Advertisement

Concrete Semantics with Coq and CoqHammer

  • Łukasz Czajka
  • Burak Ekici
  • Cezary Kaliszyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11006)

Abstract

The “Concrete Semantics” book gives an introduction to imperative programming languages accompanied by an Isabelle/HOL formalization. In this paper we discuss a re-formalization of the book using the Coq proof assistant (version 8.7.2). In order to achieve a similar brevity of the formal text we extensively use CoqHammer, as well as Coq Ltac-level automation. We compare the formalization efficiency, compactness, and the readability of the proof scripts originating from a Coq re-formalization of two chapters from the book.

Notes

Acknowledgments

This work has been supported by the Austrian Science Fund (FWF) grant P26201, the European Research Council (ERC) grant no. 714034 SMART and the Marie Skłodowska-Curie action InfTy, program H2020-MSCA-IF-2015, number 704111.

References

  1. 1.
    Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chlipala, A.: Certified Programming with Dependent Types - A Pragmatic Introduction to the Coq Proof Assistant. MIT Press, Cambridge (2013)zbMATHGoogle Scholar
  3. 3.
    Czajka, Ł., Kaliszyk, C.: Goal translation for a hammer for Coq (extended abstract). In: Blanchette, J., Kaliszyk, C. (eds.) International Workshop on Hammers for Type Theories (HaTT 2016). EPTCS, vol. 210, pp. 13–20 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dong, D., Wu, H., He, W., Yu, D., Wang, H.: Multi-task learning for multiple language translation. In: ACL, no. 1, pp. 1723–1732. The Association for Computer Linguistics (2015)Google Scholar
  5. 5.
    Kaliszyk, C., Urban, J., Vyskočil, J., Geuvers, H.: Developing corpus-based translation methods between informal and formal mathematics: project description. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 435–439. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08434-3_34CrossRefzbMATHGoogle Scholar
  6. 6.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39799-8_1CrossRefGoogle Scholar
  7. 7.
    Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10542-0CrossRefzbMATHGoogle Scholar
  8. 8.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45221-5_49CrossRefGoogle Scholar
  9. 9.
    Czajka, Ł., Kaliszyk, C.: Hammer for Coq: automation for dependent type theory. J. Autom. Reason. 61(1–4), 423–453 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of CopenhagenCopenhagenDenmark
  2. 2.University of InnsbruckInnsbruckAustria

Personalised recommendations