Advertisement

Isabelle Import Infrastructure for the Mizar Mathematical Library

  • Cezary Kaliszyk
  • Karol Pąk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11006)

Abstract

We present an infrastructure that allows importing an initial part of the Mizar Mathematical Library into the Isabelle/Mizar object logic. For this, we first combine the syntactic information provided by the Mizar parser with the syntactic one originating from the Mizar verifier. The proof outlines are then imported by an Isabelle package, that translates particular Mizar directives to appropriate Isabelle meta-logic constructions. This includes processing of definitions, notations, typing information, and the actual theorem statements, so far without proofs. To show that the imported 100 articles give rise to a usable Isabelle environment, we use the environment to formalize proofs in the Isabelle/Mizar environment using the imported types and their properties.

References

  1. 1.
    Alama, J., Kohlhase, M., Mamane, L., Naumowicz, A., Rudnicki, P., Urban, J.: Licensing the Mizar mathematical library. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS (LNAI), vol. 6824, pp. 149–163. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22673-1_11CrossRefGoogle Scholar
  2. 2.
    Aspinall, D., Kaliszyk, C.: What’s in a theorem name? In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 459–465. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-43144-4_28CrossRefzbMATHGoogle Scholar
  3. 3.
    Bancerek, G., et al.: Mizar: State-of-the-art and beyond. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 261–279. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20615-8_17CrossRefGoogle Scholar
  4. 4.
    Bancerek, G., Urban, J.: Integrated semantic browsing of the Mizar mathematical library for authoring Mizar articles. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 44–57. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27818-4_4CrossRefzbMATHGoogle Scholar
  5. 5.
    Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016).  https://doi.org/10.1007/s10817-016-9362-8MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brown, C.E., Urban, J.: Extracting higher-order goals from the Mizar mathematical library. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 99–114. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42547-4_8CrossRefGoogle Scholar
  7. 7.
    Bylinski, C., Alama, J.: New developments in parsing Mizar. In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 427–431. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31374-5_30CrossRefGoogle Scholar
  8. 8.
    Corbineau, P., Kaliszyk, C.: Cooperative repositories for formal proofs. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) Calculemus/MKM -2007. LNCS (LNAI), vol. 4573, pp. 221–234. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73086-6_19CrossRefGoogle Scholar
  9. 9.
    Gauthier, T., Kaliszyk, C.: Sharing HOL4 and HOL light proof knowledge. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 372–386. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48899-7_26CrossRefzbMATHGoogle Scholar
  10. 10.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Four decades of Mizar. J. Autom. Reason. 55(3), 191–198 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20398-5_14CrossRefGoogle Scholar
  12. 12.
    Iancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar mathematical library in OMDoc: translation and applications. J. Autom. Reason. 50(2), 191–202 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Irving, G., Szegedy, C., Alemi, A.A., Eén, N., Chollet, F., Urban, J.: DeepMath - deep sequence models for premise selection. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) NIPS, pp. 2235–2243 (2016)Google Scholar
  14. 14.
    Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 51–66. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39634-2_7CrossRefGoogle Scholar
  15. 15.
    Kaliszyk, C., Pąk, K.: Semantics of Mizar as an Isabelle object logic (submitted). http://cl-informatik.uibk.ac.at/cek/submitted/ckkp-jar17.pdf
  16. 16.
    Kaliszyk, C., Pąk, K.: Presentation and manipulation of Mizar properties in an Isabelle object logic. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 193–207. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62075-6_14CrossRefGoogle Scholar
  17. 17.
    Kaliszyk, C., Pąk, K.: Progress in the independent certification of Mizar mathematical library in Isabelle. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, pp. 227–236 (2017)Google Scholar
  18. 18.
    Kaliszyk, C., Pąk, K., Urban, J.: Towards a Mizar environment for Isabelle: foundations and language. In: Avigad, J., Chlipala, A. (eds.) Proceedings of the 5th Conference on Certified Programs and Proofs (CPP 2016), pp. 58–65. ACM (2016)Google Scholar
  19. 19.
    Kaliszyk, C., Urban, J.: Learning-assisted theorem proving with millions of lemmas. J. Symb. Comput. 69, 109–128 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3), 245–256 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Naumowicz, A., Piliszek, R.: Accessing the Mizar library with a weakly strict Mizar parser. In: Kohlhase, M., Johansson, M., Miller, B., de Moura, L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 77–82. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42547-4_6CrossRefGoogle Scholar
  22. 22.
    Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302. Springer, Heidelberg (2006).  https://doi.org/10.1007/11814771_27CrossRefGoogle Scholar
  23. 23.
    Pąk, K.: Combining the syntactic and semantic representations of Mizar proofs (submitted)Google Scholar
  24. 24.
    Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360. Springer, Heidelberg (2006).  https://doi.org/10.1007/11618027_23CrossRefGoogle Scholar
  25. 25.
    Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reason. 37(1–2), 21–43 (2006)zbMATHGoogle Scholar
  26. 26.
    Urban, J., Bancerek, G.: Presenting and explaining Mizar. Electr. Notes Theor. Comput. Sci. 174(2), 63–74 (2007)CrossRefGoogle Scholar
  27. 27.
    Urban, J., Sutcliffe, G.: ATP-based cross-verification of Mizar proofs: method, systems, and first experiments. Math. Comput. Sci. 2(2), 231–251 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wenzel, M.: Isabelle as document-oriented proof assistant. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS (LNAI), vol. 6824, pp. 244–259. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22673-1_17CrossRefGoogle Scholar
  29. 29.
    Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71067-7_7CrossRefGoogle Scholar
  30. 30.
    Wenzel, M., Wiedijk, F.: A comparison of Mizar and Isar. J. Autom. Reason. 29(3–4), 389–411 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universität InnsbruckInnsbruckAustria
  2. 2.Uniwersytet w BiałymstokuBiałystokPoland

Personalised recommendations