Advertisement

Next-Generation Sequencing for Single-Gene Analysis

  • Hao Ho
  • Christopher D. GockeEmail author
Chapter

Abstract

Single-gene analysis has been the standard analytic method since DNA sequencing was originally performed. In practice, it was too time-consuming and expensive to perform analysis on more than a few exons or genes at a time. The nature of high-throughput sequencing has altered these calculations, and large panels of potentially pathogenic genes or even whole exomes or genomes are sequenced routinely. However, the techniques and equipment useful for high-throughput sequencing can be applied to single-gene targets in specialized situations. This chapter discusses these applications in minimal residual disease detection, infectious diseases, and HLA typing, among others.

Keywords

Next-generation sequencing High-throughput sequencing Sanger sequencing Single gene Technology NGS Panel 

References

  1. 1.
    Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94:441–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. 1977. Biotechnology. 1992;24:104–8.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977;74:560–4.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SB, Hood LE. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321:674–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45.CrossRefGoogle Scholar
  6. 6.
    Shendure J, Aiden EL. The expanding scope of DNA sequencing. Nat Biotechnol. 2012;30:1084–94.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Natrajan R, Reis-Filho JS. Next-generation sequencing applied to molecular diagnostics. Expert Rev Mol Diagn. 2011;11:425–44.CrossRefPubMedGoogle Scholar
  8. 8.
    Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19:R227–40.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet. 2011;52:413–35.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Su Z, Ning B, Fang H, Hong H, Perkins R, Tong W, Shi L. Next-generation sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn. 2011;11:333–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11:31–46.CrossRefGoogle Scholar
  12. 12.
    Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S, Stanulla M, Basso G, Niggli FK, Schafer BW, Sutton R, Koehler R, Zimmermann M, Valsecchi MG, Gadner H, Masera G, Schrappe M, van Dongen JJ, Biondi A, Bartram CR. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22:771–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Schrappe M, Valsecchi MG, Bartram CR, Schrauder A, Panzer-Grumayer R, Moricke A, Parasole R, Zimmermann M, Dworzak M, Buldini B, Reiter A, Basso G, Klingebiel T, Messina C, Ratei R, Cazzaniga G, Koehler R, Locatelli F, Schafer BW, Arico M, Welte K, van Dongen JJ, Gadner H, Biondi A, Conter V. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118:2077–84.CrossRefPubMedGoogle Scholar
  15. 15.
    van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, Stolz F, Schrappe M, Masera G, Kamps WA, Gadner H, van Wering ER, Ludwig WD, Basso G, de Bruijn MA, Cazzaniga G, Hettinger K, van der Does-van den Berg A, Hop WC, Riehm H, Bartram CR. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352:1731–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Willemse MJ, Seriu T, Hettinger K, d’Aniello E, Hop WC, Panzer-Grumayer ER, Biondi A, Schrappe M, Kamps WA, Masera G, Gadner H, Riehm H, Bartram CR, van Dongen JJ. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood. 2002;99:4386–93.CrossRefPubMedGoogle Scholar
  17. 17.
    Campana D. Progress of minimal residual disease studies in childhood acute leukemia. Curr Hematol Malig Rep. 2010;5:169–76.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Thol F, Kolking B, Damm F, Reinhardt K, Klusmann JH, Reinhardt D, von Neuhoff N, Brugman MH, Schlegelberger B, Suerbaum S, Krauter J, Ganser A, Heuser M. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromosomes Cancer. 2012;51:689–95.CrossRefPubMedGoogle Scholar
  19. 19.
    Campana D. Minimal residual disease monitoring in childhood acute lymphoblastic leukemia. Curr Opin Hematol. 2012;19:313–8.CrossRefGoogle Scholar
  20. 20.
    Wu D, Sherwood A, Fromm JR, Winter SS, Dunsmore KP, Loh ML, Greisman HA, Sabath DE, Wood BL, Robins H. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci Transl Med. 2012;4:134ra63.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gawad C, Pepin F, Carlton VE, Klinger M, Logan AC, Miklos DB, Faham M, Dahl G, Lacayo N. Massive evolution of the immunoglobulin heavy chain locus in children with B precursor acute lymphoblastic leukemia. Blood. 2012;120:4407–17.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cronin M, Ross JS. Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark Med. 2011;5:293–305.CrossRefPubMedGoogle Scholar
  23. 23.
