.ccr-14-1350.CrossRefPubMedGoogle Scholar
  114. 114.
    Cargnelutti M, Corso S, Pergolizzi M, Mevellec L, Aisner DL, Dziadziuszko R, Varella-Garcia M, Comoglio PM, Doebele RC, Vialard J, Giordano S. Activation of RAS family members confers resistance to ROS1 targeting drugs. Oncotarget. 2015;6(7):5182–94.  https://doi.org/10.18632/oncotarget.3311.CrossRefPubMedGoogle Scholar
  115. 115.
    Davies KD, Mahale S, Astling DP, Aisner DL, Le AT, Hinz TK, Vaishnavi A, Bunn PA Jr, Heasley LE, Tan AC, Camidge DR, Varella-Garcia M, Doebele RC. Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PLoS One. 2013;8(12):e82236.  https://doi.org/10.1371/journal.pone.0082236.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Drilon A, Somwar R, Wagner JP, Vellore NA, Eide CA, Zabriskie MS, Arcila ME, Hechtman JF, Wang L, Smith RS, Kris MG, Riely GJ, Druker BJ, O'Hare T, Ladanyi M, Davare MA. A novel crizotinib-resistant solvent-front mutation responsive to cabozantinib therapy in a patient with ROS1-rearranged lung cancer. Clin Cancer Res. 2016;22(10):2351–8.  https://doi.org/10.1158/1078-0432.ccr-15-2013.CrossRefPubMedGoogle Scholar
  117. 117.
    Dziadziuszko R, Le AT, Wrona A, Jassem J, Camidge DR, Varella-Garcia M, Aisner DL, Doebele RC. An activating KIT mutation induces crizotinib resistance in ROS1-positive lung cancer. J Thorac Oncol. 2016;11(8):1273–81.  https://doi.org/10.1016/j.jtho.2016.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Gerlinger M, Norton L, Swanton C. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med. 2013;369(12):1172–3.  https://doi.org/10.1056/NEJMc1309091#SA1.CrossRefPubMedGoogle Scholar
  119. 119.
    Chong CR, Bahcall M, Capelletti M, Kosaka T, Ercan D, Sim T, Sholl LM, Nishino M, Johnson BE, Gray NS, Janne PA. Identification of existing drugs that effectively target NTRK1 and ROS1 rearrangements in lung cancer. Clin Cancer Res. 2017;23(1):204–13.  https://doi.org/10.1158/1078-0432.ccr-15-1601.CrossRefPubMedGoogle Scholar
  120. 120.
    Katayama R, Kobayashi Y, Friboulet L, Lockerman EL, Koike S, Shaw AT, Engelman JA, Fujita N. Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer. Clin Cancer Res. 2015;21(1):166–74.  https://doi.org/10.1158/1078-0432.ccr-14-1385.CrossRefPubMedGoogle Scholar
  121. 121.
    Solomon BJ, Bauer TM, Felip E, Besse B, James LP, Clancy JS, Klamerus KJ, Martini J-F, Abbattista A, Shaw AT. Safety and efficacy of lorlatinib (PF-06463922) from the dose-escalation component of a study in patients with advanced ALK+ or ROS1+ non-small cell lung cancer (NSCLC). J Clin Oncol. 2016;34(15_suppl):9009.  https://doi.org/10.1200/JCO.2016.34.15_suppl.9009.CrossRefGoogle Scholar
  122. 122.
    Drilon A, S Siena SIO, Patel M, Ahn MJ, Lee J, Bauer TM, Farago AF, Wheler JJ, Liu SV, Doebele R, Giannetta L, Cerea G, Marrapese G, Schirru M, Amatu A, Bencardino K, Palmeri L, Sartore-Bianchi A, Vanzulli A, Cresta S, Damian S, Duca M, Ardini E, Li G, Christiansen J, Kowalski K, Johnson AD, Patel R, Luo D, Chow-Maneval E, Hornby Z, Multani PS, Shaw AT, De Braud FG. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017;7(4):400–9.  https://doi.org/10.1158/2159-8290.cd-16-1237.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Riely GJ, Marks J, Pao W. KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc. 2009;6(2):201–5.  https://doi.org/10.1513/pats.200809-107LC.CrossRefPubMedGoogle Scholar
  124. 124.
    Karachaliou N, Mayo C, Costa C, Magri I, Gimenez-Capitan A, Molina-Vila MA, Rosell R. KRAS mutations in lung cancer. Clin Lung Cancer. 2013;14(3):205–14.  https://doi.org/10.1016/j.cllc.2012.09.007.CrossRefPubMedGoogle Scholar
  125. 125.
    Martin P, Leighl NB, Tsao MS, Shepherd FA. KRAS mutations as prognostic and predictive markers in non-small cell lung cancer. J Thorac Oncol. 2013;8(5):530–42.  https://doi.org/10.1097/JTO.0b013e318283d958.CrossRefPubMedGoogle Scholar
  126. 126.
    Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, Papadimitriou CA, Murray S. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 2008;9(10):962–72.  https://doi.org/10.1016/s1470-2045(08)70206-7.CrossRefPubMedGoogle Scholar
  127. 127.
    Mao C, Qiu LX, Liao RY, Du FB, Ding H, Yang WC, Li J, Chen Q. KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a meta-analysis of 22 studies. Lung Cancer. 2010;69(3):272–8.  https://doi.org/10.1016/j.lungcan.2009.11.020.CrossRefPubMedGoogle Scholar
  128. 128.
    Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548–51.  https://doi.org/10.1038/nature12796.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Blumenschein GR Jr, Smit EF, Planchard D, Kim DW, Cadranel J, De Pas T, Dunphy F, Udud K, Ahn MJ, Hanna NH, Kim JH, Mazieres J, Kim SW, Baas P, Rappold E, Redhu S, Puski A, Wu FS, Janne PA. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)dagger. Ann Oncol. 2015;26(5):894–901.  https://doi.org/10.1093/annonc/mdv072.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Lopez-Chavez A, Thomas A, Rajan A, Raffeld M, Morrow B, Kelly R, Carter CA, Guha U, Killian K, Lau CC, Abdullaev Z, Xi L, Pack S, Meltzer PS, Corless CL, Sandler A, Beadling C, Warrick A, Liewehr DJ, Steinberg SM, Berman A, Doyle A, Szabo E, Wang Y, Giaccone G. Molecular profiling and targeted therapy for advanced thoracic malignancies: a biomarker-derived, multiarm, multihistology phase II basket trial. J Clin Oncol. 2015;33(9):1000–7.  https://doi.org/10.1200/jco.2014.58.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Holt SV, Logie A, Davies BR, Alferez D, Runswick S, Fenton S, Chresta CM, Gu Y, Zhang J, Wu YL, Wilkinson RW, Guichard SM, Smith PD. Enhanced apoptosis and tumor growth suppression elicited by combination of MEK (selumetinib) and mTOR kinase inhibitors (AZD8055). Cancer Res. 2012;72(7):1804–13.  https://doi.org/10.1158/0008-5472.can-11-1780.CrossRefPubMedGoogle Scholar
  132. 132.
