Advertisement

Next-Generation Sequencing for Gene Panels

  • Michael O. DorschnerEmail author
Chapter

Abstract

Many molecular diagnostic laboratories are implementing next-generation sequencing (NGS)-based gene panels by harnessing the power of massively parallel sequencing technologies. NGS has dramatically expanded the capabilities of laboratories by multiplexing and streamlining DNA sequencing workflows. Replacing traditional target amplification techniques with in-solution enrichment technologies has simplified sequencing template preparation, greatly increasing the productivity of individual laboratories. Multigene panels can be performed with gene-specific target enrichment probes or by gene list-driven informatic analysis of exomes or genomes. Improved efficiency of molecular genetic testing, driven by the development and implementation of comprehensive disease-targeted gene panels, is propelling the advancement of genomic medicine.

Keywords

Multigene panel NGS Exome Genome Target enrichment Virtual panel On-demand panel 

References

  1. 1.
    Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11:31–46.CrossRefGoogle Scholar
  2. 2.
    Rehm HL. Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet. 2013;14:295–300.  https://doi.org/10.1038/nrg3463.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Teekakirikul P, Kelly MA, Rehm HL, Lakdawala NK, Funke BH. Inherited cardiomyopathies: molecular genetics and clinical genetic testing in the postgenomic era. J Mol Diagn. 2013;15(2):158–70.CrossRefPubMedGoogle Scholar
  4. 4.
    Pritchard CC, Smith C, Salipante SJ, Lee MK, Thornton AM, Nord AS, Gulden C, Kupfer SS, Swisher EM, Bennett RL, Novetsky AP, Jarvik GP, Olopade OI, Goodfellow PJ, King MC, Tait JF, Walsh T. ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn. 2012;14(4):357–66.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gecz J, Shoubridge C, Corbett M. The genetic landscape of intellectual disability arising from chromosome X. Trends Genet. 2009;25(7):308–16.CrossRefGoogle Scholar
  6. 6.
    Lionel AC, Costain G, Monfared N, Walker S, Reuter MS, Hosseini SM, Thiruvahindrapuram B, Merico D, Jobling R, Nalpathamkalam T, Pellecchia G, Sung WWL, Wang Z, Bikangaga P, Boelman C, Carter MT, Cordeiro D, Cytrynbaum C, Dell SD, Dhir P, Dowling JJ, Heon E, Hewson S, Hiraki L, Inbar-Feigenberg M, Klatt R, Kronick J, Laxer RM, Licht C, MacDonald H, Mercimek-Andrews S, Mendoza-Londono R, Piscione T, Schneider R, Schulze A, Silverman E, Siriwardena K, Snead OC, Sondheimer N, Sutherland J, Vincent A, Wasserman JD, Weksberg R, Shuman C, Carew C, Szego MJ, Hayeems RZ, Basran R, Stavropoulos DJ, Ray PN, Bowdin S, Meyn MS, Cohn RD, Scherer SW, Marshall CR. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med. 2018 Apr;20(4):435–43.  https://doi.org/10.1038/gim.2017.119.CrossRefPubMedGoogle Scholar
  7. 7.
    ACMG Board of Directors. Points to consider in the clinical application of genomic sequencing. Genet Med. 2012;14:759–61.CrossRefGoogle Scholar
  8. 8.
    Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010;7(2):111–8.CrossRefGoogle Scholar
  9. 9.
    Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C, Gabriel S, Jaffe DB, Lander ES, Nusbaum C. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009;27(2):182–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fisher S, Barry A, Abreu J, Minie B, Nolan J, Delorey TM, Young G, Fennell TJ, Allen A, Ambrogio L, Berlin AM, Blumenstiel B, Cibulskis K, Friedrich D, Johnson R, Juhn F, Reilly B, Shammas R, Stalker J, Sykes SM, Thompson J, Walsh J, Zimmer A, Zwirko Z, Gabriel S, Nicol R, Nusbaum C. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol. 2011;12(1):R1.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shearer AE, Hildebrand MS, Smith RJ. Solution-based targeted genomic enrichment for precious DNA samples. BMC Biotechnol. 2012;12:20.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nord AS, Lee M, King MC, Walsh T. Accurate and exact CNV identification from targeted high-throughput sequence data. BMC Genomics. 2011;12:184.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakis A, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell T, Kernytsky A, Sivachenko A, Cibulskis K, Gabriel S, Altshuler D, Daly M. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES, Getz G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, Ley TJ, Mardis ER, Wilson RK, Ding L. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics. 2012;28(3):311–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Goya R, Sun MG, Morin RD, Leung G, Ha G, Wiegand KC, Senz J, Crisan A, Marra MA, Hirst M, Huntsman D, Murphy KP, Aparicio S, Shah SP. SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics. 2010;26(6):730–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Roth A, Ding J, Morin R, Crisan A, Ha G, Giuliany R, Bashashati A, Hirst M, Turashvili G, Oloumi A, Marra MA, Aparicio S, Shah SP. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data. Bioinformatics. 2012;28(7):907–13.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2012;14:178–92.  https://doi.org/10.1093/bib/bbs017.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PathologyUW Medicine Center for Precision Diagnostics, Northwest Clinical Genomics LaboratorySeattleUSA

Personalised recommendations