    Borras E, Jurado I, Hernan I, Gamundi MJ, Dias M, Marti I, Mane B, Arcusa A, Agundez JA, Blanca M, Carballo M. Clinical pharmacogenomic testing of KRAS, BRAF and EGFR mutations by high resolution melting analysis and ultra-deep pyrosequencing. BMC Cancer. 2011;11:406.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shindoh N, Yoda A, Yoda Y, Sullivan TJ, Weigert O, Lane AA, Kopp N, Bird L, Rodig SJ, Fox EA, Weinstock DM. Next-generation cDNA screening for oncogene and resistance phenotypes. PLoS One. 2012;7:e49201.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chan M, Ji SM, Yeo ZX, Gan L, Yap E, Yap YS, Ng R, Tan PH, Ho GH, Ang P, Lee AS. Development of a next-generation sequencing method for BRCA mutation screening: a comparison between a high-throughput and a benchtop platform. J Mol Diagn. 2012;14:602–12.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
  27. 27.
  28. 28.
    Grossmann V, Schnittger S, Schindela S, Klein HU, Eder C, Dugas M, Kern W, Haferlach T, Haferlach C, Kohlmann A. Strategy for robust detection of insertions, deletions, and point mutations in CEBPA, a GC-rich content gene, using 454 next-generation deep-sequencing technology. J Mol Diagn. 2011;13:129–36.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kohlmann A, Grossmann V, Haferlach T. Integration of next-generation sequencing into clinical practice: are we there yet? Semin Oncol. 2012;39:26–36.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B, Dicker F, Schnittger S, Dugas M, Kern W, Haferlach C, Haferlach T. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol. 2010;28:3858–65.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Delhommeau F, Dupont S, Della VV, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A, Lecluse Y, Plo I, Dreyfus FJ, Marzac C, Casadevall N, Lacombe C, Romana SP, Dessen P, Soulier J, Viguie F, Fontenay M, Vainchenker W, Bernard OA. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci. 2011;108:9530–5.  https://doi.org/10.1073/pnas.1105422108.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009;28(Suppl 1):S24–31.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chen W, Kuang Y, Qiu HB, Cao Z, Tu Y, Sheng Q, Eilers G, He Q, Li HL, Zhu M, Wang Y, Zhang R, Wu Y, Meng F, Fletcher JA, Ou WB. Dual targeting of insulin receptor and KIT in imatinib-resistant gastrointestinal stromal tumors. Cancer Res. 2017;77:5107–17.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Escobar-Gutierrez A, Vazquez-Pichardo M, Cruz-Rivera M, Rivera-Osorio P, Carpio-Pedroza JC, Ruiz-Pacheco JA, Ruiz-Tovar K, Vaughan G. Identification of hepatitis C virus transmission using a next-generation sequencing approach. J Clin Microbiol. 2012;50:1461–3.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Redd AD, Collinson-Streng A, Martens C, Ricklefs S, Mullis CE, Manucci J, Tobian AA, Selig EJ, Laeyendecker O, Sewankambo N, Gray RH, Serwadda D, Wawer MJ, Porcella SF, Quinn TC. Identification of HIV superinfection in seroconcordant couples in Rakai, Uganda, by use of next-generation deep sequencing. J Clin Microbiol. 2011;49:2859–67.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Beerenwinkel N, Gunthard HF, Roth V, Metzner KJ. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Front Microbiol. 2012;3:329.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Archer J, Weber J, Henry K, Winner D, Gibson R, Lee L, Paxinos E, Arts EJ, Robertson DL, Mimms L, Quinones-Mateu ME. Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism. PLoS One. 2012;7:e49602.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Meiring TL, Salimo AT, Coetzee B, Maree HJ, Moodley J, Hitzeroth II, Freeborough MJ, Rybicki EP, Williamson AL. Next-generation sequencing of cervical DNA detects human papillomavirus types not detected by commercial kits. Virol J. 2012;9:164.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Katano H, Sato S, Sekizuka T, Kinumaki A, Fukumoto H, Sato Y, Hasegawa H, Morikawa S, Saijo M, Mizutani T, Kuroda M. Pathogenic characterization of a cervical lymph node derived from a patient with Kawasaki disease. Int J Clin Exp Pathol. 2012;5:814–23.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Nakamura S, Yang CS, Sakon N, Ueda M, Tougan T, Yamashita A, Goto N, Takahashi K, Yasunaga T, Ikuta K, Mizutani T, Okamoto Y, Tagami M, Morita R, Maeda N, Kawai J, Hayashizaki Y, Nagai Y, Horii T, Iida T, Nakaya T. Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. PLoS One. 2009;4:e4219.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nakamura S, Nakaya T, Iida T. Metagenomic analysis of bacterial infections by means of high-throughput DNA sequencing. Exp Biol Med (Maywood). 2011;236:968–71.CrossRefGoogle Scholar
  43. 43.
