Advertisement

Knowledge Amalgamation for Computational Science and Engineering

  • Theresa PollingerEmail author
  • Michael Kohlhase
  • Harald Köstler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11006)

Abstract

This paper addresses a knowledge gap that is commonly encountered in computational science and engineering: To set up a simulation, we need to combine domain knowledge (usually in terms of physical principles), model knowledge (e.g. about suitable partial differential equations) with simulation (i.e. numerics/computing) knowledge. In current practice, this is resolved by intense collaboration between experts, which incurs non-trivial translation and communication overheads. We propose an alternate solution, based on mathematical knowledge management (MKM) techniques, specifically theory graphs and active documents: Given a theory graph representation of the domain, model, and background mathematics, we can derive a targeted knowledge acquisition dialogue that supports the formalization of domain knowledge, combines it with simulation knowledge and – in the end – drives a simulation run – a process we call MoSIS (“Models-to-Simulations Interface System”). We present the MoSIS prototype that implements this process based on a custom Jupyter kernel for the user interface and the theory-graph-based Mmt knowledge management system as an MKM backend.

Notes

Acknowledgments

The authors acknowledge financial support from the OpenDreamKit Horizon 2020 European Research Infrastructures project (#676541); Project ExaStencils received funding within the DFG priority programme 1648 SPPEXA. We gratefully acknowledge fruitful discussions with the KWARC group, especially Dennis Müller and Florian Rabe for support with the Mmt implementation, to Thomas Koprucki and Karsten Tabelow at WIAS Berlin; and to Sebastian Kuckuk (LSS chair, FAU). Last but not least, Kai Amman and Tom Wiesing have helped with the Jupyter frontend and deployment of MoSIS on JupyterHub.