    Sos ML, Fischer S, Ullrich R, Peifer M, Heuckmann JM, Koker M, Heynck S, Stuckrath I, Weiss J, Fischer F, Michel K, Goel A, Regales L, Politi KA, Perera S, Getlik M, Heukamp LC, Ansen S, Zander T, Beroukhim R, Kashkar H, Shokat KM, Sellers WR, Rauh D, Orr C, Hoeflich KP, Friedman L, Wong KK, Pao W, Thomas RK. Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proc Natl Acad Sci U S A. 2009;106(43):18351–6.  https://doi.org/10.1073/pnas.0907325106.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Clinical Trails. A study of prexasertib (LY2606368) in combination with ralimetinib in participants with advanced or metastatic cancer [Internet] 2017 Mar 17 [cited 2017 Jun 22]. Available from: https://clinicaltrials.gov/ct2/show/NCT02860780.
  134. 134.
    Lung Cancer Group Cologne. Trials [Internet] 2017 [cited 2017 Jun 22]. Available from: http://lungcancergroup.de/en/studienuebersicht/
  135. 135.
    Clinical Trails. Study of LXH254 and LTT462 in NSCLC [Internet] 2017 Jun 18 [cited 2017 Jun 22]. Available from: https://clinicaltrials.gov/ct2/show/NCT02974725
  136. 136.
    Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, Behrens C, Kadara H, Parra ER, Canales JR, Zhang J, Giri U, Gudikote J, Cortez MA, Yang C, Fan Y, Peyton M, Girard L, Coombes KR, Toniatti C, Heffernan TP, Choi M, Frampton GM, Miller V, Weinstein JN, Herbst RS, Wong KK, Sharma P, Mills GB, Hong WK, Minna JD, Allison JP, Futreal A, Wang J, Wistuba II, Heymach JV. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015;5(8):860–77.  https://doi.org/10.1158/2159-8290.cd-14-1236.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Heinmoller P, Gross C, Beyser K, Schmidtgen C, Maass G, Pedrocchi M, Ruschoff J. HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin. Clin Cancer Res. 2003;9(14):5238–43.PubMedGoogle Scholar
  138. 138.
    Krug LM, Miller VA, Patel J, Crapanzano J, Azzoli CG, Gomez J, Kris MG, Heelan RT, Pizzo B, Tyson L, Sheehan C, Ross JS, Venkatraman E. Randomized phase II study of weekly docetaxel plus trastuzumab versus weekly paclitaxel plus trastuzumab in patients with previously untreated advanced nonsmall cell lung carcinoma. Cancer. 2005;104(10):2149–55.  https://doi.org/10.1002/cncr.21428.CrossRefPubMedGoogle Scholar
  139. 139.
    Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, Paz-Ares L. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389(10066):299–311.  https://doi.org/10.1016/s0140-6736(16)30958-8.CrossRefPubMedGoogle Scholar
  140. 140.
    Suzawa K, Toyooka S, Sakaguchi M, Morita M, Yamamoto H, Tomida S, Ohtsuka T, Watanabe M, Hashida S, Maki Y, Soh J, Asano H, Tsukuda K, Miyoshi S. Antitumor effect of afatinib, as a human epidermal growth factor receptor 2-targeted therapy, in lung cancers harboring HER2 oncogene alterations. Cancer Sci. 2016;107(1):45–52.  https://doi.org/10.1111/cas.12845.CrossRefPubMedGoogle Scholar
  141. 141.
    Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki M, Lee H, Wistuba II, Fong KM, Toyooka S, Shimizu N, Fujisawa T, Minna JD, Gazdar AF. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res. 2005;65(5):1642–6.  https://doi.org/10.1158/0008-5472.can-04-4235.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Arcila ME, Chaft JE, Nafa K, Roy-Chowdhuri S, Lau C, Zaidinski M, Paik PK, Zakowski MF, Kris MG, Ladanyi M. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res. 2012;18(18):4910–8.  https://doi.org/10.1158/1078-0432.ccr-12-0912.CrossRefPubMedGoogle Scholar
  143. 143.
    Bu S, Wang R, Pan Y, S Y, Shen X, Li Y, Sun Y, Chen H. Clinicopathologic characteristics of patients with HER2 insertions in non-small cell lung cancer. Ann Surg Oncol. 2017;24(1):291–7.  https://doi.org/10.1245/s10434-015-5044-8.CrossRefPubMedGoogle Scholar
  144. 144.
    Shimamura T, Ji H, Minami Y, Thomas RK, Lowell AM, Shah K, Greulich H, Glatt KA, Meyerson M, Shapiro GI, Wong KK. Non-small-cell lung cancer and Ba/F3 transformed cells harboring the ERBB2 G776insV_G/C mutation are sensitive to the dual-specific epidermal growth factor receptor and ERBB2 inhibitor HKI-272. Cancer Res. 2006;66(13):6487–91.  https://doi.org/10.1158/0008-5472.can-06-0971.CrossRefPubMedGoogle Scholar
  145. 145.
    Kris MG, Camidge DR, Giaccone G, Hida T, Li BT, O'Connell J, Taylor I, Zhang H, Arcila ME, Goldberg Z, Janne PA. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann Oncol. 2015;26(7):1421–7.  https://doi.org/10.1093/annonc/mdv186.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Kosaka T, Tanizaki J, Paranal RM, Endoh H, Lydon C, Capelletti M, Repellin CE, Choi J, Ogino A, Calles A, Ercan D, Redig AJ, Bahcall M, Oxnard GR, Eck MJ, Janne PA. Response heterogeneity of EGFR and HER2 exon 20 insertions to covalent EGFR and HER2 inhibitors. Cancer Res. 2017;77(10):2712–21.  https://doi.org/10.1158/0008-5472.can-16-3404.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    De Greve J, Teugels E, Geers C, Decoster L, Galdermans D, De Mey J, Everaert H, Umelo I, In't Veld P, Schallier D. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer. 2012;76(1):123–7.  https://doi.org/10.1016/j.lungcan.2012.01.008.CrossRefPubMedGoogle Scholar
  148. 148.
    Li BT, Lee A, O'Toole S, W Cooper BY, Chaft JE, Arcila ME, Kris MG, Pavlakis N. HER2 insertion YVMA mutant lung cancer: long natural history and response to afatinib. Lung Cancer. 2015;90(3):617–9.  https://doi.org/10.1016/j.lungcan.2015.10.025.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Weiler D, Diebold J, Strobel K, Aebi S, Gautschi O. Rapid response to trastuzumab emtansine in a patient with HER2-driven lung cancer. J Thorac Oncol. 2015;10(4):e16–7.  https://doi.org/10.1097/jto.0000000000000424.CrossRefPubMedGoogle Scholar
  150. 150.
    Seki T, Hagiya M, Shimonishi M, Nakamura T, Shimizu S. Organization of the human hepatocyte growth factor-encoding gene. Gene. 1991;102(2):213–9.CrossRefGoogle Scholar
  151. 151.
    Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, Heng JC, Dahlberg SE, Janne PA, Verma S, Christensen J, Hammerman PS, Sholl LM. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J Clin Oncol. 2016;34(7):721–30.  https://doi.org/10.1200/jco.2015.63.4600.CrossRefPubMedGoogle Scholar
  152. 152.
    Drilon A. MET exon 14 alterations in lung cancer: exon skipping extends half-life. Clin Cancer Res. 2016;22(12):2832–4.  https://doi.org/10.1158/1078-0432.ccr-16-0229.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, Akimov M, Bufill JA, Lee C, Jentz D, Hoover R, Ou SH, Salgia R, Brennan T, Chalmers ZR, Jaeger S, Huang A, Elvin JA, Erlich R, Fichtenholtz A, Gowen KA, Greenbowe J, Johnson A, Khaira D, McMahon C, Sanford EM, Roels S, White J, Greshock J, Schlegel R, Lipson D, Yelensky R, Morosini D, Ross JS, Collisson E, Peters M, Stephens PJ, Miller VA. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5(8):850–9.  https://doi.org/10.1158/2159-8290.cd-15-0285.CrossRefPubMedGoogle Scholar
  154. 154.
    Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N, Holcomb T, Pujara K, Stinson J, L F, Severin C, Rangell L, Schwall R, Amler L, Wickramasinghe D, Yauch R. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res. 2006;66(1):283–9.  https://doi.org/10.1158/0008-5472.can-05-2749.CrossRefPubMedGoogle Scholar
  155. 155.
    Okuda K, Sasaki H, Yukiue H, Yano M, Fujii Y. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci. 2008;99(11):2280–5.  https://doi.org/10.1111/j.1349-7006.2008.00916.x.CrossRefPubMedGoogle Scholar
  156. 156.
    Onozato R, Kosaka T, Kuwano H, Sekido Y, Yatabe Y, Mitsudomi T. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol. 2009;4(1):5–11.  https://doi.org/10.1097/JTO.0b013e3181913e0e.CrossRefPubMedGoogle Scholar
  157. 157.
    Krishnaswamy S, Kanteti R, Duke-Cohan JS, Loganathan S, Liu W, Ma PC, Sattler M, Singleton PA, Ramnath N, Innocenti F, Nicolae DL, Ouyang Z, Liang J, Minna J, Kozloff MF, Ferguson MK, Natarajan V, Wang YC, Garcia JG, Vokes EE, Salgia R. Ethnic differences and functional analysis of MET mutations in lung cancer. Clin Cancer Res. 2009;15(18):5714–23.  https://doi.org/10.1158/1078-0432.ccr-09-0070.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Heist RS, Shim HS, Gingipally S, Mino-Kenudson M, Le L, Gainor JF, Zheng Z, Aryee M, Xia J, Jia P, Jin H, Zhao Z, Pao W, Engelman JA, Iafrate AJ. MET exon 14 skipping in non-small cell lung cancer. Oncologist. 2016;21(4):481–6.  https://doi.org/10.1634/theoncologist.2015-0510.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Jenkins RW, Oxnard GR, Elkin S, Sullivan EK, Carter JL, Barbie DA. Response to crizotinib in a patient with lung adenocarcinoma harboring a MET splice site mutation. Clin Lung Cancer. 2015;16(5):e101–4.  https://doi.org/10.1016/j.cllc.2015.01.009.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Paik PK, Shen R, Won H, Rekhtman N, Wang L, Sima CS, Arora A, Seshan V, Ladanyi M, Berger MF, Kris MG. Next-generation sequencing of stage IV squamous cell lung cancers reveals an association of PI3K aberrations and evidence of clonal heterogeneity in patients with brain metastases. Cancer Discov. 2015;5(6):610–21.  https://doi.org/10.1158/2159-8290.cd-14-1129.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Schrock AB, Frampton GM, Suh J, Chalmers ZR, Rosenzweig M, Erlich RL, Halmos B, Goldman J, Forde P, Leuenberger K, Peled N, Kalemkerian GP, Ross JS, Stephens PJ, Miller VA, Ali SM, Ou SH. Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations. J Thorac Oncol. 2016;11(9):1493–502.  https://doi.org/10.1016/j.jtho.2016.06.004.CrossRefPubMedGoogle Scholar
  162. 162.
    Paik PK, Drilon A, PD Fan HY, Rekhtman N, MS Ginsberg L, Borsu NS, Berger MF, CM Rudin ML. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5(8):842–9.  https://doi.org/10.1158/2159-8290.cd-14-1467.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Cappuzzo F, Janne PA, Skokan M, Finocchiaro G, Rossi E, Ligorio C, Zucali PA, Terracciano L, Toschi L, Roncalli M, Destro A, Incarbone M, Alloisio M, Santoro A, Varella-Garcia M. MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol. 2009;20(2):298–304.  https://doi.org/10.1093/annonc/mdn635.CrossRefPubMedGoogle Scholar
  164. 164.
    Schildhaus HU, Schultheis AM, Ruschoff J, Binot E, Merkelbach-Bruse S, Fassunke J, Schulte W, Ko YD, Schlesinger A, Bos M, Gardizi M, Engel-Riedel W, Brockmann M, Serke M, Gerigk U, Hekmat K, Frank KF, Reiser M, Schulz H, Kruger S, Stoelben E, Zander T, Wolf J, Buettner R. MET amplification status in therapy-naive adeno- and squamous cell carcinomas of the lung. Clin Cancer Res. 2015;21(4):907–15.  https://doi.org/10.1158/1078-0432.ccr-14-0450.CrossRefPubMedGoogle Scholar
  165. 165.
    Ou SH, Kwak EL, Siwak-Tapp C, Dy J, Bergethon K, Clark JW, Camidge DR, Solomon BJ, Maki RG, Bang YJ, Kim DW, Christensen J, Tan W, Wilner KD, Salgia R, Iafrate AJ. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol. 2011;6(5):942–6.  https://doi.org/10.1097/JTO.0b013e31821528d3.CrossRefPubMedGoogle Scholar
  166. 166.
    Tanizaki J, Okamoto I, Okamoto K, Takezawa K, Kuwata K, Yamaguchi H, Nakagawa K. MET tyrosine kinase inhibitor crizotinib (PF-02341066) shows differential antitumor effects in non-small cell lung cancer according to MET alterations. J Thorac Oncol. 2011;6(10):1624–31.  https://doi.org/10.1097/JTO.0b013e31822591e9.CrossRefPubMedGoogle Scholar
  167. 167.
    Clinical Trails. Clinical study of oral cMET inhibitor INC280 in adult patients with EGFR wild-type advanced non-small cell lung cancer [Internet] 2017 Mar 29 [cited 2017 Jun 22]. Available from: https://clinicaltrials.gov/ct2/show/NCT02414139.
  168. 168.
    Phay JE, Shah MH. Targeting RET receptor tyrosine kinase activation in cancer. Clin Cancer Res. 2010;16(24):5936–41.  https://doi.org/10.1158/1078-0432.ccr-09-0786.CrossRefPubMedGoogle Scholar
  169. 169.
    Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK, Kim YT, Kim JI, Kang JH, Seo JS. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 2012;22(3):436–45.  https://doi.org/10.1101/gr.133645.111.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, Sakamoto H, Tsuta K, Furuta K, Shimada Y, Iwakawa R, Ogiwara H, Oike T, Enari M, Schetter AJ, Okayama H, Haugen A, Skaug V, Chiku S, Yamanaka I, Arai Y, Watanabe S, Sekine I, Ogawa S, Harris CC, Tsuda H, Yoshida T, Yokota J, Shibata T. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18(3):375–7.  https://doi.org/10.1038/nm.2644.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Michels S, Scheel AH, Scheffler M, Schultheis AM, Gautschi O, Aebersold F, Diebold J, Pall G, Rothschild S, Bubendorf L, Hartmann W, Heukamp L, Schildhaus HU, Fassunke J, Ihle MA, Kunstlinger H, Heydt C, Fischer R, Nogova L, Mattonet C, Hein R, Adams A, Gerigk U, Schulte W, Luders H, Grohe C, Graeven U, Muller-Naendrup C, Draube A, Kambartel KO, Kruger S, Schulze-Olden S, Serke M, Engel-Riedel W, Kaminsky B, Randerath W, Merkelbach-Bruse S, Buttner R, Wolf J. Clinicopathological characteristics of RET rearranged lung cancer in European patients. J Thorac Oncol. 2016;11(1):122–7.  https://doi.org/10.1016/j.jtho.2015.09.016.CrossRefPubMedGoogle Scholar
  172. 172.
    Wang R, H H, Pan Y, Li Y, Ye T, Li C, Luo X, Wang L, Li H, Zhang Y, Li F, Y L, Q L, J X, Garfield D, Shen L, Ji H, Pao W, Sun Y, Chen H. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol. 2012;30(35):4352–9.  https://doi.org/10.1200/jco.2012.44.1477.CrossRefPubMedGoogle Scholar
  173. 173.
    Lee MS, RN Kim HI, Oh DY, Song JY, Noh KW, Kim YJ, Yang JW, Lira ME, Lee CH, Lee MK, Kim YD, Mao M, Han J, Kim J, Choi YL. Identification of a novel partner gene, KIAA1217, fused to RET: Functional characterization and inhibitor sensitivity of two isoforms in lung adenocarcinoma. Oncotarget. 2016;7(24):36101–14.  https://doi.org/10.18632/oncotarget.9137.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW, Donahue A, Downing SR, Frampton GM, Garcia L, Juhn F, Mitchell KC, White E, White J, Zwirko Z, Peretz T, Nechushtan H, Soussan-Gutman L, Kim J, Sasaki H, Kim HR, Park SI, Ercan D, Sheehan CE, Ross JS, Cronin MT, Janne PA, Stephens PJ. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18(3):382–4.  https://doi.org/10.1038/nm.2673.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Lee SH, Lee JK, Ahn MJ, Kim DW, Sun JM, Keam B, Kim TM, Heo DS, Ahn JS, Choi YL, Min HS, Jeon YK, Park K. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: a phase II clinical trial. Ann Oncol. 2017;28(2):292–7.  https://doi.org/10.1093/annonc/mdw559.CrossRefPubMedGoogle Scholar
  176. 176.
    Seto T, Yoh K, Satouchi M, Nishio M, Yamamoto N, Murakami H, Nogami N, Nosaki K, Urata Y, Niho S, Horiike A, Kohno T, Matsumoto S, Nomura S, Kuroda S, Sato A, Ohe Y, Yamanaka T, Ohtsu A, Goto K. A phase II open-label single-arm study of vandetanib in patients with advanced RET-rearranged non-small cell lung cancer (NSCLC): Luret study. J Clin Oncol. 2016;34(15_suppl):9012.  https://doi.org/10.1200/JCO.2016.34.15_suppl.9012.CrossRefGoogle Scholar
  177. 177.
    Kodama T, Tsukaguchi T, Satoh Y, Yoshida M, Watanabe Y, Kondoh O, Sakamoto H. Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol Cancer Ther. 2014;13(12):2910–8.  https://doi.org/10.1158/1535-7163.mct-14-0274.CrossRefPubMedGoogle Scholar
  178. 178.
    Lin JJ, Kennedy E, Sequist LV, Brastianos PK, Goodwin KE, Stevens S, Wanat AC, Stober LL, Digumarthy SR, Engelman JA, Shaw AT, Gainor JF. Clinical activity of alectinib in advanced RET-rearranged non-small cell lung cancer. J Thorac Oncol. 2016;11(11):2027–32.  https://doi.org/10.1016/j.jtho.2016.08.126.CrossRefPubMedGoogle Scholar
  179. 179.
    Drilon A, Wang L, Hasanovic A, Suehara Y, Lipson D, Stephens P, Ross J, Miller V, Ginsberg M, Zakowski MF, Kris MG, Ladanyi M, Rizvi N. Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov. 2013;3(6):630–5.  https://doi.org/10.1158/2159-8290.cd-13-0035.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Drilon A, Rekhtman N, Arcila M, Wang L, Ni A, Albano M, Van Voorthuysen M, Somwar R, Smith RS, Montecalvo J, Plodkowski A, Ginsberg MS, Riely GJ, Rudin CM, Ladanyi M, Kris MG. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 2016;17(12):1653–60.  https://doi.org/10.1016/s1470-2045(16)30562-9.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Alberti L, Carniti C, Miranda C, Roccato E, Pierotti MA. RET and NTRK1 proto-oncogenes in human diseases. J Cell Physiol. 2003;195(2):168–86.  https://doi.org/10.1002/jcp.10252.CrossRefPubMedGoogle Scholar
  182. 182.
    Sossin WS. Tracing the evolution and function of the Trk superfamily of receptor tyrosine kinases. Brain Behav Evol. 2006;68(3):145–56.  https://doi.org/10.1159/000094084.CrossRefPubMedGoogle Scholar
  183. 183.
    Farago AF, Le LP, Zheng Z, Muzikansky A, Drilon A, Patel M, Bauer TM, Liu SV, Ou SH, Jackman D, Costa DB, Multani PS, Li GG, Hornby Z, Chow-Maneval E, Luo D, Lim JE, Iafrate AJ, Shaw AT. Durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer. J Thorac Oncol. 2015;10(12):1670–4.  https://doi.org/10.1097/01.JTO.0000473485.38553.f0.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, Mahale S, Davies KD, Aisner DL, Pilling AB, Berge EM, Kim J, Sasaki H, Park SI, Kryukov G, Garraway LA, Hammerman PS, Haas J, Andrews SW, Lipson D, Stephens PJ, Miller VA, Varella-Garcia M, Janne PA, Doebele RC. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013;19(11):1469–72.  https://doi.org/10.1038/nm.3352.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, Ballinari D, Ciomei M, Texido G, Degrassi A, Avanzi N, Amboldi N, Saccardo MB, Casero D, Orsini P, Bandiera T, Mologni L, Anderson D, Wei G, Harris J, Vernier JM, Li G, Felder E, Donati D, Isacchi A, Pesenti E, Magnaghi P, Galvani A. Entrectinib, a pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol Cancer Ther. 2016;15(4):628–39.  https://doi.org/10.1158/1535-7163.mct-15-0758.CrossRefPubMedGoogle Scholar
  186. 186.