    Mokili JL, Rohwer F, Dutilh BE. Metagenomics and future perspectives in virus discovery. Curr Opin Virol. 2012;2:63–77.CrossRefPubMedGoogle Scholar
  44. 44.
    Gu SH, Song DH, Lee D, Jang J, Kim MY, Jung J, Woo KI, Kim M, Seog W, Oh HS, Choi BS, Ahn JS, Park Q, Jeong ST. Whole-genome sequence analysis of Zika virus, amplified from urine of traveler from the Philippines. Virus Genes. 2017;53:918–21.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Serizawa M, Sekizuka T, Okutani A, Banno S, Sata T, Inoue S, Kuroda M. Genomewide screening for novel genetic variations associated with ciprofloxacin resistance in Bacillus anthracis. Antimicrob Agents Chemother. 2010;54:2787–92.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wright AM, Beres SB, Consamus EN, Long SW, Flores AR, Barrios R, Richter GS, Oh SY, Garufi G, Maier H, Drews AL, Stockbauer KE, Cernoch P, Schneewind O, Olsen RJ, Musser JM. Rapidly progressive, fatal, inhalation anthrax-like infection in a human: case report, pathogen genome sequencing, pathology, and coordinated response. Arch Pathol Lab Med. 2011;135:1447–59.CrossRefPubMedGoogle Scholar
  47. 47.
    Kuroda M, Sekizuka T, Shinya F, Takeuchi F, Kanno T, Sata T, Asano S. Detection of a possible bioterrorism agent, Francisella sp., in a clinical specimen by use of next-generation direct DNA sequencing. J Clin Microbiol. 2012;50:1810–2.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003;33(Suppl):228–37.CrossRefGoogle Scholar
  49. 49.
    Coonrod EM, Durtschi JD, Margraf RL, Voelkerding KV. Developing genome and exome sequencing for candidate gene identification in inherited disorders. Arch Pathol Lab Med. 2013;137:415–33.CrossRefGoogle Scholar
  50. 50.
    Li Y, Vinckenbosch N, Tian G, Huerta-Sanchez E, Jiang T, Jiang H, Albrechtsen A, Andersen G, Cao H, Korneliussen T, Grarup N, Guo Y, Hellman I, Jin X, Li Q, Liu J, Liu X, Sparso T, Tang M, Wu H, Wu R, Yu C, Zheng H, Astrup A, Bolund L, Holmkvist J, Jorgensen T, Kristiansen K, Schmitz O, Schwartz TW, Zhang X, Li R, Yang H, Wang J, Hansen T, Pedersen O, Nielsen R, Wang J. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat Genet. 2010;42:969–72.CrossRefGoogle Scholar
  51. 51.
    Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42:30–5.CrossRefGoogle Scholar
  53. 53.
    Hoischen A, van Bon BW, Gilissen C, Arts P, van Lier B, Steehouwer M, de Vries P, de Reuver R, Wieskamp N, Mortier G, Devriendt K, Amorim MZ, Revencu N, Kidd A, Barbosa M, Turner A, Smith J, Oley C, Henderson A, Hayes IM, Thompson EM, Brunner HG, de Vries BB, Veltman JA. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet. 2010;42:483–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Gerber S, Alzayady KJ, Burglen L, Bremond-Gibnac D, Marchesin V, Roche O, Rio M, Funalot B, Calmon R, Durr A, Gil-da-Silva-Lopes VL, Ribeiro Bittar MF, et al. Recessive and dominant de novo ITPR1 mutations cause Gillespie syndrome. Am J Hum Genet. 2016;98:971–80.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ku CS, Naidoo N, Pawitan Y. Revisiting Mendelian disorders through exome sequencing. Hum Genet. 2011;129:351–70.CrossRefPubMedGoogle Scholar
  56. 56.