References

  1. [BO12]
    bokeh: Interactive Web Plotting for Python, 26 March 2012. https://github.com/bokeh/bokeh. Accessed 18 Apr 2018
  2. [CMR17]
    Mossakowski, T., Rabe, F., Codescu, M.: Canonical selection of colimits. In: James, P., Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp. 170–188. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72044-9_12CrossRefGoogle Scholar
  3. [Deh+16]
    Dehaye, P.-O., Iancu, M., Kohlhase, M., Konovalov, A., Lelièvre, S., Müller, D., Pfeiffer, M., Rabe, F., Thiéry, N.M., Wiesing, T.: Interoperability in the OpenDreamKit project: the math-in-the-middle approach. In: Kohlhase, M., Johansson, M., Miller, B., de Moura, L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 117–131. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42547-4_9CrossRefGoogle Scholar
  4. [EXA]
    Advanced Stencil-Code Engineering (ExaStencils). http://exastencils.org. Accessed 25 Apr 2018
  5. [Gin+16]
    Ginev, D., et al.: The SMGloM project and system: towards a terminology and ontology for mathematics. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 451–457. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42432-3_58CrossRefGoogle Scholar
  6. [IPyWid15]
    ipywidgets: Interactive widgets for the Jupyter Notebook, 17 April 2015. https://github.com/jupyter-widgets/ipywidgets. Accessed 18 Apr 2018
  7. [JHub]
    JupyterHub – JupyterHub documentation. https://jupyterhub.readthedocs.io/en/latest/. Accessed 18 Apr 2018
  8. [JN]
  9. [Jup]
    Project Jupyter. http://www.jupyter.org. Accessed 22 Aug 2017
  10. [KK16]
    Kuckuk, S., Köstler, H.: Automatic generation of massively parallel codes from ExaSlang”. In: Computation 4.3, 4 August 2016, p. 27 (2016).  https://doi.org/10.3390/computation4030027. Accessed 09 Oct 2017. ISSN 2079–3197CrossRefGoogle Scholar
  11. [KKMT17]
    Kohlhase, M., Koprucki, T., Müller, D., Tabelow, K.: Mathematical models as research data via flexiformal theory graphs. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 224–238. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62075-6_16CrossRefGoogle Scholar
  12. [Koh+11]
    Kohlhase, M., et al.: The planetary system: web 3.0 & active documents for STEM. Procedia Comput. Sci. 4, 598–607 (2011).  https://doi.org/10.1016/j.procs.2011.04.063. In: Sato, M., et al. (eds.) Special Issue: Proceedings of the International Conference on Computational Science (ICCS). Finalist at the Executable Paper Grand Challenge
  13. [Koh+17]
    Kohlhase, M., De Feo, L., Müller, D., Pfeiffer, M., Rabe, F., Thiéry, N.M., Vasilyev, V., Wiesing, T.: Knowledge-based interoperability for mathematical software systems. In: Blömer, J., Kotsireas, I.S., Kutsia, T., Simos, D.E. (eds.) MACIS 2017. LNCS, vol. 10693, pp. 195–210. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72453-9_14CrossRefGoogle Scholar
  14. [Kop+18]
    Koprucki, T., et al.: Model pathway diagrams for the representation of mathematical models. J. Opt. Quantum Electron. 50(2), 70 (2018).  https://doi.org/10.1007/s11082-018-1321-7
  15. [Kös+17]
    Köstler, H., et al.: A Scala prototype to generate multigrid solver implementations for different problems and target multi-core platforms. Int. J. Comput. Sci. Eng. 14(2), 150–163 (2017)Google Scholar
  16. [Len+14]
    Lengauer, C., et al.: ExaStencils: advanced stencil-code engineering. In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol. 8806, pp. 553–564. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-14313-2_47CrossRefGoogle Scholar
  17. [Mita]
    MitM/MoSIS. https://gl.mathhub.info/MitM/MoSIS. Accessed 18 Apr 2018
  18. [Mitb]
    MitM: The Math-in-the-Middle Ontology. https://mathhub.info/MitM. Accessed 05 Feb 2017
  19. [MMTa]
    MMT - Language and System for the Uniform Representation of Knowledge. Project web site. https://uniformal.github.io/. Accessed 30 Aug 2016
  20. [MMTb]
    UniFormal/MMT - The MMT Language and System. https://github.com/UniFormal/MMT. Accessed 24 Oct 10 2017
  21. [MoS]
    JupyterHub - MoSIS Demo. http://mosis.mathhub.info. Accessed 15 Apr 2018
  22. [ODK17]
    Kohlhase, M., Wiesing, T.: In-place computation in active documents (context/computation). Deliverable D4.9. OpenDreamKit (2017). https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP4/D4.9/-final.pdf
  23. [Pol]
    Pollinger, T.: interview\_kernel. https://gl.kwarc.info/theresa_pollinger/MoSIS. Accessed 11 Apr 2018
  24. [Pol17]
    Pollinger, T.: Knowledge representation for modeling and simulation - bridging the gap between informal PDE theory and simulations practice. Master’s thesis. Informatik, FAU Erlangen-Nürnberg (2017). https://gl.kwarc.info/supervision/MSc-archive/blob/master/2017/tpollinger/thesis.pdf
  25. [RK13]
    Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230, 1–54 (2013). http://kwarc.info/frabe/Research/mmt.pdfMathSciNetCrossRefGoogle Scholar
  26. [RKM17]
    Rupprecht, M., Kohlhase, M., Müller, D.: A flexible, interactive theory-graph viewer. In: Kohlhase, A., Pollanen, M. (eds.) MathUI 2017: The 12th Workshop on Mathematical User Interfaces (2017). http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf
  27. [Rü+16]
    Rüde, U., et al.: Research and education in computational science and engineering. In: arXiv:1610.02608 [cs, math, stat], 8 October 2016. arXiv:1610.02608. http://arxiv.org/abs/1610.02608. Accessed 23 Feb 2018

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Theresa Pollinger
    • 1
    Email author
  • Michael Kohlhase
    • 1
  • Harald Köstler
    • 1
  1. 1.Computer ScienceFAU Erlangen-NürnbergErlangenGermany

Personalised recommendations