    Braud FGD, Niger M, Damian S, Bardazza B, Martinetti A, Pelosi G, Marrapese G, Palmeri L, Cerea G, Valtorta E, Veronese S, Sartore-Bianchi A, Ardini E, Isachi A, Martignoni M, Galvani A, Luo D, Yeh L, Senderowicz AM, Siena S. Alka-372-001: first-in-human, phase I study of entrectinib – an oral pan-trk, ROS1, and ALK inhibitor – in patients with advanced solid tumors with relevant molecular alterations. J Clin Oncol. 2015;33(15_suppl):2517.  https://doi.org/10.1200/jco.2015.33.15_suppl.2517.CrossRefGoogle Scholar
  187. 187.
    Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, Jimeno A, Varella-Garcia M, Aisner DL, Li Y, Stephens PJ, Morosini D, Tuch BB, Fernandes M, Nanda N, Low JA. An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov. 2015;5(10):1049–57.  https://doi.org/10.1158/2159-8290.cd-15-0443.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Derman BA, Mileham KF, Bonomi PD, Batus M, Fidler MJ. Treatment of advanced squamous cell carcinoma of the lung: a review. Transl Lung Cancer Res. 2015;4(5):524–32.  https://doi.org/10.3978/j.issn.2218-6751.2015.06.07.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Kerr KM, Bubendorf L, Edelman MJ, Marchetti A, Mok T, Novello S, O'Byrne K, Stahel R, Peters S, Felip E. Second ESMO consensus conference on lung cancer: pathology and molecular biomarkers for non-small-cell lung cancer. Ann Oncol. 2014;25(9):1681–90.  https://doi.org/10.1093/annonc/mdu145.CrossRefPubMedGoogle Scholar
  190. 190.
    Coutts JC, Gallagher JT. Receptors for fibroblast growth factors. Immunol Cell Biol. 1995;73(6):584–9.  https://doi.org/10.1038/icb.1995.92.CrossRefPubMedGoogle Scholar
  191. 191.
    Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res. 2016;22(1):259–67.  https://doi.org/10.1158/1078-0432.ccr-14-3212.CrossRefPubMedGoogle Scholar
  192. 192.
    Liao RG, Jung J, Tchaicha J, Wilkerson MD, Sivachenko A, Beauchamp EM, Liu Q, Pugh TJ, Pedamallu CS, Hayes DN, Gray NS, Getz G, Wong KK, Haddad RI, Meyerson M, Hammerman PS. Inhibitor-sensitive FGFR2 and FGFR3 mutations in lung squamous cell carcinoma. Cancer Res. 2013;73(16):5195–205.  https://doi.org/10.1158/0008-5472.can-12-3950.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Hibi M, Kaneda H, Tanizaki J, Sakai K, Togashi Y, Terashima M, De Velasco MA, Fujita Y, Banno E, Nakamura Y, Takeda M, Ito A, Mitsudomi T, Nakagawa K, Okamoto I, Nishio K. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib. Cancer Sci. 2016;107(11):1667–76.  https://doi.org/10.1111/cas.13071.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Dutt A, Ramos AH, Hammerman PS, Mermel C, Cho J, Sharifnia T, Chande A, Tanaka KE, Stransky N, Greulich H, Gray NS, Meyerson M. Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS One. 2011;6(6):e20351.  https://doi.org/10.1371/journal.pone.0020351.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM, Ullrich RT, Menon R, Maier S, Soltermann A, Moch H, Wagener P, Fischer F, Heynck S, Koker M, Schottle J, Leenders F, Gabler F, Dabow I, Querings S, Heukamp LC, Balke-Want H, Ansen S, Rauh D, Baessmann I, Altmuller J, Wainer Z, Conron M, Wright G, Russell P, Solomon B, Brambilla E, Brambilla C, Lorimier P, Sollberg S, Brustugun OT, Engel-Riedel W, Ludwig C, Petersen I, Sanger J, Clement J, Groen H, Timens W, Sietsma H, Thunnissen E, Smit E, Heideman D, Cappuzzo F, Ligorio C, Damiani S, Hallek M, Beroukhim R, Pao W, Klebl B, Baumann M, Buettner R, Ernestus K, Stoelben E, Wolf J, Nurnberg P, Perner S, Thomas RK. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med. 2010;2(62):62ra93.  https://doi.org/10.1126/scitranslmed.3001451.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Schildhaus HU, Heukamp LC, Merkelbach-Bruse S, Riesner K, Schmitz K, Binot E, Paggen E, Albus K, Schulte W, Ko YD, Schlesinger A, Ansen S, Engel-Riedel W, Brockmann M, Serke M, Gerigk U, Huss S, Goke F, Perner S, Hekmat K, Frank KF, Reiser M, Schnell R, Bos M, Mattonet C, Sos M, Stoelben E, Wolf J, Zander T, Buettner R. Definition of a fluorescence in-situ hybridization score identifies high- and low-level FGFR1 amplification types in squamous cell lung cancer. Mod Pathol. 2012;25(11):1473–80.  https://doi.org/10.1038/modpathol.2012.102.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Nogova L, Sequist LV, Garcia JMP, Andre F, Delord J-P, Hidalgo M, Schellens JHM, Cassier PA, Camidge DR, Schuler M, Vaishampayan U, Burris H, Tian GG, Campone M, Wainberg ZA, Lim W-T, LoRusso P, Shapiro GI, Parker K, Chen X, Choudhury S, Ringeisen F, Graus-Porta D, Porter D, Isaacs R, Buettner R, Wolf J. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and dose-expansion study. J Clin Oncol. 2017;35(2):157–65.  https://doi.org/10.1200/jco.2016.67.2048.CrossRefPubMedGoogle Scholar
  198. 198.
    Day E, Waters B, Spiegel K, Alnadaf T, Manley PW, Buchdunger E, Walker C, Jarai G. Inhibition of collagen-induced discoidin domain receptor 1 and 2 activation by imatinib, nilotinib and dasatinib. Eur J Pharmacol. 2008;599(1–3):44–53.  https://doi.org/10.1016/j.ejphar.2008.10.014.CrossRefPubMedGoogle Scholar
  199. 199.
    An SJ, Chen ZH, Su J, Zhang XC, Zhong WZ, Yang JJ, Zhou Q, Yang XN, Huang L, Guan JL, Nie Q, Yan HH, Mok TS, Wu YL. Identification of enriched driver gene alterations in subgroups of non-small cell lung cancer patients based on histology and smoking status. PLoS One. 2012;7(6):e40109.  https://doi.org/10.1371/journal.pone.0040109.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, Brace LE, Woods BA, Lin W, Zhang J, Deng X, Lim SM, Heynck S, Peifer M, Simard JR, Lawrence MS, Onofrio RC, Salvesen HB, Seidel D, Zander T, Heuckmann JM, Soltermann A, Moch H, Koker M, Leenders F, Gabler F, Querings S, Ansen S, Brambilla E, Brambilla C, Lorimier P, Brustugun OT, Helland A, Petersen I, Clement JH, Groen H, Timens W, Sietsma H, Stoelben E, Wolf J, Beer DG, Tsao MS, Hanna M, Hatton C, Eck MJ, Janne PA, Johnson BE, Winckler W, Greulich H, Bass AJ, Cho J, Rauh D, Gray NS, Wong KK, Haura EB, Thomas RK, Meyerson M. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 2011;1(1):78–89.  https://doi.org/10.1158/2159-8274.cd-11-0005.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Xu C, KA Buczkowski Y, Zhang HA, Beauchamp EM, Terai H, YY Li MM, Wong KK, Hammerman PS. NSCLC driven by DDR2 mutation is sensitive to dasatinib and JQ1 combination therapy. Mol Cancer Ther. 2015;14(10):2382–9.  https://doi.org/10.1158/1535-7163.mct-15-0077.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Karakas B, Bachman KE, Park BH. Mutation of the PIK3CA oncogene in human cancers. Br J Cancer. 2006;94(4):455–9.  https://doi.org/10.1038/sj.bjc.6602970.CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Chaft JE, Arcila ME, Paik PK, Lau C, Riely GJ, Pietanza MC, Zakowski MF, Rusch V, Sima CS, Ladanyi M, Kris MG. Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. Mol Cancer Ther. 2012;11(2):485–91.  https://doi.org/10.1158/1535-7163.mct-11-0692.CrossRefPubMedGoogle Scholar
  204. 204.
    Yamamoto H, Shigematsu H, Nomura M, Lockwood WW, Sato M, Okumura N, Soh J, Suzuki M, Wistuba II, Fong KM, Lee H, Toyooka S, Date H, Lam WL, Minna JD, Gazdar AF. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 2008;68(17):6913–21.  https://doi.org/10.1158/0008-5472.can-07-5084.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Kawano O, Sasaki H, Endo K, Suzuki E, Haneda H, Yukiue H, Kobayashi Y, Yano M, Fujii Y. PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer. 2006;54(2):209–15.  https://doi.org/10.1016/j.lungcan.2006.07.006.CrossRefPubMedGoogle Scholar
  206. 206.
    McGowan M, Hoven AS, Lund-Iversen M, Solberg S, Helland A, Hirsch FR, Brustugun OT. PIK3CA mutations as prognostic factor in squamous cell lung carcinoma. Lung Cancer. 2017;103:52–7.  https://doi.org/10.1016/j.lungcan.2016.11.018.CrossRefPubMedGoogle Scholar
  207. 207.
    Choi M, Kadara H, Zhang J, Parra ER, Rodriguez-Canales J, Gaffney SG, Zhao Z, Behrens C, Fujimoto J, Chow C, Kim K, Kalhor N, Moran C, Rimm D, Swisher S, Gibbons DL, Heymach J, Kaftan E, Townsend JP, Lynch TJ, Schlessinger J, Lee J, Lifton RP, Herbst RS, Wistuba II. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function. Ann Oncol. 2017;28(1):83–9.  https://doi.org/10.1093/annonc/mdw437.CrossRefPubMedGoogle Scholar
  208. 208.
    Ji M, Guan H, Gao C, Shi B, Hou P. Highly frequent promoter methylation and PIK3CA amplification in non-small cell lung cancer (NSCLC). BMC Cancer. 2011;11:147.  https://doi.org/10.1186/1471-2407-11-147.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Yip PY. Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway in non-small cell lung cancer. Transl Lung Cancer Res. 2015;4(2):165–76.  https://doi.org/10.3978/j.issn.2218-6751.2015.01.04.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K, Kwiatkowski DJ, Ladanyi M, Nowak JA, Sholl L, Temple-Smolkin R, Solomon B, Souter LH, Thunnissen E, Tsao MS, Ventura CB, Wynes MW, Yatabe Y. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn. 2018;20(2):129–59.  https://doi.org/10.1016/j.jmoldx.2017.11.004.CrossRefPubMedGoogle Scholar
  211. 211.
    Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002;161(6):1961–71.  https://doi.org/10.1016/s0002-9440(10)64472-0.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Dubeau L, Chandler LA, Gralow JR, Nichols PW, Jones PA. Southern blot analysis of DNA extracted from formalin-fixed pathology specimens. Cancer Res. 1986;46(6):2964–9.PubMedGoogle Scholar
  213. 213.
    Greer CE, Wheeler CM, Manos MM. Sample preparation and PCR amplification from paraffin-embedded tissues. PCR Methods Appl. 1994;3(6):S113–22.CrossRefGoogle Scholar
  214. 214.
    Marchetti A, Felicioni L, Buttitta F. Assessing EGFR mutations. N Engl J Med. 2006;354(5):526–8.; author reply -8.  https://doi.org/10.1056/NEJMc052564.CrossRefPubMedGoogle Scholar
  215. 215.
    Do H, Dobrovic A. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil- DNA glycosylase. Oncotarget. 2012;3(5):546–58.  https://doi.org/10.18632/oncotarget.503.CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Guillou L, Coindre J, Gallagher G, Terrier P, Gebhard S, de Saint Aubain Somerhausen N, Michels J, Jundt G, Vince DR, Collin F, Trassard M, Le Doussal V, Benhattar J. Detection of the synovial sarcoma translocation t(X;18) (SYT;SSX) in paraffin-embedded tissues using reverse transcriptase-polymerase chain reaction: a reliable and powerful diagnostic tool for pathologists. A molecular analysis of 221 mesenchymal tumors fixed in different fixatives. Hum Pathol. 2001;32(1):105–12.CrossRefGoogle Scholar
  217. 217.
    Zsikla V, Baumann M, Cathomas G. Effect of buffered formalin on amplification of DNA from paraffin wax embedded small biopsies using real-time PCR. J Clin Pathol. 2004;57(6):654–6.CrossRefGoogle Scholar
  218. 218.
    Merkelbach S, Gehlen J, Handt S, Fuzesi L. Novel enzyme immunoassay and optimized DNA extraction for the detection of polymerase-chain-reaction-amplified viral DNA from paraffin-embedded tissue. Am J Pathol. 1997;150(5):1537–46.PubMedPubMedCentralGoogle Scholar
  219. 219.
    de Franchis R, Cross NC, Foulkes NS, Cox TM. A potent inhibitor of Taq polymerase copurifies with human genomic DNA. Nucleic Acids Res. 1988;16(21):10355.CrossRefGoogle Scholar
  220. 220.
    Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, Jenkins RB, Kwiatkowski DJ, Saldivar JS, Squire J, Thunnissen E, Ladanyi M, C College of American Pathologists International Association for the Study of Lung, P Association for Molecular. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn. 2013;15(4):415–53.  https://doi.org/10.1016/j.jmoldx.2013.03.001.CrossRefPubMedGoogle Scholar
  221. 221.