    Shanks ME, Downes SM, Copley RR, Lise S, Broxholme J, Hudspith KA, Kwasniewska A, Davies WI, Hankins MW, Packham ER, Clouston P, Seller A, Wilkie AO, Taylor JC, Ragoussis J, Nemeth AH. Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease. Eur J Hum Genet. 2013;21:274–80.CrossRefPubMedGoogle Scholar
  57. 57.
    Erlich H. HLA DNA typing: past, present, and future. Tissue Antigens. 2012;80:1–11.CrossRefPubMedGoogle Scholar
  58. 58.
    Sood AK, Pereira D, Weissman SM. Isolation and partial nucleotide sequence of a cDNA clone for human histocompatibility antigen HLA-B by use of an oligodeoxynucleotide primer. Proc Natl Acad Sci U S A. 1981;78:616–20.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Erlich HA, Stetler D, Sheng-Dong R, Ness D, Grumet C. Segregation and mapping analysis of polymorphic HLA class I restriction fragments: detection of a novel fragment. Science. 1983;222:72–4.CrossRefPubMedGoogle Scholar
  60. 60.
    Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 1986;324:163–6.CrossRefPubMedGoogle Scholar
  61. 61.
    Saiki RK, Walsh PS, Levenson CH, Erlich HA. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci U S A. 1989;86:6230–4.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Blake E, Mihalovich J, Higuchi R, Walsh PS, Erlich H. Polymerase chain reaction (PCR) amplification and human leukocyte antigen (HLA)-DQ alpha oligonucleotide typing on biological evidence samples: casework experience. J Forensic Sci. 1992;37:700–26.CrossRefPubMedGoogle Scholar
  63. 63.
    Santamaria P, Lindstrom AL, Boyce-Jacino MT, Myster SH, Barbosa JJ, Faras AJ, Rich SS. HLA class I sequence-based typing. Hum Immunol. 1993;37:39–50.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lind C, Ferriola D, Mackiewicz K, Heron S, Rogers M, Slavich L, Walker R, Hsiao T, McLaughlin L, D’Arcy M, Gai X, Goodridge D, Sayer D, Monos D. Next-generation sequencing: the solution for high-resolution, unambiguous human leukocyte antigen typing. Hum Immunol. 2010;71:1033–42.CrossRefPubMedGoogle Scholar
  65. 65.
    Holcomb CL, Hoglund B, Anderson MW, Blake LA, Bohme I, Egholm M, Ferriola D, Gabriel C, Gelber SE, Goodridge D, Hawbecker S, Klein R, Ladner M, Lind C, Monos D, Pando MJ, Proll J, Sayer DC, Schmitz-Agheguian G, Simen BB, Thiele B, Trachtenberg EA, Tyan DB, Wassmuth R, White S, Erlich HA. A multi-site study using high-resolution HLA genotyping by next generation sequencing. Tissue Antigens. 2011;77:206–17.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Erlich RL, Jia X, Anderson S, Banks E, Gao X, Carrington M, Gupta N, DePristo MA, Henn MR, Lennon NJ, de Bakker PI. Next-generation sequencing for HLA typing of class I loci. BMC Genomics. 2011;12:42.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Schöfl G, Lang K, Quenzel P, Böhme I, Sauter J, Hofmann JA, Pingel J, Schmidt AH, Lange V. 2.7 million samples genotyped for HLA by next generation sequencing: lessons learned. BMC Genomics. 2017;18:161.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Bravo-Egana V, Monos D. The impact of next-generation sequencing in immunogenetics: current status and future directions. Curr Opin Organ Transplant. 2017;22:400–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. DNA sequences from the quagga, an extinct member of the horse family. Nature. 1984;312:282–4.CrossRefPubMedGoogle Scholar
  70. 70.
    Paabo S. Molecular cloning of Ancient Egyptian mummy DNA. Nature. 1985;314:644–5.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Paabo S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci U S A. 1989;86:1939–43.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Paabo S, Higuchi RG, Wilson AC. Ancient DNA and the polymerase chain reaction. The emerging field of molecular archaeology. J Biol Chem. 1989;264:9709–12.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Cooper A, Poinar HN. Ancient DNA: do it right or not at all. Science. 2000;289:1139.CrossRefGoogle Scholar
  74. 74.
    Rizzi E, Lari M, Gigli E, De Bellis G, Caramelli D. Ancient DNA studies: new perspectives on old samples. Genet Sel Evol. 2012;44:21.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH, Hansen NF, Durand EY, Malaspinas AS, Jensen JD, Marques-Bonet T, Alkan C, Prufer K, Meyer M, Burbano HA, Good JM, Schultz R, Aximu-Petri A, Butthof A, Hober B, Hoffner B, Siegemund M, Weihmann A, Nusbaum C, Lander ES, Russ C, Novod N, Affourtit J, Egholm M, Verna C, Rudan P, Brajkovic D, Kucan Z, Gusic I, Doronichev VB, Golovanova LV, Lalueza-Fox C, de la RM, Fortea J, Rosas A, Schmitz RW, Johnson PL, Eichler EE, Falush D, Birney E, Mullikin JC, Slatkin M, Nielsen R, Kelso J, Lachmann M, Reich D, Paabo S. A draft sequence of the Neandertal genome. Science. 2010;328:710–22.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, Viola B, Briggs AW, Stenzel U, Johnson PL, Maricic T, Good JM, Marques-Bonet T, Alkan C, Fu Q, Mallick S, Li H, Meyer M, Eichler EE, Stoneking M, Richards M, Talamo S, Shunkov MV, Derevianko AP, Hublin JJ, Kelso J, Slatkin M, Paabo S. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010;468:1053–60.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, Metspalu M, Metspalu E, Kivisild T, Gupta R, Bertalan M, Nielsen K, Gilbert MT, Wang Y, Raghavan M, Campos PF, Kamp HM, Wilson AS, Gledhill A, Tridico S, Bunce M, Lorenzen ED, Binladen J, Guo X, Zhao J, Zhang X, Zhang H, Li Z, Chen M, Orlando L, Kristiansen K, Bak M, Tommerup N, Bendixen C, Pierre TL, Gronnow B, Meldgaard M, Andreasen C, Fedorova SA, Osipova LP, Higham TF, Ramsey CB, Hansen TV, Nielsen FC, Crawford MH, Brunak S, Sicheritz-Ponten T, Villems R, Nielsen R, Krogh A, Wang J, Willerslev E. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature. 2010;463:757–62.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Sproule DM, Kaufmann P. Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes. Ann N Y Acad Sci. 2008;1142:133–58.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Bandelt HJ, Salas A. Current next generation sequencing technology may not meet forensic standards. Forensic Sci Int Genet. 2012;6:143–5.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zietkiewicz E, Witt M, Daca P, Zebracka-Gala J, Goniewicz M, Jarzab B, Witt M. Current genetic methodologies in the identification of disaster victims and in forensic analysis. J Appl Genet. 2012;53:41–60.CrossRefPubMedGoogle Scholar
  81. 81.
    Berglund EC, Kiialainen A, Syvanen AC. Next-generation sequencing technologies and applications for human genetic history and forensics. Investig Genet. 2011;2:23.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Alvarez-Cubero MJ, Saiz M, Martinez-Gonzalez LJ, Alvarez JC, Eisenberg AJ, Budowle B, Lorente JA. Genetic identification of missing persons: DNA analysis of human remains and compromised samples. Pathobiology. 2012;79:228–38.CrossRefPubMedGoogle Scholar
  83. 83.
    Tiercy JM. Immunogenetics of hematopoietic stem cell transplantation: the contribution of microsatellite polymorphism studies. Int J Immunogenet. 2011;38:365–72.CrossRefPubMedGoogle Scholar
  84. 84.
    Snyder TM, Khush KK, Valantine HA, Quake SR. Universal noninvasive detection of solid organ transplant rejection. Proc Natl Acad Sci U S A. 2011;108:6229–34.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE, Neveux LM, Ehrich M, van den BD, Bombard AT, Deciu C, Grody WW, Nelson SF, Canick JA. DNA sequencing of maternal plasma to detect down syndrome: an international clinical validation study. Genet Med. 2011;13:913–20.CrossRefPubMedGoogle Scholar
  86. 86.
    Palomaki GE, Deciu C, Kloza EM, Lambert-Messerlian GM, Haddow JE, Neveux LM, Ehrich M, van den BD, Bombard AT, Grody WW, Nelson SF, Canick JA. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as down syndrome: an international collaborative study. Genet Med. 2012;14:296–305.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PathologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations