Transitioning Discoveries from Cancer Genomics Research Laboratories into Pathology Practice

  • Tamara Jamaspishvili
  • Jeremy A. Squire


Genomic biomarkers are increasingly being used for detection of cancer, for recognizing early disease recurrence, or for providing crucial molecular findings essential for the use of novel classes of targeting therapies. Although there is considerable enthusiasm for the use of the discoveries of cancer genomics for personalized medicine in clinical practice, the number of new classes of biomarkers incorporated into cancer diagnosis and treatment remains surprisingly low. In this chapter we describe how novel laboratory approaches and research discoveries usually move into pathology practice, and we consider why uptake of genomic biomarkers in clinical medicine has been so slow. We illustrate this by describing some of the genomic biomarkers and newer sequence-based genetic tests that are being successfully used in pathology practice now. We draw attention to some of the challenges faced in delivering practice-changing discoveries for effective use in precision medicine and discuss the potential impact of genomic biomarkers on the design of new clinical trials. Finally, we review current guidelines and recommendations for moving a successful biomarker from the pathology research laboratory into clinical practice.


Clinical biomarker development Clinical cancer genomics Translational research Clinical trial design 


  1. 1.
    Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst. 2009;101:1446–52.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brooks JD. Translational genomics: the challenge of developing cancer biomarkers. Genome Res. 2012;22:183–7.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer research. Nature. 2012;483:531–3.CrossRefGoogle Scholar
  4. 4.
    Strategy for Patient-Oriented Research-CIHR. Accessed 10 Feb 2013.
  5. 5.
    Ziegler A, Koch A, Krockenberger K, et al. Personalized medicine using DNA biomarkers: a review. Hum Genet. 2012;131:1627–38.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Henney AM. The promise and challenge of personalized medicine: aging populations, complex diseases, and unmet medical need. Croat Med J. 2012;53:207–10.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Madu CO, Lu Y. Novel diagnostic biomarkers for prostate cancer. J Cancer. 2010;1:150–77.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    NCI dictionary of cancer terms-National Cancer Institute. Accessed 10 Feb 2013.
  9. 9.
    Foundation for the National Institutes of Health. Accessed 10 Feb 2013.
  10. 10.
    Rao AR, Motiwala HG, Karim OM. The discovery of prostate-specific antigen. BJU Int. 2008;101:5–10. Scholar
  11. 11.
    Barry MJ. PSA testing for early diagnosis of prostate cancer. N Engl J Med. 2001;344:1373–7.CrossRefGoogle Scholar
  12. 12.
    Haese A, de la Taille A, van Poppel H, et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol. 2008;54:1081–8.CrossRefGoogle Scholar
  13. 13.
    Kirby RS, Fitzpatrick JM, Irani J. Prostate cancer diagnosis in the new millennium: strengths and weaknesses of prostate specific antigen and the discovery and clinical evaluation of prostate cancer gene 3 (PCA3). BJU Int. 2009;103:441–5.CrossRefGoogle Scholar
  14. 14.
    Day JR, Jost A, Reynolds MA. PCA3: from basic molecular science to the clinical lab. Cancer Lett. 2011;301:1–6.CrossRefGoogle Scholar
  15. 15.
    Laxman B, Morris DS, Yu J, et al. A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res. 2008;68:645–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jamaspishvili T, Kral M, Khomeriki I, et al. Quadriplex model enhances urine-based detection of prostate cancer. Prostate Cancer Prostatic Dis. 2011;14:354–60.CrossRefGoogle Scholar
  17. 17.
    cobas® 4800 HPV Test [package insert, CE]. Branchburg, NJ: Roche Molecular Systems, Inc; 2012.Google Scholar
  18. 18.
    Practice Bulletin No. 157. Obstet Gynecol. 2016;127:e1–e20.Google Scholar
  19. 19.
    Kiba T, Inamoto T, Nishimura T, et al. The reversal of recurrence hazard rate between ER positive and negative breast cancer patients with axillary lymph node dissection (pathological stage I-III) 3 years after surgery. BMC Cancer. 2008;8:323.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nossov V, Amneus M, Su F, et al. The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? Am J Obstet Gynecol. 2008;199:215–23.CrossRefGoogle Scholar
  21. 21.