    Heydt C, Fassunke J, Kunstlinger H, Ihle MA, Konig K, Heukamp LC, Schildhaus HU, Odenthal M, Buttner R, Merkelbach-Bruse S. Comparison of pre-analytical FFPE sample preparation methods and their impact on massively parallel sequencing in routine diagnostics. PLoS One. 2014;9(8):e104566.  https://doi.org/10.1371/journal.pone.0104566.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Huijsmans CJ, Damen J, van der Linden JC, Savelkoul PH, Hermans MH. Comparative analysis of four methods to extract DNA from paraffin-embedded tissues: effect on downstream molecular applications. BMC Res Notes. 2010;3:239.  https://doi.org/10.1186/1756-0500-3-239.CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Kocjan BJ, Hosnjak L, Poljak M. Commercially available kits for manual and automatic extraction of nucleic acids from formalin-fixed, paraffin-embedded (FFPE) tissues. Acta Dermatovenerol Alp Pannonica Adriat. 2015;24(3):47–53.PubMedGoogle Scholar
  224. 224.
    Seiler C, Sharpe A, Barrett JC, Harrington EA, Jones EV, Marshall GB. Nucleic acid extraction from formalin-fixed paraffin-embedded cancer cell line samples: a trade off between quantity and quality? BMC Clin Pathol. 2016;16(1):17.  https://doi.org/10.1186/s12907-016-0039-3.CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Khokhar SK, Mitui M, Leos NK, Rogers BB, Park JY. Evaluation of Maxwell(R) 16 for automated DNA extraction from whole blood and formalin-fixed paraffin embedded (FFPE) tissue. Clin Chem Lab Med. 2012;50  https://doi.org/10.1515/cclm.2011.763.
  226. 226.
    Chen CW, Thomas CA Jr. Recovery of DNA segments from agarose gels. Anal Biochem. 1980;101(2):339–41.CrossRefGoogle Scholar
  227. 227.
    Marko MA, Chipperfield R, Birnboim HC. A procedure for the large-scale isolation of highly purified plasmid DNA using alkaline extraction and binding to glass powder. Anal Biochem. 1982;121(2):382–7.CrossRefGoogle Scholar
  228. 228.
    Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990;28(3):495–503.PubMedPubMedCentralGoogle Scholar
  229. 229.
    Robin JD, Ludlow AT, LaRanger R, Wright WE, Shay JW. Comparison of DNA quantification methods for next generation sequencing. Sci Rep. 2016;6:24067.  https://doi.org/10.1038/srep24067.CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Ney JT, Froehner S, Roesler A, Buettner R, Merkelbach-Bruse S. High-resolution melting analysis as a sensitive prescreening diagnostic tool to detect KRAS, BRAF, PIK3CA, and AKT1 mutations in formalin-fixed, paraffin-embedded tissues. Arch Pathol Lab Med. 2012;136(9):983–92.  https://doi.org/10.5858/arpa.2011-0176-OA.
  231. 231.
    Molina-Vila MA, Bertran-Alamillo J, Reguart N, Taron M, Castella E, Llatjos M, Costa C, Mayo C, Pradas A, Queralt C, Botia M, Perez-Cano M, Carrasco E, Tomas M, Mate JL, Moran T, Rosell R. A sensitive method for detecting EGFR mutations in non-small cell lung cancer samples with few tumor cells. J Thorac Oncol. 2008;3(11):1224–35.  https://doi.org/10.1097/JTO.0b013e318189f579.CrossRefPubMedGoogle Scholar
  232. 232.
    Hagemann IS, Devarakonda S, Lockwood CM, Spencer DH, Guebert K, Bredemeyer AJ, Al-Kateb H, Nguyen TT, Duncavage EJ, Cottrell CE, Kulkarni S, Nagarajan R, Seibert K, Baggstrom M, Waqar SN, Pfeifer JD, Morgensztern D, Govindan R. Clinical next-generation sequencing in patients with non-small cell lung cancer. Cancer. 2015;121(4):631–9.  https://doi.org/10.1002/cncr.29089.CrossRefPubMedGoogle Scholar
  233. 233.
    Konig K, Peifer M, Fassunke J, Ihle MA, Kunstlinger H, Heydt C, Stamm K, Ueckeroth F, Vollbrecht C, Bos M, Gardizi M, Scheffler M, Nogova L, Leenders F, Albus K, Meder L, Becker K, Florin A, Rommerscheidt-Fuss U, Altmuller J, Kloth M, Nurnberg P, Henkel T, Bikar SE, Sos ML, Geese WJ, Strauss L, Ko YD, Gerigk U, Odenthal M, Zander T, Wolf J, Merkelbach-Bruse S, Buettner R, Heukamp LC. Implementation of amplicon parallel sequencing leads to improvement of diagnosis and therapy of lung cancer patients. J Thorac Oncol. 2015;10(7):1049–57.  https://doi.org/10.1097/jto.0000000000000570.CrossRefPubMedGoogle Scholar
  234. 234.
    Hadd AG, Houghton J, Choudhary A, Sah S, Chen L, Marko AC, Sanford T, Buddavarapu K, Krosting J, Garmire L, Wylie D, Shinde R, Beaudenon S, Alexander EK, Mambo E, Adai AT, Latham GJ. Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens. J Mol Diagn. 2013;15(2):234–47.  https://doi.org/10.1016/j.jmoldx.2012.11.006.CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Schmitz K, Koeppen H, Binot E, Fassunke J, Kunstlinger H, Ihle MA, Heydt C, Wardelmann E, Buttner R, Merkelbach-Bruse S, Ruschoff J, Schildhaus HU. MET gene copy number alterations and expression of MET and hepatocyte growth factor are potential biomarkers in angiosarcomas and undifferentiated pleomorphic sarcomas. PLoS One. 2015;10(4):e0120079.  https://doi.org/10.1371/journal.pone.0120079.CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Abel HJ, Al-Kateb H, Cottrell CE, Bredemeyer AJ, Pritchard CC, Grossmann AH, Wallander ML, Pfeifer JD, Lockwood CM, Duncavage EJ. Detection of gene rearrangements in targeted clinical next-generation sequencing. J Mol Diagn. 2014;16(4):405–17.  https://doi.org/10.1016/j.jmoldx.2014.03.006.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, Chandramohan R, Liu ZY, Won HH, Scott SN, Brannon AR, O'Reilly C, Sadowska J, Casanova J, Yannes A, Hechtman JF, Yao J, Song W, Ross DS, Oultache A, Dogan S, Borsu L, Hameed M, Nafa K, Arcila ME, Ladanyi M, Berger MF. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn. 2015;17(3):251–64.  https://doi.org/10.1016/j.jmoldx.2014.12.006.CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Drilon A, Wang L, Arcila ME, Balasubramanian S, Greenbowe JR, Ross JS, Stephens P, Lipson D, Miller VA, Kris MG, Ladanyi M, Rizvi NA. Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches. Clin Cancer Res. 2015;21(16):3631–9.  https://doi.org/10.1158/1078-0432.ccr-14-2683.CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Suh JH, Johnson A, Albacker L, Wang K, Chmielecki J, Frampton G, Gay L, Elvin JA, Vergilio JA, Ali S, Miller VA, Stephens PJ, Ross JS. Comprehensive genomic profiling facilitates implementation of the National Comprehensive Cancer Network Guidelines for lung cancer biomarker testing and identifies patients who may benefit from enrollment in mechanism-driven clinical trials. Oncologist. 2016;21(6):684–91.  https://doi.org/10.1634/theoncologist.2016-0030.CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Walther C, Hofvander J, Nilsson J, Magnusson L, Domanski HA, Gisselsson D, Tayebwa J, Doyle LA, Fletcher CD, Mertens F. Gene fusion detection in formalin-fixed paraffin-embedded benign fibrous histiocytomas using fluorescence in situ hybridization and RNA sequencing. Lab Investig. 2015;95(9):1071–6.  https://doi.org/10.1038/labinvest.2015.83.CrossRefPubMedGoogle Scholar
  241. 241.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.  https://doi.org/10.1038/nature03959.CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.  https://doi.org/10.1038/nrg.2016.49.CrossRefPubMedGoogle Scholar
  243. 243.
    Koitzsch U, Heydt C, Attig H, Immerschitt I, Merkelbach-Bruse S, Fammartino A, RH Buttner Y, Kong MO. Use of the GeneReader NGS System in a clinical pathology laboratory: a comparative study. J Clin Pathol. 2017;  https://doi.org/10.1136/jclinpath-2017-204342.
  244. 244.
    Thermo Fisher Scientific. Ion torrent next-generation sequencing run sequence [Internet]. 2017 [cited 2017 Jun 22]. Available from: https://www.thermofisher.com/de/de/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence.html
  245. 245.
    Illumina. Sequencing systems for every lab [Internet] 2017 [cited 2017 Jun 22]. Available from: https://www.illumina.com/systems.html
  246. 246.
    Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.  https://doi.org/10.1038/nature10242.CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IM, Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS, Vermaas EH, K Walter XW, Zhang L, Alam MD, Anastasi C, Aniebo IC, Bailey DM, Bancarz IR, Banerjee S, Barbour SG, Baybayan PA, Benoit VA, Benson KF, Bevis C, Black PJ, Boodhun A, Brennan JS, Bridgham JA, Brown RC, Brown AA, Buermann DH, Bundu AA, Burrows JC, Carter NP, Castillo N, Chiara ECM, Chang S, Neil Cooley R, Crake NR, Dada OO, Diakoumakos KD, Dominguez-Fernandez B, Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR, Fedurco M, Fraser LJ, Fuentes Fajardo KV, Scott Furey W, George D, Gietzen KJ, Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF, Harnish K, Haudenschild CD, Heyer NI, Hims MM, Ho JT, Horgan AM, Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Huw Jones TA, Kang GD, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z, Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X, Liao AK, Loch JA, Lok M, Luo S, Mammen RM, Martin JW, McCauley PG, McNitt P, Mehta P, Moon KW, Mullens JW, Newington T, Ning Z, Ling Ng B, Novo SM, O'Neill MJ, Osborne MA, Osnowski A, Ostadan O, Paraschos LL, Pickering L, Pike AC, Chris Pinkard D, Pliskin DP, Podhasky J, Quijano VJ, Raczy C, Rae VH, Rawlings SR, Chiva Rodriguez A, Roe PM, Rogers J, Rogert Bacigalupo MC, Romanov N, Romieu A, Roth RK, Rourke NJ, Ruediger ST, Rusman E, Sanches-Kuiper RM, Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP, Smith MA, Ernest Sohna Sohna J, Spence EJ, Stevens K, Sutton N, Szajkowski L, Tregidgo CL, Turcatti G, Vandevondele S, Verhovsky Y, Virk SM, Wakelin S, Walcott GC, Wang J, Worsley GJ, Yan J, Yau L, Zuerlein M, Mullikin JC, Hurles ME, McCooke NJ, West JS, Oaks FL, Lundberg PL, Klenerman D, Durbin R, Smith AJ. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9.  https://doi.org/10.1038/nature07517.CrossRefPubMedPubMedCentralGoogle Scholar
  248. 248.
    Becker K, Vollbrecht C, Koitzsch U, Koenig K, Fassunke J, Huss S, Nuernberg P, Heukamp LC, Buettner R, Odenthal M, Altmueller J, Merkelbach-Bruse S. Deep ion sequencing of amplicon adapter ligated libraries: a novel tool in molecular diagnostics of formalin fixed and paraffin embedded tissues. J Clin Pathol. 2013;66(9):803–6.  https://doi.org/10.1136/jclinpath-2013-201549.CrossRefPubMedGoogle Scholar
  249. 249.
    Desai AN, Jere A. Next-generation sequencing: ready for the clinics? Clin Genet. 2012;81(6):503–10.  https://doi.org/10.1111/j.1399-0004.2012.01865.x.CrossRefPubMedGoogle Scholar
  250. 250.
    Sikkema-Raddatz B, Johansson LF, de Boer EN, Almomani R, Boven LG, van den Berg MP, van Spaendonck-Zwarts KY, van Tintelen JP, Sijmons RH, Jongbloed JD, Sinke RJ. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum Mutat. 2013;34(7):1035–42.  https://doi.org/10.1002/humu.22332.CrossRefPubMedGoogle Scholar
  251. 251.
    Ahn S, Hong M, Van Vrancken M, Lyou YJ, Kim ST, Park SH, Kang WK, Park YS, Jung SH, Woo M, Lee J, Kim KM. A nCounter CNV assay to detect HER2 amplification: a correlation study with immunohistochemistry and in situ hybridization in advanced gastric cancer. Mol Diagn Ther. 2016;20(4):375–83.  https://doi.org/10.1007/s40291-016-0205-4.CrossRefPubMedGoogle Scholar
  252. 252.
    Lira ME, Kim TM, Huang D, Deng S, Koh Y, Jang B, Go H, Lee SH, Chung DH, Kim WH, Schoenmakers EF, Choi YL, Park K, Ahn JS, Sun JM, Ahn MJ, Kim DW, Mao M. Multiplexed gene expression and fusion transcript analysis to detect ALK fusions in lung cancer. J Mol Diagn. 2013;15(1):51–61.  https://doi.org/10.1016/j.jmoldx.2012.08.006.CrossRefPubMedGoogle Scholar
  253. 253.
    Veldman-Jones MH, Brant R, Rooney C, Geh C, Emery H, Harbron CG, Wappett M, Sharpe A, Dymond M, Barrett JC, Harrington EA, Marshall G. Evaluating robustness and sensitivity of the nanostring technologies ncounter platform to enable multiplexed gene expression analysis of clinical samples. Cancer Res. 2015;75(13):2587–93.  https://doi.org/10.1158/0008-5472.can-15-0262.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Reinhard Büttner
    • 1
  • Carina Heydt
    • 1
  • Sabine Merkelbach-Bruse
    • 1
    Email author
  1. 1.Center for Integrated Oncology, Institute of PathologyUniversity Hospital CologneCologneGermany

Personalised recommendations