    Nustad K, Bast RC Jr, Brien TJ, et al. Specificity and affinity of 26 monoclonal antibodies against the CA 125 antigen: first report from the ISOBM TD-1 workshop. Int Soc Oncodev Biol Med. 1996;17:196–219.CrossRefGoogle Scholar
  22. 22.
    Gupta D, Lis CG. Role of CA125 in predicting ovarian cancer survival – a review of the epidemiological literature. J Ovarian Res. 2009;2:13.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gennari A, Sormani MP, Pronzato P, et al. HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized clinical trials. J Natl Cancer Inst. 2008;100:14–20.CrossRefGoogle Scholar
  24. 24.
    Hayes DF, Thor AD, Dressler LG, et al. HER2 and response to paclitaxel in node-positive breast cancer. N Engl J Med. 2007;357:1496–506.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.CrossRefGoogle Scholar
  26. 26.
    Simon R. Clinical trial designs for evaluating the medical utility of prognostic and predictive biomarkers in oncology. Per Med. 2010;7:33–47.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    UnitedHealthcare®. Medical Policy 2012; PDF. Accessed 18 Feb 2013.Google Scholar
  28. 28.
    Tohami T, Nagler A, Amariglio N. Laboratory tools for diagnosis and monitoring response in patients with chronic myeloid leukemia. Isr Med Assoc J. 2012;14:501–7.PubMedGoogle Scholar
  29. 29.
    Leong AS, Zhuang Z. The changing role of pathology in breast cancer diagnosis and treatment. Pathobiology. 2011;78:99–114.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kim ST, Sung JS, Jo UH, et al. Can mutations of EGFR and KRAS in serum be predictive and prognostic markers in patients with advanced non-small cell lung cancer (NSCLC)? Med Oncol. 2013;30:328.CrossRefGoogle Scholar
  31. 31.
    Laszlo L. Predictive and prognostic factors in the complex treatment of patients with colorectal cancer. Magy Onkol. 2010;54:383–94.CrossRefGoogle Scholar
  32. 32.
    Trevino V, Falciani F, Barrera-Saldana HA. DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol Med. 2007;13:527–41.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Howie B, Fuchsberger C, Stephens M, et al. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44:955–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ashley E. Towards precision medicine. Nat Rev Genet. 2016;17:507–22.CrossRefGoogle Scholar
  35. 35.
    Collins D, Sundar R, Lim J, et al. Towards precision medicine in the clinic: from biomarker discovery to novel therapeutics. Trends Pharmacol Sci. 2017;38:25–40.CrossRefGoogle Scholar
  36. 36.
    Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11:31–46.CrossRefGoogle Scholar
  37. 37.
    Trapnell C, Salzberg SL. How to map billions of short reads onto genomes. Nat Biotechnol. 2009;27:455–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fertig EJ, Slebos R, Chung CH. Application of genomic and proteomic technologies in biomarker discovery. Am Soc Clin Oncol Educ Book. 2012;32:377–82.Google Scholar
  39. 39.
    Schrijver I, Aziz N, Farkas DH, et al. Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the Association for Molecular Pathology. J Mol Diagn. 2012;14:525–40.CrossRefGoogle Scholar
  40. 40.
    Sboner A, Mu X, Greenbaum D, et al. The real cost of sequencing: higher than you think! Genome Biol. 2011;12:125.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Frampton GM, Fichtenholtz A, Otto GA. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gray P, Dunlop C, Elliott A. Not all next generation sequencing diagnostics are created equal: understanding the nuances of solid tumor assay design for somatic mutation detection. Cancers (Basel). 2015;7:1313–32.CrossRefGoogle Scholar
  43. 43.
    Khotskaya YB, Mills GB, Mills Shaw KR. Next-generation sequencing and result interpretation in clinical oncology: challenges of personalized Cancer therapy. Annu Rev Med. 2017;68:113–25.CrossRefGoogle Scholar
  44. 44.
    Shen T, Pajaro-Van de Stadt SH, Yeat NC, et al. Clinical applications of next generation sequencing in cancer: from panels, to exomes, to genomes. Front Genet. 2015;6:215.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Rhodes DR, Yu J, Shanker K, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6:1–6.CrossRefGoogle Scholar
  46. 46.
  47. 47.
  48. 48.
    Venook AP, Niedzwiecki D, Lopatin M, et al. Validation of a 12-gene colon cancer recurrence score (RS) in patients (pts) with stage II colon cancer (CC) from CALGB 9581. J Clin Oncol. 2011;29(15):3518.CrossRefGoogle Scholar
  49. 49.
    Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP working group: can tumor gene expression profiling improve outcomes in patients with breast cancer? Genet Med. 2009;11:66–73.CrossRefGoogle Scholar
  50. 50.
    Oncotype IQ Official website. Accessed 01 Jul 2017.
  51. 51.
    Sparano JA, Gray RJ, Makower DF, et al. Prospective validation of a 21-gene expression assay in breast Cancer. N Engl J Med. 2015;373:2005–14.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dong L, Wang W, Li A, et al. Clinical next generation sequencing for precision medicine in cancer. Curr Genomics. 2015;16:253–63.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Massie CE, Mills IG. Mapping protein-DNA interactions using ChIP-sequencing. Methods Mol Biol. 2012;809:157–73.CrossRefGoogle Scholar
  54. 54.
    Bayani J, Squire JA. Application and interpretation of FISH in biomarker studies. Cancer Lett. 2007;249:97–109.CrossRefGoogle Scholar
  55. 55.
    Penault-Llorca F, Bilous M, Dowsett M, et al. Emerging technologies for assessing Her2 amplification. Am J Clin Pathol. 2009;132:539–48.CrossRefGoogle Scholar
  56. 56.
    Mass RD, Press MF, Anderson S, et al. Evaluation of clinical outcomes according to Her2 detection by fluorescence in situ hybridization in women with metastatic breast cancer treated with trastuzumab. Clin Breast Cancer. 2005;6:240–6.CrossRefGoogle Scholar
  57. 57.
    Davis LM, Harris C, Tang L, et al. Amplification patterns of three genomic regions predict distant recurrence in breast carcinoma. J Mol Diagn. 2007;9:327–36.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Yoshimoto M, Cunha IW, Coudry RA, et al. FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. Br J Cancer. 2007;97:678–85.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lotan TL, Wei W, Ludkovski O, et al. Analytic validation of a clinical-grade PTEN immunohistochemistry assay in prostate cancer by comparison with PTEN FISH. Mod Pathol. 2016;29:904–14.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Troyer DA, Jamaspishvili T, Wei W, et al. A multicenter study shows PTEN deletion is strongly associated with seminal vesicle involvement and extracapsular extension in localized prostate cancer. Prostate. 2015;75:1206–15.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sholl LM, Weremowicz S, Gray SW, et al. Combined use of ALK immunohistochemistry and FISH for optimal detection of ALK-rearranged lung adenocarcinomas. J Thorac Oncol. 2013;8:322–8.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 2013;8:823–59.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
  64. 64.
    Murphy J, Bustin SA. Reliability of real-time reverse-transcription PCR in clinical diagnostics: gold standard or substandard? Expert Rev Mol Diagn. 2009;9:187–97.CrossRefGoogle Scholar
  65. 65.
    Bartley PA, Ross DM, Latham S. Sensitive detection and quantification of minimal residual disease in chronic myeloid leukaemia using nested quantitative PCR for BCR-ABL DNA. Int J Lab Hematol. 2010;32:222–8.CrossRefGoogle Scholar
  66. 66.
    Ross DM, Branford S, Seymour JF, et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia. 2010;24:1719–24.CrossRefGoogle Scholar
  67. 67.
    Goh HG, Lin M, Fukushima T, et al. Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay. Leuk Lymphoma. 2011;52:896–904.CrossRefGoogle Scholar
  68. 68.
    Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135:569–77.Google Scholar
  69. 69.
    Cantara S, Cappezzone M, Marchisotta S, et al. Impact of proto-oncogene mutation defect in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 2010;95:1365–9.CrossRefGoogle Scholar
  70. 70.
    Fu Q, Zhu J, Van Eyk JE. Comparison of multiplex immunoassay platforms. Clin Chem. 2010;56:314–8.CrossRefGoogle Scholar
  71. 71.
    Choi HJ, Kim HR, Shin MG. The author response: diagnostic standardization of leukemia fusion gene detection system using multiplex reverse transcriptase-polymerase chain reaction in Korea. J Korean Med Sci. 2011;26:1401.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    King RL, Naghashpour M, Watt CD, et al. A comparative analysis of molecular genetic and conventional cytogenetic detection of diagnostically important translocations in more than 400 cases of acute leukemia, highlighting the frequency of false-negative conventional cytogenetics. Am J Clin Pathol. 2011;135:921–8.CrossRefGoogle Scholar
  73. 73.
    Dancey JE, Bedard PL, Onetto N, et al. The genetic basis for cancer treatment decisions. Cell. 2012;148:409–20.CrossRefGoogle Scholar
  74. 74.
    Holbein ME. Understanding FDA regulatory requirements for investigational new drug applications for sponsor-investigators. J Investig Med. 2009;57:688–94.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Sargent DJ, Conley BA, Allegra C, et al. Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol. 2005;23:2020–7.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Simon R. Genomic Alteration-Driven Clinical Trial Designs in Oncology. Ann Intern Med. 2016;165:270–8.CrossRefGoogle Scholar
  77. 77.
    Conley BA, Doroshow JH. Molecular analysis for therapy choice: NCI MATCH. Semin Oncol. 2014;41:297–9.CrossRefGoogle Scholar
  78. 78.
    Kim ES, Herbst RS, Wistuba II, et al. The BATTLE trial: personalizing therapy for lung Cancer. Cancer Discov. 2011;1:44–53.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    McDermott U, Downing JR, Stratton MR. Genomics and the continuum of cancer care. N Engl J Med. 2011;364:340–50.CrossRefGoogle Scholar
  80. 80.
    Srivastava SS, Kramer BS. Early detection cancer research network. Lab Investig. 2000;80:1147–8.CrossRefGoogle Scholar
  81. 81.
    Zerhouni EA, Sanders CA, von Eschenbach AC. The biomarkers consortium: public and private sectors working in partnership to improve the public health. Oncologist. 2007;12:250–2.CrossRefGoogle Scholar
  82. 82.
    Bossuyt PM, Reitsma JB, Bruns DE, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem. 2003;49:1–6.CrossRefGoogle Scholar
  83. 83.
    McShane LM, Altman DG, Sauerbrei W, et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2006;97:1180–4.CrossRefGoogle Scholar
  84. 84.
    Hayes D, Ethier S, Lippman M. New guidelines for reporting tumor marker studies in breast cancer research and treatment: REMARK. Breast Cancer Res Treat. 2006;100:237–8.CrossRefGoogle Scholar
  85. 85.
    Keedy VL, Temin S, Somerfield MR, et al. American Society of Clinical Oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) Mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J Clin Oncol. 2011;29:2121–7.CrossRefGoogle Scholar
  86. 86.
    Hayes DF, Bast RC, Desch CE. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst. 1996;88:1456–66.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Locker GY, Hamilton S, Harris J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24:5313–27.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Harris L, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–310.CrossRefGoogle Scholar
  89. 89.
    Freidlin B, McShane LM, Korn EL. Randomized clinical trials with biomarkers: design issues. J Natl Cancer Inst. 2010;102:152–60.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Burke W, Atkins D, Gwinn M, et al. Genetic test evaluation: information needs of clinicians, policy makers, and the public. Am J Epidemiol. 2002;156:311–8.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Teutsch SM, Bradley LA, Palomaki GE, et al. The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP Working Group. Genet Med. 2009;11:3–14.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Chou R, Croswell JM, Dana T, et al. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2011;155:762–71.CrossRefGoogle Scholar
  93. 93.
    Prensner JR, Rubin MA, Wei JT, et al. Chinnaiyan. Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med. 2012;4:127rv3.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    U.S. Preventive Services Task Force. Guide to clinical preventive services: report of the U.S. Preventive Services Task Force. DIANE Publishing; 1989, pp. 21–25.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Tamara Jamaspishvili
    • 1
    • 2
  • Jeremy A. Squire
    • 1
    • 3
  1. 1.Department of Pathology and Molecular MedicineQueen’s UniversityKingstonCanada
  2. 2.Division of Cancer Biology and GeneticsQueen’s UniversityKingstonCanada
  3. 3.Department of Genetics, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations