Literature Review

  • Nikos C. Apostolopoulos


In this chapter, stretching is defined with reference made to various stretching techniques. An understanding of how force (generated by stretching) affects soft and connective tissue is looked at both macroscopically (muscle, tendon, myotendon junction) and microscopically (sarcomere, myofibrillar proteins, ECM). By referring to these levels, an appreciation is gained of how the magnitude and rate of force generated during stretching affects the body as a whole. In order to elucidate this further, reference is made to inflammation and exercise, both non-damaging and damaging. With stretching considered as a load on tissue, a comprehensive overview is focused on damaging exercise, neutrophils, macrophages, and cytokines and their importance with regard to acute inflammation. The idea is proposed that stretching intensity be considered as a mechanotransduction mechanism. Mechanotransduction refers to the process by which the cells and tissues of the body respond to their environment, with the conversion of a mechanical energy into biochemical signals. Tensegrity is the main tenant of mechanotransduction, concerned with the essential maintenance of mechanical stability, which may be influenced by stretching intensity. Depending on the stretching intensity, this may or may not prompt an inflammatory response.


Stretching Stretching magnitude Information Muscle Tendons Myotendon unit Sarcomere Sarcomeric proteins Intermediate filaments Cytokines ECM Calpains Neutrophils Macrophages Mechanotransduction Tensegrity 


  1. Abdel-Aziem, A. A., Draz, A. H., Mosaad, D. M., & Abdelraou, O. R. (2013). Effect of body position and type of stretching on hamstring flexibility. International Journal of Medical Research and Health Sciences, 2, 399–406.CrossRefGoogle Scholar
  2. Ackermann, M. A., Ziman, A. P., Strong, J., Zhang, Y., Hartford, A. K., Ward, C. W., et al. (2011). Integrity of the network sarcoplasmic reticulum in skeletal muscle requires small ankyrin 1. JCS, 124, 3619–3630.CrossRefGoogle Scholar
  3. ACSM. (2006). ACSM’s guidelines for exercise testing and prescription. Baltimore, MD: Lippincot Williams Wilkins.Google Scholar
  4. Adams, R. J., & Schwartz, A. (1980). Comparative mechanisms for contraction of cardiac and skeletal muscle. Chest, 78, S123–S139.CrossRefGoogle Scholar
  5. Adelstein, R. S. (1983). Regulation of contractile proteins by phosphorylation. JCI, 72, 1863–1866.PubMedCrossRefGoogle Scholar
  6. Agarkova, I., Ehler, E., Lange, S., Schoenuer, R., & Perriard, J. C. (2003). M-band: A safeguard for sarcomere stability. Journal of Muscle Research and Cell Motility, 24, 191–203.PubMedCrossRefGoogle Scholar
  7. Agarkova, I., & Perriard, J. C. (2005). The M-band: An elastic web that crosslinks thick filaments in the center of the sarcomere. Trends in Cell Biology, 15, 477–485.PubMedCrossRefGoogle Scholar
  8. Agbulut, O., Li, Z., Perie, S., Ludosky, M.-A., Paulin, D., Cartaud, J., et al. (2001). Lack of desmin results in abortive muscle regeneration and modifications in synaptic structure. Cell Motility and the Cytoskeleton, 49, 51–66.PubMedCrossRefGoogle Scholar
  9. Ahearne, M. (2014). Introduction to cell-hydrogel mechanosensing. Interface Focus, 4, 1–12.CrossRefGoogle Scholar
  10. Ahn, A. C., Tewari, M., Poon, C.-S., & Phillips, R. S. (2006). The limits of reductionism in medicine: Could systems biology offer an alternative? PLoS Medicine, 3, 709–713.Google Scholar
  11. Akerstrom, T. C. A., Steensberg, A., Keller, P., Keller, C., Penkowa, M., & Pedersen, B. K. (2005). Exercise induces interleukin-8 expression in human skeletal muscle. The Journal of Physiology, 563, 507–516.PubMedCrossRefGoogle Scholar
  12. Akhmanova, M., Osidak, E., Domogatsky, S., Rodin, S., & Domogatskaya, A. (2015). Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research. Stem Cells International, 2015, 1–35.CrossRefGoogle Scholar
  13. Akimoto, T., Furudate, M., Saitoh, M., Sugiura, K., Waku, T., Akama, T., et al. (2002). Increased plasma concentrations of intercellular adhesion molecule-1 after strenuous exercise associated with muscle damage. European Journal of Applied Physiology, 86, 185–190.PubMedCrossRefGoogle Scholar
  14. Akira, S., Hirano, T., Taga, T., & Kishimoto, T. (1990). Biology of multifunctional cytokines: IL-6 and related molecules (IL-1 and TNF). FASEB, 4, 2860–2867.CrossRefGoogle Scholar
  15. Akira, S., Taga, T., & Kishimoto, T. (1993). Interleukin-6 in biology and medicine. Advances in Immunology, 54, 1–78.CrossRefGoogle Scholar
  16. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Biology of the Cell (4th ed.). New York: Garland Science.Google Scholar
  17. Alenghat, F. J., & Ingber, D. E. (2002). Mechanotransduction: All signals point to cytoskeleton, matrix, and integrins. Science’s STKE, 119, 1–4.Google Scholar
  18. Alexander, R. M. (1991). Energy-saving mechanisms in walking and running. The Journal of Experimental Biology, 160, 55–69.PubMedGoogle Scholar
  19. Alexander, R. M., & Bennett-Clark, H. C. (1977). Storage of elastic strain energy in muscle and other tissues. Nature, 265, 114–117.PubMedCrossRefGoogle Scholar
  20. Allen, D. G. (2001). Eccentric muscle damage: Mechanisms of early reduction of force. Acta Physiologica Scandinavica, 171, 311–319.PubMedCrossRefGoogle Scholar
  21. Al-Mokdad, M., Shibata, F., & Nakagawa, H. (1997). Effects of cytokine-induced neutrophil chemoattractants (CINCs) on shape change, adhesiveness and phagocytosis of rat neutrophils. Biological & Pharmaceutical Bulletin, 20, 920–923.CrossRefGoogle Scholar
  22. Anastasi, G., Amato, A., Tarone, G., Vita, G., Monici, M. C., Magaudda, L., et al. (2003). Distribution and localization of vinculin-talin-integrin system and dystrophin-glycoprotein complex in human skeletal muscle - immunohistochemical study using confocal laser scanning microscopy. Cells, Tissues, Organs, 175, 151–164.PubMedCrossRefGoogle Scholar
  23. Anastasi, G., Cutroneo, G., Gaeta, R., Di Mauro, D., Arco, A., Consolo, A., et al. (2009). Dystrophin-glycoprotein complex and vinculin-talin-integrin system in human adult cardiac muscle. International Journal of Molecular Medicine, 23, 149–159.PubMedGoogle Scholar
  24. Anastasi, G., Cutroneo, G., Rizzo, G., Arco, A., Santoro, A., Bramanti, P., et al. (2004). Sarcoglycan and integrin localization in normal human skeletal muscle: A confocal laser scanning microscope study. European Journal of Histochemistry, 48, 245–252.PubMedGoogle Scholar
  25. Anastasi, G., Cutroneo, G., Santoro, A., Arco, A., Rizzo, G., Bramanti, P., et al. (2008). Costameric proteins in human skeletal muscle during muscular inactivity. Journal of Anatomy, 213, 284–295.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Anastasi, G., Cutroneo, G., Santoro, G., Arco, A., Rizzo, G., Trommino, C., et al. (2006). Integrins, muscle agrin and sarcoglycans during muscular inactivity conditions: An immunohistochemical study. European Journal of Histochemistry, 50, 327–336.PubMedGoogle Scholar
  27. Anderson, J., Li, Z., & Goubel, F. (2001). Passive stiffness is increased in soleus muscle of desmin knockout mouse. Muscle & Nerve, 24, 1090–1092.CrossRefGoogle Scholar
  28. Apostolopoulos, N., Metsios, G. S., Flouris, A. D., Koutedakis, Y., & Wyon, M. (2015). The relevance of stretch intensity and position - A systematic review. Frontiers in Psychology, 6, 1128.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Archambault, J., Tsuzaki, M., Heerzog, W., & Banes, A. J. (2002). Stretch and interleukin-1β induce matrix metalloproteinases in rabbit tendon cells in vitro. Journal of Orthopaedic Research, 20, 36–39.PubMedCrossRefGoogle Scholar
  30. Arey, B. J. (Ed.). (2012). The role of glycosylation in receptor signaling. London: InTech.Google Scholar
  31. Armstrong, R. B. (1990). Initial events in exercise-induced muscular injury. Medicine and Science in Sports and Exercise, 22, 429–435.PubMedCrossRefGoogle Scholar
  32. Armstrong, R. B., Duan, C., Delp, M. D., Hayes, D. A., Glen, G. M., & Allen, G. D. (1993). Elevations in rat soleus muscle [Ca2+] with passive stretch. Journal of Applied Physiology, 74, 2990–2997.PubMedCrossRefGoogle Scholar
  33. Armstrong, R. B., Ogilvie, R. W., & Schwane, J. A. (1983). Eccentric exercise-induced injury to rat skeletal muscle. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 54, 80–93.CrossRefGoogle Scholar
  34. Arnold, L., Henry, A., Poron, F., Baba-Amer, Y., Van Rooijen, N., Plonquet, A., et al. (2007). Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. JEM, 204, 1057–1069.CrossRefGoogle Scholar
  35. Aronson, D., Wojtaszewski, J. F., Thorell, A., Nygren, J., Zangen, D., Richter, E. A., et al. (1998). Extracellular-regulated protein kinase cascades are activated in response to injury in human skeletal muscle. American Journal of Physiology. Cell Physiology, 275, C555–C561.CrossRefGoogle Scholar
  36. Ashcroft, G. S. (1999). Bidirectional regulation of macrophage function by TGF-β. Microbes and Infection, 1, 1275–1282.PubMedCrossRefGoogle Scholar
  37. Atabai, K., Jame, S., Azhar, N., Kuo, A., Lam, M., Mckleory, W., et al. (2009). Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages. The Journal of Clinical Investigation, 119, 3713–3722.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Atherton, P., Stutchbury, B., Jethwa, D., & Ballestrem, C. (2016). Mechanosensitive components of integrin adhesions: Role of vinculin. Experimental Cell Research, 343, 21–27.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Atherton, P., Stutchbury, B., Wang, D.-Y., Jethwa, D., Tsang, R., Meiler-Rodriguez, E., et al. (2015). Vinculin controls talin engagement with the actomyosin machinery. Nature Communications, 6, 10038.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Atreya, R., Mudter, J., Finotto, S., Mullberg, J., Jostock, T., Wirtz, S., et al. (2000). Blockade of interleukin trans signaling T-cell resistance against apoptosis in chronic intestinal inflammation: Evidence in crohn disease and experimental colitis in vivo. Nature Medicine, 6, 583–588.PubMedCrossRefGoogle Scholar
  41. Aumailley, M., & Smyth, N. (1998). The role of laminins in basement membrane function. Journal of Anatomy, 193, 1–21.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Avela, J., Kyrolainen, H., & Komi, P. (1999). Altered reflex sensitivity after repeated and prolonged passive muscle stretching. Journal of Applied Physiology, 86, 1283–1291.PubMedCrossRefGoogle Scholar
  43. Ayalon, G., Hostettler, J. D., Hoffman, J., Kizhatil, K., Davis, J. Q., & Bennett, V. (2011). Ankyrin-B interactions with spectrin and dynactin-4 are required for dystrophin-based protection of skeletal muscle from exercise injury. JBC, 286, 7370–7378.CrossRefGoogle Scholar
  44. Badylak, S. F. (2002). The extracellular matrix as a scaffold for tissue reconstruction. Seminars in Cell & Developmental Biology, 13, 377–383.CrossRefGoogle Scholar
  45. Baldwin, A. K., Simpson, A., Steer, R., Cain, S. A., & Kielty, C. M. (2013). Elastic fibres in health and disease. Expert Reviews in Molecular Medicine, 15, 1–30.CrossRefGoogle Scholar
  46. Balnave, C. D., & Allen, D. G. (1995). Intracellular calcium and force in single mouse muscle fibres following repeated contractions with stretch. The Journal of Physiology, 488, 25–36.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Balnave, C. D., Davey, D. F., & Allen, D. G. (1997). Distribution of sarcomere length and intracellular calcium in mouse skeletal muscle following stretch-induced injury. The Journal of Physiology, 502, 649–659.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Bandy, W., Irion, J. M., & Briggler, M. (1997). The effect of time and frequency of static stretching on flexibility of the hamstring muscles. Physical Therapy, 77, 1090–1096.PubMedCrossRefGoogle Scholar
  49. Banes, A. J., Tsuzaki, M., Yamamoto, J., Fischer, T., Brigman, B., Brown, T., et al. (1995). Mechanotransduction at the cellular level: The detection, interpretation, and diversity of responses to mechanical signals. Biochemistry and Cell Biology, 73, 349–365.PubMedCrossRefGoogle Scholar
  50. Bang, M.-L., Centner, T., Fornoff, F., Geach, A. J., Gothardt, M., Mcnabb, M., et al. (2001). The complete gene sequence of titin, expression of an unusual 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circulation Research, 89, 1065–1072.PubMedCrossRefGoogle Scholar
  51. Bang, M.-L., Li, X., Littlefield, R., Bremner, S., Thor, A., Knowlton, K. U., et al. (2006). Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. JCB, 173, 905–916.PubMedCrossRefGoogle Scholar
  52. Bao, Z. Z., Lakonishok, M., Kaufman, S. J., & Horwitz, A. F. (1993). α7β1 integrin is a component of the myotendinous junction on skeletal muscle. JCS, 106, 579–590.Google Scholar
  53. Barash, I. A., Mathew, L., Lahey, M., Greaser, M. L., & Lieber, R. L. (2005). Muscle LIM protein plays both structural and functional roles in skeletal muscle. American Journal of Physiology-Cell Physiology, 289, C1312–C1320.PubMedCrossRefGoogle Scholar
  54. Barbieri, E., & Sestili, P. (2012). Reactive oxygen species in skeletal muscle signaling. Journal of Signal Transduction, 2012, 1–17.CrossRefGoogle Scholar
  55. Barczyk, M., Carracedo, S., & Gulberg, D. (2010). Integrins. Cell and Tissue Research, 339, 269–280.PubMedCrossRefGoogle Scholar
  56. Baron, L., & Wynn, T. A. (2011). Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. American Journal of Physiology. Gastrointestinal and Liver Physiology, 300, G723–G728.CrossRefGoogle Scholar
  57. Barral, J. M., & Epstein, H. F. (1999). Protein machines and self assembly in muscle organization. BioEssays, 21, 813–823.PubMedCrossRefGoogle Scholar
  58. Barral, J. M., Hutagalung, A. H., Brinker, A., Hartl, U., & Epstein, H. F. (2002). Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science, 295, 669–671.PubMedCrossRefGoogle Scholar
  59. Barton, B. E. (1997). IL-6: Insights into novel biological activities. Clinical Immunology and Immunopathology, 85, 16–20.PubMedCrossRefGoogle Scholar
  60. Barua, B., Winkelmann, D. A., White, H. D., & Hitchcock-Degregori, S. E. (2012). Regulation of actin-myosin interaction by conserved periodic sites of tropomyosin. Proceedings of the National Academy of Sciences of the USA, 109, 18425–18430.PubMedCrossRefGoogle Scholar
  61. Batters, C., Veigel, C., Homsher, E., & Sellers, J. R. (2014). To understand muscle you must take it apart. Frontiers in Physiology, 5, 1–14.CrossRefGoogle Scholar
  62. Baumann, H., & Gauldie, J. (1990). Regulation of acute phase plasma protein genes by hepatocyte stimulating factors and other mediators of inflammation. Molecular Biology & Medicine, 7, 147–159.Google Scholar
  63. Beer, S. (1975). Preface. In H. R. Maturana & F. J. Varela (Eds.), Autopoietic systems. BLC Report 9. Champaign, IL: University of Illinois.Google Scholar
  64. Behm, D. G., & Chaouachi, A. (2011). A review of the acute effects of static and dynamic stretching on performance. European Journal of Applied Physiology, 11, 2633–2651.CrossRefGoogle Scholar
  65. Behm, D. G., & Kibele, A. (2007). Effects of differing intensities of static stretching on jump performance. European Journal of Applied Physiology, 101, 587–594.CrossRefGoogle Scholar
  66. Belcastro, A., Arthur, G., Albisser, T., & Raj, D. (1996). Heart, liver and skeletal muscle myeloperoxidase activity during exercise. Journal of Applied Physiology, 80, 1331–1335.PubMedCrossRefGoogle Scholar
  67. Belcastro, A., Shewchuk, L. D., & Raj, D. A. (1998). Exercise-induced muscle injury: A calpain hypothesis. Molecular and Cellular Biochemistry, 179, 135–145.PubMedCrossRefGoogle Scholar
  68. Belcastro, A. N., Maclean, I., & Gilchrist, J. S. (1985). Biochemical basis of muscle fatigue associated with repetitious contractions of skeletal muscle. The International Journal of Biochemistry, 17, 447–453.PubMedCrossRefGoogle Scholar
  69. Belcastro, A. N., Parkhouse, W., Dobson, G., & Gilchrist, J. S. (1988). Influence of exercise on cardiac and skeletal muscle myofibrillar proteins. Molecular and Cellular Biochemistry, 83, 27–36.PubMedCrossRefGoogle Scholar
  70. Belkin, A. M., Zhidkova, N. I., Balzac, F., Altruda, F., Tomatis, D., Maier, A., et al. (1996). β1D integrin displaces the β1A isoform in striated muscles: Localization at junctional structures and signaling potential in nonmuscle cells. JCB, 132, 211–226.PubMedCrossRefGoogle Scholar
  71. Bellin, R. M., Huiatt, T. W., Critchley, D. R., & Robson, R. M. (2001). Synemin may function to directly link muscle cell intermediate filaments to both myofibrillar Z-lines and costameres. The Journal of Biological Chemistry, 276, 32330–32337.PubMedCrossRefGoogle Scholar
  72. Bencze, M., Negroni, E., Vallese, D., Yacoub-Youssef, H., Chaouch, S., Wolff, A., et al. (2012). Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Molecular Therapy, 20, 2168–2179.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Benjamin, M., Evans, E. J., & Copp, L. (1986). The histology of tendon attachments to bone in man. Journal of Anatomy, 149, 89–100.PubMedPubMedCentralGoogle Scholar
  74. Benjamin, M., & Ralphs, J. R. (1998). Fibrocartilage in tendons and ligaments-an adaptation to compressive load. Journal of Anatomy, 193, 481–494.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Berchtold, M. W., Brinkmeier, H., & Muntener, M. (2000). Calcium ion in skeletal muscle: Its crucial role for muscle function, plasticity, and disease. Physiological Reviews, 80, 1216–1265.CrossRefGoogle Scholar
  76. Bershadsky, A. D., Balaban, N. Q., & Geiger, B. (2003). Adhesion-dependent cell mechanosensitivity. Annual Review of Cell and Developmental Biology, 19, 677–695.PubMedCrossRefGoogle Scholar
  77. Bevilacqua, M. P., Pober, J. S., Mendrick, D. L., Cotran, R. S., & Gimbrone Jr., M. A. (1987). Identification of an inducible endothelial-leukocyte adhesion molecule. Proceedings of the National Academy of Sciences of the USA, 529, 9238–9242.CrossRefGoogle Scholar
  78. Bickel, M. (1993). The role of interleukin-8 in inflammation and mechanisms of regulation. Journal of Periodontology, 64, 456–460.PubMedGoogle Scholar
  79. Biebricher, C. K., Nicolis, G., & Schuster, P. (1995). Self-organization in the physico-chemical and life sciences. Brussels, Belgium: European Commission.Google Scholar
  80. Bissell, M. J., & Aggeler, J. (1987). Dynamic reciprocity: How do extracellular matrix hormones direct gene expression? Progress in Clinical and Biological Research, 249, 251–262.PubMedGoogle Scholar
  81. Bo Lauersen, J., Bertelsen, D. M., & Bo Andersen, L. (2014). The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomised controlled trials. British Journal of Sports Medicine, 48, 871–877.CrossRefGoogle Scholar
  82. Bobbert, M. F., Ettema, G. C., & Huijing, P. A. (1990). The force-length relationship of a muscle-tendon complex: Experimental results and model calculations. European Journal of Applied Physiology, 61, 323–329.CrossRefGoogle Scholar
  83. Border, W. A., & Noble, N. A. (1994). Transforming growth factor beta in tissue fibrosis. The New England Journal of Medicine, 331, 1286–1292.PubMedCrossRefGoogle Scholar
  84. Borejdo, J., Ushakov, D. S., & Akopova, I. (2002). Regulatory and essential light chains of myosin rotate equally during contraction of skeletal muscle. Biophysical Journal, 82, 3150–3159.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Borovikov, Y. S., & Gusev, N. B. (1983). Effect of troponin-tropomyosin complex and Ca2+ on conformational changes. European Journal of Biochemistry, 136, 363–369.PubMedCrossRefGoogle Scholar
  86. Bosurgi, L., Manfredi, A. A., & Rovere-Querini, P. (2011). Macrophages in injured skeletal muscle: A perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. Frontiers in Immunology, 2, 1–10.CrossRefGoogle Scholar
  87. Bouffard, N. A., Cutroneo, K. R., Badger, G. J., White, S. L., Buttoplph, T. R., Paul Ehrlich, H., et al. (2008). Tissue stretch decreases soluble TGF-β1 and Type-1 procollagen in mouse subcutaneous connective tissue: Evidence from ex vivo and in vivo models. Journal of Cellular Physiology, 214, 389–395.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Bowen, T., Jenkins, R. H., & Fraser, D. J. (2013). MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. The Journal of Pathology, 229, 274–285.PubMedCrossRefGoogle Scholar
  89. Bowman, W. (1840). On the minute structure and movements of voluntary muscle. Philosophical Transactions of the Royal Society B, 130, 457–501.CrossRefGoogle Scholar
  90. Bozyczko, D., Decker, C., Muschler, J., & Horwitz, A. F. (1989). Integrin on developing and adult skeletal muscle. Experimental Cell Research, 183, 72–91.PubMedCrossRefGoogle Scholar
  91. Bradley, P. S., Olsen, P. D., & Portas, M. D. (2007). The effect of static, ballistic and proprioceptive neuromuscular facilitation stretching on vertical jump performance. Journal of Strength and Conditioning Research, 21, 223–226.PubMedCrossRefGoogle Scholar
  92. Brand, P. (1984). Clinical mechanics of the hand. St. Louis, MO: CV Mosby.Google Scholar
  93. Brandenburg, J. P. (2006). Duration of stretch does not influence the degree of force loss following static stretching. The Journal of Sports Medicine and Physical Fitness, 46, 526–534.PubMedGoogle Scholar
  94. Brigitte, M., Schilte, C., Plonquet, A., Baba-Amer, Y., Henri, A., Charlier, C., et al. (2010). Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis and Rheumatism, 62, 268–279.PubMedCrossRefGoogle Scholar
  95. Brockett, C. L., Morgan, D. L., & Proske, U. (2001). Human hamstring muscles adapt to eccentric exercise by changing optimum length. Medicine & Science in Sports & Exercise, 33, 783–790.CrossRefGoogle Scholar
  96. Brooks, S. V., Zerba, E., & Faulkner, J. A. (1995). Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice. The Journal of Physiology, 488, 459–469.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Brown, D. L., Kao, W. W. Y., & Greenhalgh, D. G. (1992). Apoptosis down-regulates inflammation under the advancing epithelial wound edge: Delayed patterns in diabetes and improvement with topical growth factors. Surgery, 121, 327–380.Google Scholar
  98. Brown, L., & Hill, L. (1991). Some observations on variations in filament overlap in tetanized muscle fibres and fibres stretched during tetanus, detected in the electron microscope after rapid fixation. Journal of Muscle Research and Cell Motility, 12, 171–182.PubMedCrossRefGoogle Scholar
  99. Bruton, A. (2002). Muscle plasticity response to training and detraining. Physiotherapy, 88, 398–408.CrossRefGoogle Scholar
  100. Bruunsgaard, H., Galbo, H., Halkjaer, K. J., Johansen, T. L., Maclean, D. A., & Pedersen, B. K. (1997). Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage. The Journal of Physiology, 499, 833–841.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Bruunsgaard, H., Skinhoj, P., Qvist, J., & Pedersen, B. K. (1999). Elderly humans show prolonged in vivo inflammatory activity during pneumococcal infections. The Journal of Infectious Diseases, 180, 551–554.PubMedCrossRefGoogle Scholar
  102. Burkholder, T. J. (2007). Mechanotransduction in skeletal muscle. Frontiers in Bioscience, 12, 174–191.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Burkholder, T. J., Fingado, S., Baron, S., & Lieber, R. L. (1994). Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hind limb. Journal of Morphology, 221, 177–190.PubMedCrossRefGoogle Scholar
  104. Burkin, D. J., & Kaufman, S. J. (1999). The α7β1 integrin in muscle development and disease. Cell and Tissue Research, 296, 183–190.PubMedCrossRefGoogle Scholar
  105. Burridge, K., & Guilluy, C. (2016). Focal adhesions, stress fibers and mechanical tension. Experimental Cell Research, 343, 14–20.PubMedCrossRefGoogle Scholar
  106. Butterfield, T. A., Best, T. M., & Merrick, M. A. (2006). The dual roles of neutrophils and macrophages in inflammation: A critical balance between tissue damage and repair. JAT, 41, 457–465.PubMedGoogle Scholar
  107. Bystrom, J., Evans, I., Newson, J., Stables, M., Toor, I., Van Rooijen, N., et al. (2008). Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood, 112, 4117–4127.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Caldwell, J. E., Heiss, S. G., Mermall, V., & Cooper, J. A. (1989). Effects of CapZ, an actin capping protein of muscle, on the polymerization of actin. The Biochemist, 28, 8506–8514.CrossRefGoogle Scholar
  109. Campbell, I. D., & Humphries, M. J. (2011). Integrin structure, activation, and interactions. Cold Spring Harbor Perspectives in Biology, 2011, 1–14.Google Scholar
  110. Campbell, K. P. (1995). Three muscular dystrophies: Loss of cytoskeleton-extracellular matrix linkage. Cell, 80, 675–679.PubMedCrossRefGoogle Scholar
  111. Camus, G., Pincemail, J., Ledent, M., Juchmes-Ferr, A., Lamy, M., Deby-Duupont, G., et al. (1992). Plasma levels of polymorphonuclear elastase and myeloperoxidase after uphill walking and downhill running at similar energy cost. International Journal of Sports Medicine, 13, 443–446.PubMedCrossRefGoogle Scholar
  112. Cannon, J. G., & Kluger, M. J. (1983). Endogenous pyrogen activity in human plasma after exercise. Science, 220, 617–619.PubMedCrossRefGoogle Scholar
  113. Cannon, J. G., & St. Pierre, B. A. (1998). Cytokines in exertion-induced skeletal muscle injury. Molecular and Cellular Biochemistry, 179, 159–167.PubMedCrossRefGoogle Scholar
  114. Canon, J., Meydani, S., Fielding, R. A., Fiatarone, M. A., Meydani, M., Farhangmehr, M., et al. (1991). Acute phase response in exercise II. Associations between vitamin E, cytokines, and muscle proteolysis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 260, R1235–R1240.CrossRefGoogle Scholar
  115. Capetanaki, Y., Bloch, R. J., Kouloumenta, A., Mavroidis, M., & Psarras, S. (2007). Muscle intermediate filaments and their links to membranes and membranous organelles. Experimental Cell Research, 313, 2063–2076.PubMedCrossRefGoogle Scholar
  116. Caplan, N., Rogers, R., Parr, M., & Hayes, P. (2009). The effect of proprioceptive neuromuscular facilitation and static stretch training on running mechanics. Journal of Strength and Conditioning Research, 23, 1175–1180.PubMedCrossRefGoogle Scholar
  117. Carlos, T. M., & Harlan, J. M. (1994). Leukocyte-endothelial adhesion molecules. Blood, 84, 2068–2101.PubMedGoogle Scholar
  118. Carlson, B. M., & Faulkner, J. A. (1983). The regeneration of skeletal muscle fibers following injury: A review. Medicine and Science in Sports and Exercise, 15, 187–198.PubMedCrossRefGoogle Scholar
  119. Carver, W., & Goldsmith, E. C. (2013). Regulation of tissue fibrosis by the biomechanical environment. BioMed Research International, 2013, 1–10.CrossRefGoogle Scholar
  120. Castell, J. V., Gomez-Lechion, M. J., David, M., Fabra, R., Trullenque, R., & Heinrich, P. C. (1990). Acute-phase response of human hepatocytes: Regulation of acute-phase protein synthesis by interleukin-6. Hepatology, 12, 1179–1186.PubMedCrossRefGoogle Scholar
  121. Cavaillon, J. M. (2001). Pro-versus anti-inflammatory cytokines: Myth or reality. Cellular and Molecular Biology (Noisy-le-Grand, France), 47, 695–702.Google Scholar
  122. Chaar, V., Romana, M., Tripetter, J., Broquere, C., Huisse, M.-G., Hue, O., et al. (2011). Effect of strenuous physical exercise on circulating cell-derived microparticles. Clinical Hemorheology and Microcirculation, 47, 15–25.PubMedGoogle Scholar
  123. Chalmers, G. (2004). Re-examination of the possible role of golgi tendon organ and muscle spindle reflexes in proprioceptive facilitation muscle stretching. Sports Biomechanics, 3, 159–183.PubMedCrossRefGoogle Scholar
  124. Chan, M. H., Carey, A. L., Watt, M. J., & Febbraio, M. A. (2004). Cytokine gene expression in human skeletal muscle during concentric contraction: Evidence that IL-8, like IL-6, is influenced by glycogen availability. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287, R322–R327.PubMedCrossRefGoogle Scholar
  125. Chandler, T., Kinbler, W., Uhl, T., Wooten, B., Kiser, A., & Stone, E. (1990). Flexibility comparisons of junior elite tennis players to other athletes. The American Journal of Sports Medicine, 18, 134–136.PubMedCrossRefGoogle Scholar
  126. Chapman, M. A., Meza, R., & Lieber, R. L. (2016). Skeletal muscle fibroblasts in health and disease. Differentiation, 92, 108–115.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Charge, S. B., & Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological Reviews, 84, 209–238.PubMedCrossRefGoogle Scholar
  128. Charturvedi, V., Dye, D. E., Kinnear, B. F., Van Kuppevelt, T. H., Grounds, M. D., & Coombe, D. R. (2015). Interactions between skeletal muscle myoblast and the extracellular matrix revealed by a serum free culture system. PLoS One, 2015, 1–27.Google Scholar
  129. Charvet, B., Ruggiero, F., & Le Guellec, D. (2012). The development of the myotendinous junction. A review. Muscles, Ligaments, and Tendons Journal, 2, 53–63.Google Scholar
  130. Chen, C. S. (2008). Mechanotransduction - A field pulling together? Journal of Cell Science, 121, 3285–3292.PubMedCrossRefGoogle Scholar
  131. Chen, C. S., Tan, J., & Tien, J. (2004). Mechanotransduction at cell-matrix and cell-cell contacts. Annual Review of Biomedical Engineering, 6, 275–302.PubMedCrossRefGoogle Scholar
  132. Chen, Q., Fisher, D. T., Clancy, K. A., Gauquet, J. M., Wang, W. C., Unger, E., et al. (2006). Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nature Immunology, 7, 1299–1308.PubMedCrossRefGoogle Scholar
  133. Cheung, K., Hume, P., & Maxwell, L. (2003). Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Medicine, 33, 145–164.CrossRefGoogle Scholar
  134. Chew, M. W. K., & Squire, J. M. (1995). Packing of a-helical coiled-coil myosin rod in vertebrate muscle thick filaments. Journal of Structural Biology, 115, 233–249.PubMedCrossRefGoogle Scholar
  135. Chikenji, T., Gingery, A., Zhao, C., Vanhees, M., Moriya, T., Reisdorf, R., et al. (2014). Transforming growth factor-β (TGF-β) expression is increased in the subsynovial connective tissue in a rabbit model of carpal tunnel syndrome. PLoS One, 9, 1–6.CrossRefGoogle Scholar
  136. Chiquet, M. (1999). Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biology, 18, 417–426.PubMedCrossRefGoogle Scholar
  137. Chiquet, M., Renedo, A. S., Huber, F., & Fluck, M. (2003). How do fibroblasts translate mechanical signals into changes in extracellular matrix production. Matrix Biology, 22, 73–80.PubMedCrossRefGoogle Scholar
  138. Ciobanasu, C., Faivre, B., & Le Clainche, C. (2013). Integrating actin dynamics, mechanotransduction and integrin activation: The multiple functions of actin binding proteins in focal adhesions. European Journal of Cell Biology, 92, 339–348.PubMedCrossRefGoogle Scholar
  139. Ciobanasu, C., Faivre, B., & Le Clainche, C. (2014). Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring. Nature Communications, 5, 3095.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Clark, K., Langeslag, M., Figdor, C. G., & Van Leeuwen, F. N. (2007). Myosin II and mechanotransduction: A balancing act. Trends in Cell Biology, 17, 178–186.PubMedCrossRefGoogle Scholar
  141. Clark, K. A., Mcelhinny, A. S., Beckerle, M. C., & Gregorio, C. C. (2002). Striated muscle cytoarchitecture: An intricate web of form and function. Annual Review of Cell and Developmental Biology, 18, 637–706.PubMedCrossRefGoogle Scholar
  142. Clarkson, P. M., & Hubal, M. J. (2002). Exercise-induced muscle damage in humans. American Journal of Physical Medicine & Rehabilitation, 81, S52–S69.CrossRefGoogle Scholar
  143. Coffey, D. S. (1998). Self organization, complexity and chaos: The new biology of medicine. Nature Medicine, 4, 882–885.PubMedCrossRefGoogle Scholar
  144. Colditz, I., Zwahlen, R., Dewald, B., & Baggiolini, M. (1989). In vivo inflammatory activity of neutrophil-activating factor, a novel chemotactic peptide derived from human monocytes. The American Journal of Pathology, 134, 755–760.PubMedPubMedCentralGoogle Scholar
  145. Condon, S. M., & Hutton, R. S. (1987). Soleus muscle electromyographic activity and ankle dorsiflexion range of motion during four stretching procedures. Physical Therapy, 67, 24–30.PubMedCrossRefGoogle Scholar
  146. Connelly, R., & Back, A. (1998). Mathematics and tensegrity: Group and representation theory make it possible to form a complete catalogue of “strut-cable” constructions with prescribed symmetries. American Scientist, 86, 142–151.CrossRefGoogle Scholar
  147. Conover, G. M., & Gregorio, C. C. (2011). The desmin coil 1B mutation K190 impairs nebulin Z-disc assembly and destabilizes actin thin filaments. JCS, 124, 3464–3476.CrossRefGoogle Scholar
  148. Cornwell, A., Nelson, A. G., & Sidaway, B. (2002). Acute effects of stretching on the neuromechanical properties of the triceps surae complex. European Journal of Applied Physiology, 86, 428–434.PubMedCrossRefGoogle Scholar
  149. Costa, M. L., Escaleira, R., Cataldo, A., Oliveira, F., & Mermelstein, C. S. (2004). Desmin: Molecular interactions and putative functions of the muscle intermediate filament protein. Brazilian Journal of Medical and Biological Research, 37, 1819–1830.PubMedCrossRefGoogle Scholar
  150. Couchman, J. R. (2003). Syndecans: Proteoglycan regulators of cell-surface microdomains. Nature Reviews. Molecular Cell Biology, 4, 926–937.PubMedCrossRefGoogle Scholar
  151. Craig, R. W., & Padron, R. (2004). Molecular structure of the sarcomere. In A. C. Engel & C. Franzini-Armstrong (Eds.), Myology (3rd ed.). New York: McGraw-Hill.Google Scholar
  152. Craig, S. W., & Pardo, J. V. (1983). Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. Cell Motility, 3, 449–462.PubMedCrossRefGoogle Scholar
  153. Crick, F. H. C. (1953). The packing of a-helices: Simple coiled-coils. Acta Cryst, 6, 689–697.CrossRefGoogle Scholar
  154. Critchley, D. R. (2005). Genetic, biochemical and structural approaches to talin function. Biochemical Society Transactions, 33, 1308–1312.PubMedCrossRefGoogle Scholar
  155. Cummings, G. S., & Tillman, L. J. (Eds.). (1992). Remodeling of dense connective tissue in normal adult tissues. Philadelphia: F.A. Davis.Google Scholar
  156. Damas, P., Ledoux, D., Nys, M., Vrindts, Y., De Groote, D., Franchimont, P., et al. (1992). Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Annals of Surgery, 215, 356–362.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Daniels, K., & Solursh, M. (1991). Modulation of chondrogenesis by the skeleton and extracellular matrix. Journal of Cell Science, 100, 249–254.PubMedGoogle Scholar
  158. Davidson, C. J., Ganion, L. R., Gehlsen, G. M., Bverhoestra, B., Roepke, J. E., & Sevier, T. L. (1997). Rat tendon morphologic and functional changes resulting from soft tissue mobilization. Medicine and Science in Sports and Exercise, 29, 313–319.PubMedCrossRefGoogle Scholar
  159. Dayton, W. R., Reville, W. J., Goll, D. E., & Stromer, M. H. (1976). A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme. The Biochemist, 15, 2159–2167.CrossRefGoogle Scholar
  160. de Almeida Ribeiro Jr., E., Pinotsis, N., Ghisleni, A., Salmazo, A., Konarev, P. V., Kostan, J., et al. (2014). The structure and regulation of human muscle α-actinin. Cell, 159, 1447–1460.CrossRefGoogle Scholar
  161. De Palma, L., Marinelli, M., Pavan, M., & Bertoni-Freddari, C. (2011). Involvement of the muscle-tendon junction in skeletal muscle atrophy: An ultrastructural study. Romanian Journal of Morphology and Embryology, 52, 105–109.PubMedGoogle Scholar
  162. Decary, S., Mouly, V., Hamida, C. B., Sautet, A., Barbet, J. P., & Butler-Browne, G. S. (1997). Replicative potential and telomere length in human skeletal muscle: Implications for satellite cell-mediated gene therapy. Human Gene Therapy, 8, 1429–1438.PubMedCrossRefPubMedCentralGoogle Scholar
  163. DeDeyne, P. G. (2001). Application of passive stretch and its implications for muscle fibers. Physical Therapy, 81, 819–827.PubMedCrossRefGoogle Scholar
  164. Dejong, L. D., Nieuwboer, A., & Aufdemkampe, G. (2007). The hemiplegic arm: Interrater reliability and concurrent validity of passive range of motion measurements. Journal of Disability and Rehabilitation, 29, 1442–1448.CrossRefGoogle Scholar
  165. del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J. M., & Sheetz, M. P. (2009). Stretching single talin rod molecules activates vinculin binding. Science, 323, 638–641.PubMedCrossRefGoogle Scholar
  166. Detmers, P. A., Powell, D. E., Walz, A., Clark-Lewis, I., Baggiolini, M., & Cohn, Z. A. (1991). Differential effects of neutrophil-activating peptide 1/IL-8 and its homologues on leukocyte adhesion and phagocytosis. Journal of Immunology, 147, 4211–4217.Google Scholar
  167. Discher, D. E., Janmey, P. A., & Wang, Y.-L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310, 1139–1143.PubMedCrossRefGoogle Scholar
  168. Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324, 1673–1677.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Drenth, J. P., Van Hum, S. H., Van Deuren, M., Pesman, G. J., Van Der Ven-Jongekrijg, J., et al. (1995). Endurance run increases circulating IL-6 and IL-1ra but downregulates ex vivo Tnf-alpha and IL-1 beta production. Journal of Applied Physiology, 79, 1497–1503.PubMedCrossRefGoogle Scholar
  170. Dubravec, D. B., Spriggs, D. R., Mannick, J. A., & Rodrick, M. L. (1990). Circulation human peripheral blood granulocytes synthesize and secrete tumor necrosis factor α. Proceedings of the National Academy of Sciences of the USA, 87, 6758–6761.PubMedCrossRefGoogle Scholar
  171. Duclos, T. W. (2000). Function of C-reactive protein. Annals of Medicine, 32, 274–278.CrossRefGoogle Scholar
  172. Duenwald, S. E., Vanderby Jr., R., & Lakes, R. S. (2009). Viscoelastic relaxation and recovery of tendon. Annals of Biomedical Engineering, 37, 1131–1140.PubMedCrossRefGoogle Scholar
  173. Dufort, C. C., Paszek, M. J., & Weaver, V. M. (2011). Balancing forces: Architectural control of mechanotransduction. Nature Reviews. Molecular Cell Biology, 12, 308–319.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Dunne, J. L., Ballantyne, C. M., Beaudet, A. L., & Ley, K. (2002). Control of leukocyte rolling velocity in TNF-α-induced inflammation by LFA-1 and Mac-1. Blood, 99, 336–341.PubMedCrossRefGoogle Scholar
  175. Duque, G. A., & Descoteaux, A. (2014). Macrophage cytokines: Involvement in immunity and infectious diseases. Frontiers in Immunology, 5, 1–12.Google Scholar
  176. Ebbeling, C. B., & Clarkson, P. M. (1989). Exercise-induced muscle damage and adaptation. Sports Medicine, 7, 207–234.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Egebald, M., Rasch, M. G., & Weaver, V. M. (2010). Dynamic interplay between the collagen scaffold and tumor evolution. Current Opinion in Cell Biology, 22, 697–706.CrossRefGoogle Scholar
  178. Elliot, B. (2006). Biomechanics and tennis. British Journal of Sports Medicine, 40, 392–396.CrossRefGoogle Scholar
  179. Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35, 495–516.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage application. Cell, 126, 677–689.PubMedCrossRefGoogle Scholar
  181. Ervasti, J. (2003). Costameres: The Achilles’ heel of Herculean muscle. The Journal of Biological Chemistry, 278, 13591–13594.PubMedCrossRefGoogle Scholar
  182. Ervasti, J. (2007). Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochemica et Biophysica Acta, 1772, 108–117.CrossRefGoogle Scholar
  183. Ervasti, J., & Campbell, K. P. (1993). A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. JCB, 122, 809–823.PubMedCrossRefGoogle Scholar
  184. Etnyre, B. R., & Abraham, L. D. (1986). Gains in range of ankle dorsiflexion using three popular stretching techniques. American Journal of Physical Medicine, 65, 189–196.PubMedGoogle Scholar
  185. Etnyre, B. R., & Lee, E. J. (1987). Comments on proprioceptive neuromuscular facilitation stretching techniques. Research Quarterly for Exercise and Sport, 58, 184–188.CrossRefGoogle Scholar
  186. Evans, R. R., Robson, R. M., & Stromer, M. H. (1984). Properties of smooth muscle vinculin. The Journal of Biological Chemistry, 259, 3916–3924.PubMedGoogle Scholar
  187. Evans, W. J., & Cannon, J. G. (1991). The metabolic effects of exercise-induced muscle damage. Exercise and Sport Sciences Reviews, 19, 99–125.PubMedCrossRefGoogle Scholar
  188. Eyckmans, J., Boudou, T., Yu, X., & Chen, C. S. (2011). A hitchhiker’s guide to mechanobiology. Developmental Cell, 21, 35–47.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Fadok, V. A., Bratton, D. L., Konowal, A., Freed, P. W., Wescott, J. Y., & Henson, P. M. (1989). Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2 and PAF. JCI, 101, 890–898.CrossRefGoogle Scholar
  190. Fatouros, I., & Jamurtas, A. Z. (2016). Insights into the molecular etiology of exercise-induced inflammation: Opportunities for optimizing performance. Journal of Inflammation Research, 9, 175–186.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Faulkner, G., Lanfranchi, G., & Valle, G. (2001). Telethonin and other new proteins of the Z-disc of skeletal muscle. IUBMB Life, 51, 275–282.PubMedCrossRefGoogle Scholar
  192. Faulkner, G., Pallavicini, A., Comelli, A., Salamon, M., Bortoletto, G., Ievolella, C., et al. (2000). FATZ, a filamin-, actinin-, and telethonin-binding protein of the Z-disc of skeletal muscle. The Journal of Biological Chemistry, 275, 41234–41242.PubMedCrossRefGoogle Scholar
  193. Faulkner, R. A., Brooks, S. V., & Opiteck, J. A. (1993). Injury to skeletal muscle fibers during contractions: Conditions of occurrence and prevention. Physical Therapy, 73, 911–921.CrossRefGoogle Scholar
  194. Feasson, L., Stockholm, D., Freyssenet, D., Richard, I., Duguez, S., Beckmann, J. S., et al. (2002). Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. The Journal of Physiology, 543, 297–306.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Febbraio, M. A., Hiscock, N., Sacchetti, M., Fischer, C. P., & Pedersen, B. K. (2004). Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes, 53, 1643–1648.CrossRefGoogle Scholar
  196. Febbraio, M. A., & Pedersen, B. K. (2002). Muscle-derived interleukin-6: Mechanisms for activation and possible biological roles. FASEB, 16, 1335–1347.CrossRefGoogle Scholar
  197. Febbraio, M. A., & Pedersen, B. K. (2005). Contraction-induced myokine production and release: Is skeletal muscle an endocrine organ? Exercise and Sport Sciences Reviews, 33, 114–119.PubMedCrossRefGoogle Scholar
  198. Feland, J. B., Myrer, J. W., & Merrill, R. M. (2001). Acute changes in hamstring flexibility: PNF versus static stretch in senior athletes. Physical Therapy in Sport, 2, 186–193.CrossRefGoogle Scholar
  199. Feland, J. B., Myrer, J. W., Schulthies, S., Fellingham, G., & Measom, G. (2001). The effect of duration of stretching of the hamstring muscle group for increasing range of motion in people aged 65 years or older. Physical Therapy, 81, 1110–1117.PubMedGoogle Scholar
  200. Fernando, M. R., Reyes, J. L., Iannuzzi, J., Leung, G., & Mckay, D. M. (2014). The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS One, 9, 1–12.Google Scholar
  201. Field, C. J., Gougeon, R., & Marliss, E. B. (1991). Circulating mononuclear cell numbers and function during intense exercise and recovery. Journal of Applied Physiology, 71, 1089–1097.PubMedCrossRefGoogle Scholar
  202. Fielding, R. A., Manfredi, T. J., Ding, W., Fiatarone, M. A., Evans, W. J., & Cannon, J. G. (1993). Acute phase response in exercise III. Neutrophil and IL-1β accumulation in skeletal muscle. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 265, R166–R172.CrossRefGoogle Scholar
  203. Figarella-Branger, D., Civatte, M., Bartoli, C., & Pellissier, J. F. (2003). Cytokines, chemokines, and cell adhesion molecules in inflammatory myopathies. Muscle & Nerve, 28, 659–682.CrossRefGoogle Scholar
  204. Flynn, J. L., Chan, J., & Lin, P. L. (2011). Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunology, 4, 271–278.PubMedPubMedCentralCrossRefGoogle Scholar
  205. Fox, J. E., Goll, D. E., Reynolds, C. C., & Phillips, D. R. (1985). Identification of two proteins (actin-binding protein and P235) that are hydrolyzed by endogenous Ca2+-dependent protease during platelet aggregation. The Journal of Biological Chemistry, 260, 1060–1066.PubMedGoogle Scholar
  206. Frangos, J. A., Mcintire, L. V., & Eskin, S. G. (1988). Shear stress induced stimulation of mammalian cell metabolism. Biotechnology and Bioengineering, 32, 1053–1060.PubMedCrossRefGoogle Scholar
  207. Frank, D., Kuhn, C., Katus, H. A., & Frey, N. (2006). The sarcomeric Z-disc: A nodal point in signalling and disease. Journal of Molecular Medicine, 84, 446–468.PubMedCrossRefGoogle Scholar
  208. Franzini-Armstrong, C. (Ed.). (1994). The sarcoplasmic reticulum and the transverse tubules. New York: McGraw-Hill.Google Scholar
  209. Freitas, S. R., Mendes, B., Le Sant, G., Andrade, R. J., Nordez, A., & Milanovic, Z. (2017). Can chronic stretching changes the muscle-tendon mechanical properties? A review. Scandinavian Journal of Medicine & Science in Sports, 28, 794–806.CrossRefGoogle Scholar
  210. Frenette, J., St-Pierre, M., Cote, C. H., Mylona, E., & Pizza, F. X. (2002). Muscle impairment occurs rapidly and precedes inflammatory cell accumulation after mechanical loading. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 282, R351–R357.PubMedCrossRefGoogle Scholar
  211. Freytes, D. O., Wan, L. Q., & Vunjak-Novakovic, G. (2009). Geometry and force control of cell function. Journal of Cellular Biochemistry, 108, 1047–1058.PubMedPubMedCentralCrossRefGoogle Scholar
  212. Friden, J., Kjorell, U., & Thornell, L.-E. (1984). Delayed muscle soreness and cytoskeletal alterations: An immunocytological study in man. International Journal of Sports Medicine, 5, 15–18.PubMedCrossRefGoogle Scholar
  213. Friden, J., & Lieber, R. L. (2001). Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiologica Scandinavica, 171, 321–326.PubMedCrossRefGoogle Scholar
  214. Friden, J., Sjostrom, M., & Ekblom, B. (1981). A morphological study of delayed muscle soreness. Experientia, 37, 506–507.PubMedCrossRefGoogle Scholar
  215. Friden, J., Sjostrom, M., & Ekblom, B. (1983). Myofibrillar damage following intense eccentric exercise in man. International Journal of Sports Medicine, 4, 170–176.PubMedCrossRefGoogle Scholar
  216. Frost, H. M. (1990). Skeletal structural adaptations to mechanical usage (SATMU): 4. Mechanical influences on intact fibrous tissues. The Anatomical Record, 226, 433–439.PubMedCrossRefGoogle Scholar
  217. Frost, R. A., & Lang, C. H. (2005). Skeletal muscle cytokines: Regulation by pathogen-associated molecules and catabolic hormones. Current Opinion in Clinical Nutrition and Metabolic Care, 8, 255–263.PubMedCrossRefGoogle Scholar
  218. Fukunaga, T., Kawakami, Y., Kuno, S., Funato, K., & Fukashiro, S. (1997). Muscle architecture and function in humans. Journal of Biomechanics, 30, 457–463.PubMedCrossRefGoogle Scholar
  219. Fukunaga, T., Roy, R. R., Shellock, F. G., Hodgson, J. A., Lee, P. L., Kwong-Fu, H., et al. (1992). Physiological cross-sectional area of human leg muscles based on magnetic resonance imagining. Journal of Orthopaedic Research, 10, 926–934.CrossRefGoogle Scholar
  220. Fuller, G. M., & Grenett, H. E. (1989). The structure and function of the mouse hepatocyte stimulating factor. Annals of the New York Academy of Sciences, 557, 31–44.PubMedCrossRefGoogle Scholar
  221. Funatsu, T., Higuchi, H., & Ishiwata, S. (1990). Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with gelsolin. JCB, 110, 53–62.PubMedCrossRefGoogle Scholar
  222. Funk, D. C., Swank, A. M., Mikla, B. M., Fagan, T. A., & Farr, B. K. (2003). Impact of prior exercise on hamstring flexibility: A comparison of proprioceptive neuromuscular facilitation and static stretching. National Strength & Conditioning Association, 17, 489–492.Google Scholar
  223. Furst, D. O., Osborn, M., Nave, R., & Weber, K. (1988). The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: A map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. The Journal of Cell Biology, 106, 1563–1572.PubMedCrossRefGoogle Scholar
  224. Furze, R. C., & Rankin, S. M. (2008). Neutrophil mobilization and clearance in the bone marrow. Immunology, 125, 281–288.PubMedPubMedCentralCrossRefGoogle Scholar
  225. Gabay, C. (2006). Interleukin-6 and chronic inflammation. Arthritis Research & Therapy, 8, S3–S8.CrossRefGoogle Scholar
  226. Gabay, C., & Kushner, I. (1999). Acute-phase proteins and other systemic responses to inflammation. The New England Journal of Medicine, 340, 448–454.PubMedCrossRefGoogle Scholar
  227. Gabriel, H., Schwartz, L., Steffens, G., & Kindermann, W. (1992). Immunoregulatory hormones, circulating leukocyte and lymphocyte subpopulations before and after endurance exercise of different intensities. International Journal of Sports Medicine, 1992, 359–366.CrossRefGoogle Scholar
  228. Gajdosik, R. L. (2001). Passive extensibility of skeletal muscle: Review of literature with clinical implications. Clinical Biomechanics (Bristol, Avon), 16, 87–101.CrossRefGoogle Scholar
  229. Gajdosik, R. L., & Bohannon, R. W. (1987). Clinical measurement of range of motion-review of goniometry emphasizing reliability and validity. Physical Therapy, 67, 1867–1872.PubMedCrossRefGoogle Scholar
  230. Galbraith, C. G., Yamada, K. M., & Sheetz, M. P. (2002). The relationship between force and focal complex development. JCB, 159, 695–705.PubMedCrossRefGoogle Scholar
  231. Gans, C. (Ed.). (1991). Efficiency, effectiveness, perfection, optimization. Their use in understanding vertebrate evolution. Oxford, UK: Oxford Univ Press.Google Scholar
  232. Gans, C., & Abbot, S. G. (1991). Muscle architecture in relation to function. Journal of Biomechanics, 24, 53–65.PubMedCrossRefGoogle Scholar
  233. Garrett, W. E., Nikolaou, P. K., Rtibbeck, B. M., Glisson, R. R., & Seaber, A. (1988). The effect of muscle architecture on the biomechanical failure properties of skeletal muscle under passive extension. American Journal of Sports Medicine, 16, 7–11.PubMedCrossRefGoogle Scholar
  234. Gattazzo, F., Urciuolo, A., & Bonaldo, P. (2014). Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta, 1840, 2506–2519.PubMedPubMedCentralCrossRefGoogle Scholar
  235. Gautel, M. (1996). The super-repeats of titin/connectin and their interactions: Glimpses at sarcomeric assembly. Advances in Biophysics, 33, 27–37.PubMedCrossRefGoogle Scholar
  236. Gautel, M. (2011). The sarcomeric cytoskeleton: Who picks up the strain? Current Opinion in Cell Biology, 23, 39–46.PubMedCrossRefGoogle Scholar
  237. Gautel, M., Goulding, D., Bullard, B., Weber, K., & Furst, D. O. (1996). The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. Journal of Cell Science, 109, 2747–2754.PubMedGoogle Scholar
  238. Gautel, M., Mues, A., & Young, P. (1999). Control of sarcomeric assembly: The flow of information on titin. Reviews of Physiology, Biochemistry and Pharmacology, 138, 97–137.PubMedCrossRefGoogle Scholar
  239. Geiger, B., & Bershadsky, A. (2002). Exploring the neighbourhood: Adhesion-coupled cell mechanosensors. Cell, 110, 139–142.PubMedCrossRefGoogle Scholar
  240. Geiger, B., Spatz, J. P., & Bershadsky, A. D. (2009). Environmental sensing through focal adhesions. Nature Reviews. Molecular Cell Biology, 10, 21–33.PubMedCrossRefGoogle Scholar
  241. Gelberman, R., Goldberg, V., & An, K.-N. (1988). Tendon. Park Ridge, IL: American Academy of Orthopaedic Surgeons.Google Scholar
  242. Gillies, A. R., & Lieber, R. L. (2011). Structure and function of the skeletal muscle extracellular matrix. Muscle & Nerve, 44, 318–331.Google Scholar
  243. Gleeson, M. (2000). Interleukins and exercise. The Journal of Physiology, 529, 1–1.PubMedPubMedCentralCrossRefGoogle Scholar
  244. Goldberg, A. L., Etlingger, J. D., Goldspink, D. F., & Jablecki, C. (1975). Mechanism of work-induced hypertrophy of skeletal muscle. Medicine and Science in Sports and Exercise, 7, 248–261.CrossRefGoogle Scholar
  245. Goldmann, W. H. (2012). Mechanotransduction and focal adhesions. Cell Biology International, 36, 649–652.PubMedCrossRefGoogle Scholar
  246. Goldspink, D. (1977). The influence of immobilization and stretch on protein turnover of rat skeletal muscle. The Journal of Physiology, 264, 267–282.PubMedPubMedCentralCrossRefGoogle Scholar
  247. Goldspink, G. (1999). Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. Journal of Anatomy, 194, 323–334.PubMedPubMedCentralCrossRefGoogle Scholar
  248. Goldspink, G. (2005). Mechanical signals, IGF-I gene slicing, and muscle adaptation. Physiology, 20, 232–238.PubMedCrossRefGoogle Scholar
  249. Goldstein, M. A., Schroeter, J. P., & Michael, L. H. (1991). Role of the Z-band in the mechanical properties of the heart. The FASEB Journal, 5, 2167–2174.PubMedCrossRefGoogle Scholar
  250. Goldstein, M. A., Schroeter, J. P., & Sass, R. L. (1982). The Z-band lattice in a slow skeletal muscle. Journal of Muscle Research and Cell Motility, 3, 333–348.PubMedCrossRefGoogle Scholar
  251. Goll, D. E., Dayton, W. R., Singh, I., & Robson, R. M. (1991). Studies of the alpha-actinin/actin interaction in the Z-disk by using calpain. JBC, 266, 8501–8510.Google Scholar
  252. Goll, D. E., Thompson, V. F., Li, H., Wei, W., & Cong, J. (2003). The calpain system. Physiological Reviews, 83, 731–801.PubMedCrossRefGoogle Scholar
  253. Gomes, A. R. S., Cornachione, A., Salvini, T. F., & Mattiello-Sverzut, A. C. (2007). Morphological effects of two protocols of passive stretch over the immobilized rat soleus muscle. Journal of Anatomy, 210, 328–335.PubMedPubMedCentralCrossRefGoogle Scholar
  254. Gontier, Y., Taivainen, A., Fontao, L., Sonnenberg, A., Van Der Flier, A., Carpen, O., et al. (2005). The Z-disc proteins myotilin and FATZ-1 interact with each other and are connected to the sarcolemma via muscle-specific filamins. JCS, 118, 3739–3749.CrossRefGoogle Scholar
  255. Gordon, A. M., Honmsher, E., & Regnier, M. (2000). Regulation of contraction in striated muscle. Physiological Reviews, 80, 853–924.PubMedCrossRefGoogle Scholar
  256. Gordon, S., & Taylor, P. R. (2005). Monocyte and macrophage heterogeneity. Nature Reviews Immunology, 5, 953–964.PubMedCrossRefGoogle Scholar
  257. Goulam Houssen, Y., Gusachenko, I., Schanne-Klein, M.-C., & Allain, J.-M. (2011). Monitoring micrometer-scale collagen organization in rat-tail tendon upon mechanical strain using second harmonic microscopy. Journal of Biomechanics, 44, 2047–2052.PubMedCrossRefGoogle Scholar
  258. Granger, D. N., & Senchenkova, E. (2010). Inflammation and the microcirculation. San Rafael, CA: Morgan & Claypool Life Sciences.CrossRefGoogle Scholar
  259. Granzier, H., & Labeit, S. (2005). Titin and its associated proteins: The third myofilament system of the sarcomere. Advances in Protein Chemistry, 71, 89–119.PubMedCrossRefGoogle Scholar
  260. Granzier, H., & Labeit, S. (2006). The giant muscle protein titin is an adjustable molecular spring. Exercise and Sport Sciences Reviews, 34, 50–53.PubMedCrossRefGoogle Scholar
  261. Granzier, H. L., Akster, H. A., & Ter Keurs, H. E. (1991). Effect of thin filament length on the force-sarcomere length relation of skeletal muscle. American Journal of Physiology. Cell Physiology, 260, C1060–C1070.CrossRefGoogle Scholar
  262. Granzier, H. L., & Labeit, S. (2004). The giant protein titin: A major player in myocardial mechanics, signaling and disease. Circulation Research, 94, 284–295.PubMedCrossRefGoogle Scholar
  263. Greaser, M. (2001). Identification of new repeating motifs in titin. Proteins, 43, 145–149.PubMedCrossRefGoogle Scholar
  264. Green, C. L., Brown, L., Stewart, J. J., Xu, Y., Litwin, V., & Mc Closkey, T. W. (2011). Recommendations for the validation of flow cytometric testing during drug development: I instrumentation. Journal of Immunological Methods, 363, 104–119.CrossRefGoogle Scholar
  265. Green, L. J., Mould, P., & Humphries, M. J. (1998). The integrin β subunit. The International Journal of Biochemistry & Cell Biology, 30, 179–184.CrossRefGoogle Scholar
  266. Greenhalgh, D. G. (1998). The role of apoptosis in wound healing. The International Journal of Biochemistry & Cell Biology, 30, 1019–1030.CrossRefGoogle Scholar
  267. Gregorio, C. C., Trombitas, K., Centner, T., Kolmerer, B., Stier, G., Kunke, K., et al. (1998). The NH2 terminus of titin spans the Z-disc: Its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. JCB, 143, 1013–1027.PubMedCrossRefGoogle Scholar
  268. Grounds, M. D. (1987). Phagocytosis of necrotic muscle in muscle isografts is influenced by the strain, age, and sex of host mice. The Journal of Pathology, 153, 71–82.PubMedCrossRefGoogle Scholar
  269. Grounds, M. D., Sorokin, L., & White, J. (2005). Strength and the extracellular matrix-muscle interface. Scandinavian Journal of Medicine & Science in Sports, 15, 381–391.CrossRefGoogle Scholar
  270. Gruys, E., Toussaint, M. J. M., Niewold, T. A., & Koopmans, S. J. (2005). Acute phase reaction and acute phase proteins. Journal of Zhejiang University. Science. B, 6, 1045–1056.PubMedPubMedCentralCrossRefGoogle Scholar
  271. Guharay, F., & Sachs, F. (1984). Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. The Journal of Physiology, 352, 685–701.PubMedPubMedCentralCrossRefGoogle Scholar
  272. Guissard, N., & Duchateau, J. (2006). Neural aspects of muscle stretching. Exercise and Sport Sciences Reviews, 34, 154–158.CrossRefGoogle Scholar
  273. Gumerson, J. D., & Michele, D. E. (2011). The dystrophin-glycoprotein complex in the prevention of muscle damage. Journal of Biomedicine & Biotechnology, 2011, 1–13.CrossRefGoogle Scholar
  274. Hack, A. A., Groh, M. E., & Mcnally, E. M. (2000). Sarcoglycans in muscular dystrophy. Microscopy Research and Technique, 48, 167–180.PubMedCrossRefGoogle Scholar
  275. Hack, E., De Groot, E. R., Felt-Bersma, R. J. F., Nuijjens, J. H., Strack Van Schijndel, R. J. M., Eerenberg-Belmer, A. J. M., et al. (1989). Increased plasma levels of interleukin-6 in sepsis. Blood, 74, 1704–1710.PubMedGoogle Scholar
  276. Haining, A. W. M., Lieberthal, T. J., & Del Rio Hernandez, A. (2016). Talin: A mechanosensitive molecule in health and disease. The FASEB Journal, 30, 2073–2085.PubMedCrossRefGoogle Scholar
  277. Hamill, O. (1997). Special topic: Molecular mechanisms of mechanotransduction. Annual Review of Physiology, 59, 573–574.CrossRefGoogle Scholar
  278. Hamill, O. P., & Martinac, B. (2001). Molecular basis of mechanotransduction in living cells. Physiological Reviews, 81, 685–740.PubMedCrossRefGoogle Scholar
  279. Handel, M., Horstmann, T., Dickhuth, H., & Gulch, R. (1997). Effects of contract-relax stretching training on muscle performance in athletes. European Journal of Applied Physiology, 76, 400–408.CrossRefGoogle Scholar
  280. Hannan, M. T., & Freeman, J. (1977). The population of ecology organizations. American Journal of Sociology, 82, 929–964.CrossRefGoogle Scholar
  281. Hashizume, M., & Mihara, M. (2011). The roles of interleukin-6 in the pathogenesis of rheumatoid arthritis. Arthritis, 2011, 1–8.CrossRefGoogle Scholar
  282. Haslett, C. (1992). Resolution of acute inflammation and the role of apoptosis in the tissue fate of granulocytes. Clinical Science, 83, 639–648.PubMedCrossRefPubMedCentralGoogle Scholar
  283. Heinrich, P. C., Castell, J. V., & Andus, T. (1990). Interleukin-6 in the acute phase response. Biochemical Journal, 265, 621–625.PubMedPubMedCentralCrossRefGoogle Scholar
  284. Heinrich, P. C., Horn, F., Graeve, L., Dittrich, E., Kerr, I., Muller-Newen, G., et al. (1998). Interleukin-6 and related cytokines: Effect on the acute phase reaction. Zeitschrift für Ernährungswissenschaft, 37, 43–49.PubMedPubMedCentralGoogle Scholar
  285. Helge, J. W., Stallknecht, B., Pedersen, B. K., Galbo, H., Kiens, B., & Richter, E. A. (2003). The effect of graded exercise on IL-6 release and glucose uptake in human skeletal muscle. The Journal of Physiology, 546, 299–305.PubMedCrossRefPubMedCentralGoogle Scholar
  286. Hellsten, Y., Frandsen, U., Orthenblad, N., & Sjodin, B. (1997). Xanthine oxidase in human skeletal muscle following eccentric exercise: A role in inflammation. The Journal of Physiology, 498, 239–248.PubMedPubMedCentralCrossRefGoogle Scholar
  287. Henics, T., & Wheatley, D. N. (1999). Cytoplasmic vacuolation, adaptation and cell death: A view on new perspectives and features. Biology of the Cell, 91, 485–498.PubMedCrossRefGoogle Scholar
  288. Hensriksson-Larsen, K., Wretling, M., Lorentzen, R., & Oberg, L. (1992). Do muscle fiber size and fiber angulation correlate in pennated human muscles? European Journal of Applied Physiology, 64, 68–72.CrossRefGoogle Scholar
  289. Herbert, R. D., De Noronha, M., & Kamper, S. J. (2011). Stretching to prevent or reduce muscle soreness after exercise. Cochrane Database of Systematic Reviews, 7, 1–47.Google Scholar
  290. High, D. M., Howley, E. T., & Franks, B. D. (1989). The effects of static stretching and warm-up on prevention of delayed onset muscle soreness. Research Quarterly for Exercise and Sport, 60, 357–361.PubMedCrossRefGoogle Scholar
  291. Higuchi, H., Yoshioka, T., & Maruyama, K. (1988). Positioning of actin filaments and tension generation in skinned muscle fibres released after stretch beyond overlap of the actin and myosin filaments. Journal of Muscle Research and Cell Motility, 9, 491–498.PubMedCrossRefGoogle Scholar
  292. Hindle, K. B., Whitcomb, T. J., Briggs, W. O., & Hong, J. (2012). Proprioceptive neuromuscular facilitation (PNF): Its mechanisms and effects on range of motion and muscular function. Journal of Human Kinetics, 31, 105–113.PubMedPubMedCentralCrossRefGoogle Scholar
  293. Hirani, N., Antonicelli, F., Strieter, R. M., Wiesener, M. S., & Ratcliffe, P. J. (2001). The regulation of interleukin-8 by hypoxia in human macrophages-a potential role in the pathogenesis of the acute respiratory distress syndrome (ARDS). Molecular Medicine, 7, 685–697.PubMedPubMedCentralCrossRefGoogle Scholar
  294. Hiscock, N., Chan, M. H. S., Bisucci, T., Darby, I. A., & Febbraio, M. A. (2004). Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: Evidence of fiber type specificity. FASEB, 18, 992–994.CrossRefGoogle Scholar
  295. Hoffman, B. D., Grashoff, C., & Schwartz, M. A. (2011). Dynamic molecular processes mediate cellular mechanotransduction. Nature, 475, 316–323.PubMedCrossRefGoogle Scholar
  296. Holmberg, J., & Durbeej, M. (2013). Laminin-211 iun skeletal muscle function. Cell Adhesion & Migration, 7, 111–121.CrossRefGoogle Scholar
  297. Honda, H., Kimura, H., & Rostami, A. (1990). Demonstration and phenotype characterization of resident macrophages in rat skeletal muscle. Immunology, 70, 272–277.PubMedPubMedCentralGoogle Scholar
  298. Horowits, R. (1992). Passive force generation and titin isoforms in mammalian skeletal muscle. Biophysical Journal, 61, 392–398.PubMedPubMedCentralCrossRefGoogle Scholar
  299. Horowits, R., Kempner, E. S., Bisher, M. E., & Podolsky, R. J. (1986). A physiological role for titin and nebulin. Nature, 323, 160–164.PubMedCrossRefGoogle Scholar
  300. Horowits, R., Luo, G., Zhang, J. Q., & Herrera, A. H. (1996). Nebulin and nebulin-related proteins in striated muscle. Advances in Biophysics, 33, 143–150.PubMedCrossRefGoogle Scholar
  301. Horowits, R., & Podolsky, R. J. (1987). The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: Evidence for the role of titin filaments. The Journal of Cell Biology, 105, 2217–2223.PubMedCrossRefGoogle Scholar
  302. Huang, H., Kamm, R. D., & Lee, R. T. (2004). Cell mechanics and mechanotransduction: Pathways, probes, and physiology. American Journal of Physiology. Cell Physiology, 287, C1–C11.PubMedCrossRefGoogle Scholar
  303. Huang, J., & Forsberg, N. E. (1998). Role of calpain in skeletal muscle protein degradation. Proceedings of the National Academy of Sciences of the USA, 95, 12100–12105.PubMedCrossRefGoogle Scholar
  304. Huang, S., Sultan, C., & Ingber, D. E. (2006). Tensegrity, dynamic networks, and complex systems biology: Emergence in structural and information networks within living cells. Boston, MA: Springer.Google Scholar
  305. Huijbregts, P. A. (2001). Muscle injury, regeneration, and repair. The Journal of Manual & Manipulative Therapy, 9, 9–16.CrossRefGoogle Scholar
  306. Huijing, P. A., & Baan, G. C. (2001). Myofascial force transmission causes interaction between adjacent muscles and connective tissue: Effects of blunt dissection and compartmental fasciotomy on length force characteristics of rat extensor digitorum longus muscle. Archives of Physiology and Biochemistry, 109, 97–109.PubMedCrossRefGoogle Scholar
  307. Hultborn, H., Illert, M., & Santini, M. (1976). Convergence on interneurones mediating the reciprocal Ia inhibition of motoneurones. Acta Physiologica Scandinavica, 96, 368–391.PubMedCrossRefGoogle Scholar
  308. Humphrey, J. D., Dufresne, E. R., & Schwartz, M. A. (2014). Mechanotransduction and extracellular matrix homeostasis. Nature Reviews. Molecular Cell Biology, 15, 802–812.PubMedPubMedCentralCrossRefGoogle Scholar
  309. Humphries, J. D., Wang, P., Streuli, C., Geiger, B., Humphries, M. J., & Ballestrem, C. (2007). Vinculin controls focal adhesion formation by direct interactions with talin and actin. JCB, 179, 1043–1057.PubMedCrossRefGoogle Scholar
  310. Hutagalung, A. H., Landsverk, M. L., Price, M. G., & Epstein, H. F. (2002). The UCS family of myosin chaperones. Journal of Cell Science, 115, 3983–3990.PubMedCrossRefGoogle Scholar
  311. Huxley, H. E. (1969). The mechanism of muscular contraction. Science, 164, 1356–1366.PubMedCrossRefGoogle Scholar
  312. Huxley, H. E., & Hanson, J. (1954). Changes in the cross-striations of muscle during contraction and stretch and their structural interpretations. Nature, 173, 973–976.PubMedCrossRefGoogle Scholar
  313. Hynes, R. O. (1992). Integrins: Versatility, modulation and signaling in cell adhesion. Cell, 69, 11–25.PubMedCrossRefGoogle Scholar
  314. Hynes, R. O. (2009). The extracellular matrix: Not just pretty fibrils. Science, 326, 1216–1219.PubMedPubMedCentralCrossRefGoogle Scholar
  315. Hynes, R. O., & Naba, A. (2012). Overview of the matrisome-an inventory of extracellular matrix constituents and functions. Cold Spring Harbor Perspectives in Biology, 2012, 1–16.Google Scholar
  316. Ingber, D. E. (1997). Tensegrity: The architectural basis of cellular mechanotransduction. Annual Review of Physiology, 59, 575–599.PubMedCrossRefGoogle Scholar
  317. Ingber, D. E. (1998). The architecture of life. Scientific American, 278, 48–57.PubMedCrossRefGoogle Scholar
  318. Ingber, D. E. (2003). Mechanobiology and diseases of mechanotransduction. Annals of Medicine, 8, 564–577.CrossRefGoogle Scholar
  319. Ingber, D. E. (2004). The mechanochemical basis of cell and tissue regulation. Molecular and Cellular Biology, 1, 53–68.Google Scholar
  320. Ingber, D. E. (2006). Cellular mechanotransduction: Putting all the pieces together again. FASEB, 20, 811–827.CrossRefGoogle Scholar
  321. Ingber, D. E. (2008a). Tensegrity-based mechanosensing from macro to micro. Progress in Biophysics and Molecular Biology, 97, 163–179.PubMedPubMedCentralCrossRefGoogle Scholar
  322. Ingber, D. E. (2008b). Tensegrity and mechanotransduction. Journal of Bodywork and Movement Therapies, 12, 198–200.PubMedPubMedCentralCrossRefGoogle Scholar
  323. Ingber, D. E., Dike, I., Hansen, I., Karp, S., Liley, H., Maniotis, A., et al. (1994). Cellular tensegrity: Exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. International Review of Cytology, 150, 173–224.PubMedCrossRefGoogle Scholar
  324. Italiani, P., & Boraschi, D. (2014). From monocytes to M1/M2 macrophages: Phenotypical vs functional differentiation. Frontiers in Immunology, 5, 1–22.CrossRefGoogle Scholar
  325. Itsumi, M., Yoshikai, Y., & Yamada, H. (2009). IL-15 is critical for the maintenance and innate functions of self-specific CD8+ T cells. European Journal of Immunology, 38, 1784–1793.CrossRefGoogle Scholar
  326. Jackson, D., Jarret, H., Bailey, D. M., Kausek, J., Swanson, J., & Powell, J. (1978). Injury prediction in the young athlete: A preliminary report. The American Journal of Sports Medicine, 6, 6–14.PubMedCrossRefGoogle Scholar
  327. Jacobs, C. A., & Sciacia, A. D. (2011). Factors that influence the efficacy of stretching programs for patients with hypomobility. Sports Health, 3, 520–523.PubMedPubMedCentralCrossRefGoogle Scholar
  328. Jain, S., Gautam, V., & Naseem, S. (2011). Acute-phase proteins: As diagnostic tool. Journal of Pharmacy & Bioallied Sciences, 3, 118–127.CrossRefGoogle Scholar
  329. Jalali, S., Del Pozo, M. A., Chen, K.-D., Miao, H., Li, Y.-S., Shyy, J. Y., et al. (2001). Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proceedings of the National Academy of Sciences of the USA, 98, 1042–1046.PubMedCrossRefGoogle Scholar
  330. Jamney, P. A., & Mcculloch, C. A. (2007). Cell mechanics: Integrating cell responses to mechanical stimuli. Annual Review of Biomedical Engineering, 9, 1–34.CrossRefGoogle Scholar
  331. Jarvinen, T. A. H., Jarvinen, T. L. N., Kaariainen, M., Kalimo, H., & Jarvinen, M. (2005). Muscle injuries: Biology and treatment. The American Journal of Sports Medicine, 33, 745–764.PubMedCrossRefGoogle Scholar
  332. Jones, D. A., Newham, D. J., Round, J. M., & Tolfree, S. E. J. (1986). Experimental human muscle damage: Morphological changes in relation to other indices of damage. The Journal of Physiology, 375, 435–448.PubMedPubMedCentralCrossRefGoogle Scholar
  333. Jonsdottir, I. H., Schjerling, P., Ostrowski, K., Asp, S., Richter, E. A., & Pedersen, B. K. (2000). Muscle contractions induces interleukin-6 mRNA production in rat skeletal muscles. The Journal of Physiology, 528, 157–163.PubMedPubMedCentralCrossRefGoogle Scholar
  334. Kabat, H. (1950). Studies on neuromuscular dysfunction: XIII. New concepts and techniques of neuromuscular re-education for paralysis. Permanente Foundation Medical Bulletin, 8, 21–143.Google Scholar
  335. Kad, N. M., Kim, S., Warshaw, D. M., Vanburren, P., & Baker, J. E. (2005). Single-myosin crossbridge interactions with actin filaments regulated by troponin-tropomyosin. Proceedings of the National Academy of Sciences of the USA, 102, 16990–16995.PubMedCrossRefGoogle Scholar
  336. Kanda, K., Sugama, K., Hayashida, H., Sakuma, J., Kawakami, Y., Miura, S., et al. (2013). Eccentric exercise-induced delayed-onset muscle soreness and changes in markers of muscle damage and inflammation. Exercise Immunology Review, 19, 72–85.PubMedGoogle Scholar
  337. Kaneko, D., Sasazaki, Y., Kikuchi, T., Ono, T., Nemoto, K., Matsumoto, H., et al. (2009). Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro. Connective Tissue Research, 50, 263–269.PubMedPubMedCentralCrossRefGoogle Scholar
  338. Kaplanski, G., Marin, V., Montenero-Julian, F., Mantovani, A., & Farnarier, C. (2003). IL-6: A regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends in Immunology, 24, 25–29.PubMedCrossRefGoogle Scholar
  339. Karalaki, M., Filli, S., Philippou, A., & Koutsilieris, M. (2009). Muscle regeneration: Cellular and molecular events. in vivo (Vol. 23, pp. 779–796).Google Scholar
  340. Kastelic, J., Galeski, A., & Baer, E. (1978). Multicomposite structure of tendon. Connective Tissue Research, 6, 11–23.PubMedCrossRefGoogle Scholar
  341. Katzemich, A., Kreiskother, N., Alexandrovich, A., Elliot, C., Schock, F., & Bullard, B. (2012). The function of the M-line protein obscurin in controlling the symmetry of the sarcomere in the flight muscle of Drosophila. JCS, 125, 3367–3379.CrossRefGoogle Scholar
  342. Kawakami, Y., Abe, T., & Fukunaga, T. (1993). Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. Journal of Applied Physiology, 74, 2740–2744.PubMedCrossRefGoogle Scholar
  343. Kawakami, Y., Abe, T., Kuno, S., & Fukunaga, T. (1995). Training-induced changes in muscle architecture and specific tension. European Journal of Applied Physiology, 72, 37–43.CrossRefGoogle Scholar
  344. Keller, C., Steensberg, A., Pilegaard, H., Osada, T., Saltin, B., Pedersen, B. K., et al. (2001). Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: Influence of muscle glycogen content. FASEB, 15, 2748–2750.CrossRefGoogle Scholar
  345. Kenny, P. A., Liston, E. M., & Higgins, D. G. (1999). Molecular evolution of immunoglobulin and fibronectin domains in titin and related muscle proteins. Gene, 232, 11–23.PubMedCrossRefGoogle Scholar
  346. Khan, M. M. (2008). Immunopharmacology. New York: Springer.CrossRefGoogle Scholar
  347. Khan, S., & Sheetz, M. (1997). Force effects on biochemical kinetics. Annual Review of Biochemistry, 66, 785–805.PubMedCrossRefGoogle Scholar
  348. Kilicarslan, A., Uysal, A., & Roach, E. C. (2013). Acute phase reactants. Acta Medica, 2, 2–7.Google Scholar
  349. Kim, N. D., & Luster, A. D. (2015). The role of tissue resident cells in neutrophil recruitment. Trends in Immunology, 36, 547–555.PubMedPubMedCentralCrossRefGoogle Scholar
  350. Kjaer, M. (2004). Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiological Reviews, 84, 649–698.PubMedCrossRefGoogle Scholar
  351. Knott, M., & Voss, D. (1968). Proprioceptive neuromuscular facilitation: Patterns and techniques. New York: Harper & Row.Google Scholar
  352. Knudson, D. (2006). The biomechanics of stretching. Journal of Exercise Science and Physiotherapy, 2, 3–12.Google Scholar
  353. Knudson, D. (2007). Fundamentals of biomechanics. New York: Springer.Google Scholar
  354. Ko, K. S., & Mcculloch, C. A. (2001). Intercellular mechanotransduction: Cellular circuits that coordinate tissue responses to mechanical loading. Biochemical and Biophysical Research Communications, 285, 1077–1083.PubMedCrossRefGoogle Scholar
  355. Koh, T., Petersen, J. M., Pizza, F. X., & Brooks, S. V. (2003a). Passive stretches protect skeletal muscle of adult and old mice from lengthening contraction-induced injury. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58, 592–597.PubMedCrossRefGoogle Scholar
  356. Koh, T. J., & Brooks, S. V. (2001). Lengthening contractions are not required to induce protection from contraction-induced muscle injury. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 281, R155–R161.PubMedCrossRefGoogle Scholar
  357. Koh, T. J., Petersen, J. M., Pizza, F. X., & Brooks, S. V. (2003b). Passive stretches protect skeletal muscle of adult and old mice from lengthening contraction-induced injury. Journal of Gerontology, 58A, 592–597.Google Scholar
  358. Kokkonen, J., Nelson, A. G., & Cornwell, A. (1998). Acute muscle stretching inhibits maximal strength performance. Research Quarterly for Exercise and Sport, 69, 411–415.PubMedCrossRefGoogle Scholar
  359. Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13, 159–175.CrossRefGoogle Scholar
  360. Kolber, M. J., Fuller, C., Marshall, J., Wright, A., & Hanney, W. J. (2012). The reliability and concurrent validity of scapular plane shoulder elevation measurements using a digital inclinometer and goniometer. Physiotherapy Theory and Practice, 28, 161–168.PubMedCrossRefGoogle Scholar
  361. Kolber, M. J., Vega Jr., F., Widmayer, K., & Cheng, M. S. (2011). The reliability and minimal detectable change of shoulder mobility measurements using a digital inclinometer. Physiotherapy Theory and Practice, 27, 176–184.PubMedCrossRefGoogle Scholar
  362. Komulainen, J., Takala, T. E. S., Kuipers, H., & Hesselink, M. K. C. (1998). The disruption of myofibre structures in rat skeletal muscle after forced lengthening contractions. Pflügers Archiv - European Journal of Physiology, 436, 735–741.PubMedCrossRefGoogle Scholar
  363. Konrad, A., & Tilp, M. (2014). Effects of ballistic stretching training on the properties of human muscle and tendon structures. Journal of Applied Physiology, 117, 29–35.PubMedCrossRefGoogle Scholar
  364. Kontrogianni-Konstantopoulos, A., Ackermann, M. A., Bowman, A. L., Yap, S. V., & Bloch, R. J. (2009). Muscle giants: Molecular scaffolds in sarcomeregenesis. Physiological Reviews, 89, 1217–1267.PubMedPubMedCentralCrossRefGoogle Scholar
  365. Kontrogianni-Konstantopoulos, A., & Bloch, R. J. (2005). Obscurin: A multitasking muscle giant. Journal of Muscle Research and Cell Motility, 26, 419–426.PubMedCrossRefGoogle Scholar
  366. Kontrogianni-Konstantopoulos, A., Catino, D. H., Strong, J. C., Sutter, S., Borisov, A. B., Pumplin, D. W., et al. (2006). Obscurin modulates the assembly and organization of sarcomeres and the sarcoplasm reticulum. The FASEB Journal, 20, 2102–2111.PubMedCrossRefGoogle Scholar
  367. Kontrogianni-Konstantopoulos, A., Jones, E. M., Van Rossum, D. B., & Bloch, R. J. (2003). Obscurin is a ligand for small ankyrin 1 in skeletal muscle. Molecular Biology of the Cell, 14, 1138–1148.PubMedPubMedCentralCrossRefGoogle Scholar
  368. Kopf, M., Baumann, H., Freer, G., Freudenberg, M., Lamers, M., Kishimoto, T., et al. (1994). Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature, 368, 339–342.CrossRefGoogle Scholar
  369. Kostyukova, A. S. (2008). Tropomodulins and tropomodulin/tropomyosin interactions. Cellular and Molecular Life Sciences, 65, 563–569.PubMedCrossRefGoogle Scholar
  370. Kraushaar, B. S., & Nirschl, R. P. (1999). Current concepts review-tendinosis of the elbow (tennis elbow). Clinical features and findings of histological immunohistochemical, and electron microscopy studies. JBJS, 81, 259–278.CrossRefGoogle Scholar
  371. Krendel, M., & Mooseker, M. S. (2005). Myosins: Tails (and heads) of functional diversity. Physiology, 20, 239–251.PubMedCrossRefGoogle Scholar
  372. Kresse, H., & Schonherr, E. (2001). Proteoglycans of the extracellular matrix and growth control. Journal of Cellular Physiology, 189, 266–274.PubMedCrossRefGoogle Scholar
  373. Kruger, M., Wright, J., & Wang, K. (1991). Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: Correlation of thin filament length, nebulin size, and epitope profile. JCB, 115, 97–107.PubMedCrossRefGoogle Scholar
  374. Kuipers, H. (1994). Exercise-induced muscle damage. International Journal of Sports Medicine, 15, 132–135.PubMedCrossRefGoogle Scholar
  375. Kumamoto, T., Kleese, W. C., Cong, J., Goll, D. E., Pierce, P. R., & Allen, R. E. (1992). Localization of the Ca2+-dependent proteinases and their inhibitor in normal, fasted, and denervated rat skeletal muscle. The Anatomical Record, 232, 60–77.PubMedCrossRefGoogle Scholar
  376. Kumar, C. K. K., & Chakrabarty, S. (2010). A comparative study of static stretching versus ballistic stretching on the flexibility of the hamstring muscles of athletes. British Journal of Sports Medicine, 44, i16.CrossRefGoogle Scholar
  377. Kung, C. (2005). A possible unifying principle of mechanosensation. Nature, 436, 647–654.PubMedCrossRefGoogle Scholar
  378. Kunimatsu, M., Higashiyama, S., Sato, K., Ohkubo, I., & Sasaki, M. (1989). Calcium dependent cysteine proteinase is a precursor or a chemotactic factor for neutrophils. Biochemical and Biophysical Research Communications, 164(2), 875–882.PubMedCrossRefGoogle Scholar
  379. Kunimatsu, M., Ma, X. J., Ozaki, Y., Narita, M., Mizokami, M., & Sasaki, M. (1995). Neutrophil chemotactic N-acetyl peptides from the calpain small subunit are also chemotactic for immunocytes. Biochemistry and Molecular Biology International, 35, 247–254.PubMedGoogle Scholar
  380. Kunimatsu, M., Ma, X. J., Ozaki, Y., Nishimura, J., Baba, S., & Sasaki, M. (1993). Neutrophil responses induced by formyl and acetyl peptides with the N-terminal sequence of the calpain small subunit. Biochemistry and Molecular Biology International, 31, 477–484.PubMedGoogle Scholar
  381. Kurek, J. B., Nouri, S., Kannourakis, G., Murphy, M., & Austin, L. (1996). Leukemia inhibitory factor and interleukin-6 are produced by diseases and regenerating skeletal muscle. Muscle & Nerve, 19, 1291–1301.CrossRefGoogle Scholar
  382. Kushner, I. (1982). The phenomenon of the acute phase response. Annals of the New York Academy of Sciences, 389, 39–48.PubMedCrossRefGoogle Scholar
  383. Kushner, I. (1993). Regulation of the acute phase response by cytokines. Perspectives in Biology and Medicine, 36, 611–622.PubMedCrossRefGoogle Scholar
  384. Kushner, I., Ganapathi, M., & Schultz, D. (1989). The acute phase response is mediated by heterogeneous mechanisms. Annals of the New York Academy of Sciences, 557, 19–30.PubMedCrossRefGoogle Scholar
  385. Labeit, D., Watanabe, K., Witt, C., Fujita, H., Wu, Y., Lahmers, S., et al. (2003). Calcium-dependent molecular spring elements in the giant protein titin. Proceedings of the National Academy of Sciences of the USA, 100, 13716–13721.PubMedCrossRefGoogle Scholar
  386. Labeit, S., Gautel, M., Lakey, A., & Trinick, J. (1992). Towards a molecular understanding of titin. The EMBO Journal, 11, 1711–1716.PubMedPubMedCentralCrossRefGoogle Scholar
  387. Labeit, S., & Kolmerer, B. (1995). Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science, 270, 293–296.PubMedCrossRefGoogle Scholar
  388. Labeit, S., Ottenheijm, C. A. C., & Granzier, H. (2011). Nebulin, a major player in muscle health and disease. FASEB, 25, 822–829.CrossRefGoogle Scholar
  389. Lange, S., Ehler, E., & Gautel, M. (2006). From A to Z and back? Multicompartment proteins in the sarcomere. Trends in Cell Biology, 16, 11–18.PubMedCrossRefGoogle Scholar
  390. Lange, S., Perera, S., Teh, P., & Chen, J. (2012). Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover. Molecular Biology of the Cell, 23, 2490–2504.PubMedPubMedCentralCrossRefGoogle Scholar
  391. Latash, M. L., & Zatsiorsky, V. M. (1993). Joint stiffness: Myth or reality? Human Movement Science, 12, 653–692.CrossRefGoogle Scholar
  392. Lavagnino, M., Wall, M. E., Little, D., Banes, A. J., Guilak, F., & Arnoczky, S. P. (2015). Tendon mechanobiology: Current knowledge and future research opportunities. Journal of Orthopaedic Research, 33, 813–822.PubMedPubMedCentralCrossRefGoogle Scholar
  393. Law, D. J. (1993). Ultrastructural comparison of slack and stretched myotendinous junctions, based on a three-dimensional model of the connecting domain. Journal of Muscle Research and Cell Motility, 14, 401–411.PubMedCrossRefGoogle Scholar
  394. Law, R. Y. W., Harvey, L. A., Nicholas, M. K., Tonkin, L., De Sousa, M., & Finniss, D. G. (2009). Stretch exercises increase tolerance to stretch in patients with chronic musculoskeletal pain: A randomized controlled trial. Physical Therapy, 89, 1016–1026.PubMedCrossRefGoogle Scholar
  395. Lawrence, T., Willoughby, D. A., & Gilroy, D. W. (2002). Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nature Reviews Immunology, 2, 787–795.PubMedCrossRefGoogle Scholar
  396. Lazarides, E. (1980). Intermediate filaments as mechanical integrators of cellular space. Nature (London), 283, 249–256.CrossRefGoogle Scholar
  397. Lazarides, E. (1982). Intermediate Filaments: A chemically heterogeneous developmentally regulated class of proteins. Annual Review of Biochemistry, 51, 219–250.PubMedCrossRefGoogle Scholar
  398. Lea, R. D., & Gerhardt, J. J. (1995). Range-of-motion measurements. The Journal of Bone and Joint Surgery. American Volume, 77, 784–798.PubMedCrossRefGoogle Scholar
  399. Lee, K., & Nelson, C. M. (2012). New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. International Review of Cell and Molecular Biology, 294, 173–206.Google Scholar
  400. Lefaucheur, J. P., & Sebille, A. (1995). The cellular events of injured muscle regeneration depend on the nature of the injury. Neuromuscular Disorders, 5, 501–509.PubMedCrossRefGoogle Scholar
  401. Ley, K., Laudanna, C., Cybulsky, M. I., & Noursharhg, S. (2007). Getting to the site of inflammation: The leukocyte adhesion cascade update. Nature Reviews Immunology, 7, 678–689.PubMedCrossRefGoogle Scholar
  402. Li, Y., Cummins, J., & Huard, J. (2001). Muscle injury and repair. Current Opinion in Orthopaedics, 12, 409–415.CrossRefGoogle Scholar
  403. Li, Z., Mericskay, M., Agbulut, O., Butler-Browne, G., Carlson, L., Thornell, L.-E., et al. (1997). Desmin is essential for the tensile strength and integrity of myofibrils but not for the myogenic commitment, differentiation, and fusion of skeletal muscle. JCB, 139, 129–144.PubMedCrossRefGoogle Scholar
  404. Libby, P., Ridker, P. M., & Maseri, A. (2002). Inflammation and atherosclerosis. Circulation, 105, 1135–1143.PubMedCrossRefGoogle Scholar
  405. Lieber, R. L. (1992). Skeletal muscle structure and function: Implications for physical therapy and sport medicine. Baltimore: Williams & Wilkins.Google Scholar
  406. Lieber, R. L., & Friden, J. (1993). Muscle damage is not a function of muscle force but active muscle strain. Journal of Applied Physiology, 74, 520–526.CrossRefGoogle Scholar
  407. Lieber, R. L., & Friden, J. (2000). Functional and clinical significance of skeletal muscle architecture. Muscle & Nerve, 23, 1647–1666.CrossRefGoogle Scholar
  408. Lieber, R. L., Roberts, T. J., Blemker, S. S., Lee, S. S. M., & Herzog, W. (2017). Skeletal muscle mechanics, energetics and plasticity. Journal of NeuroEngineering and Rehabilitation, 14, 1–16.CrossRefGoogle Scholar
  409. Liew, F. Y., & Mcinnes, I. B. (2002). Role of interleukin 15 and interleukin 18 in inflammatory response. Annals of the Rheumatic Diseases, 61, ii100–ii102.PubMedPubMedCentralCrossRefGoogle Scholar
  410. Light, N., & Champion, A. E. (1984). Characterization of muscle epimysium, perimysium and endomysium. The Biochemical Journal, 219, 1017–1026.PubMedPubMedCentralCrossRefGoogle Scholar
  411. Linke, W. A. (2008). Sense and stretchability: The role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovascular Research, 77, 637–648.PubMedGoogle Scholar
  412. Linke, W. H., Ivemeyer, M., Mundel, P., Stockmeier, M. R., & Kolmerer, B. (1998). Nature of PEVK-titin elasticity in skeletal muscle. Proceedings of the National Academy of Sciences of the USA, 95, 8052–8057.PubMedCrossRefGoogle Scholar
  413. Linnemann, A., Van Der Ven, P. F., Vakeel, P., Albinus, B., Simonis, D., Bendas, G., et al. (2010). The sarcomeric Z-disc component myopodin is a multiadapter protein that interacts with filamin and α-actinin. European Journal of Cell Biology, 89, 681–692.PubMedCrossRefGoogle Scholar
  414. Littlefield, R. S., & Fowler, M. D. (2008). Thin filament length regulation in striated muscle sarcomeres: Pointed-end dynamics go beyond a nebulin ruler. Seminars in Cell & Developmental Biology, 19, 511–519.CrossRefGoogle Scholar
  415. Liu, L., Srikakulam, R., & Winkelmann, D. A. (2008). Unc45 activates Hsp90-dependent folding of the myosin motor domain. The Journal of Biological Chemistry, 283, 13185–13193.PubMedPubMedCentralCrossRefGoogle Scholar
  416. Liu, X., & Spolarics, Z. (2003). Methemoglobin is a potent activator of endothelial cells by stimulating IL-6 and IL-8 production and E-selectin membrane expression. American Journal of Physiology. Cell Physiology, 285, C1036–C1046.PubMedCrossRefGoogle Scholar
  417. Llinas, P. (2015). How actin initiates the motor activity of myosin. Developmental Cell, 33, 401–412.PubMedPubMedCentralCrossRefGoogle Scholar
  418. Lo, C. M., Wang, H. B., Dembo, M., & Wang, Y. L. (2000). Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 79, 144–152.PubMedPubMedCentralCrossRefGoogle Scholar
  419. Lowey, S., & Trybus, K. M. (1995). Role of skeletal and smooth muscle myosin light chains. Biophysical Journal, 68, 120s–127s.PubMedPubMedCentralCrossRefGoogle Scholar
  420. Lu, H. H., & Jiang, J. (2006). Interface tissue engineering and the formulation of multiple tissue systems. Advances in Biochemical Engineering/Biotechnology, 102, 91–111.PubMedCrossRefGoogle Scholar
  421. Lu, P., Takai, K., Weaver, V. M., & Werb, Z. (2011). Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology, 3, 1–24.CrossRefGoogle Scholar
  422. Lucke, S., Hoene, A., Walschus, U., Kob, A., Pissarek, J.-W., & Schlosser, M. (2015). Acute and chronic inflammatory reaction after implantation of different extracellular porcine dermis collagen matrices in rats. BioMed Research International, 2015, 1–10.CrossRefGoogle Scholar
  423. Luft, F. C. (2006). Clinical implications. Journal of Molecular Medicine, 84, 443–445.PubMedCrossRefGoogle Scholar
  424. Lund, H., Vestergaard-Poulsen, P., Kanstrup, I.-L., & Sejrsen, P. (1998). The effect of passive stretching on delayed onset muscle soreness, and other detrimental effects following eccentric exercise. Scandinavian Journal of Medicine & Science in Sports, 8, 216–221.CrossRefGoogle Scholar
  425. Luther, P. K. (2009). The vertebrate muscle Z-disc: Sarcomere anchor for structure and signaling. Journal of Muscle Research and Cell Motility, 30, 171–185.PubMedPubMedCentralCrossRefGoogle Scholar
  426. Luttgens, K., & Hamilton, N. (1997). Kinesiology: Scientific basis of human motion. Madison, WI: Brown & Benchmark.Google Scholar
  427. Lutz, G. J., & Lieber, R. L. (1999). Skeletal muscle myosin II structure and function. Exercise and Sport Sciences Reviews, 27, 63–77.PubMedCrossRefGoogle Scholar
  428. Macintyre, D. L., Reid, W. D., Lyster, D. M., Szasz, I. J., & Mckenzie, D. C. (1996). Presence of WBC, decreased strength, and delayed soreness in muscle after eccentric exercise. Journal of Applied Physiology, 80, 1006–1013.PubMedCrossRefGoogle Scholar
  429. Macintyre, D. L., Reid, W. D., & Mckenzie, D. C. (1995). The inflammatory response to muscle injury and its clinical implications. Sports Medicine, 20, 24–40.CrossRefGoogle Scholar
  430. Mackay, B., Harrop, T. J., & Muir, A. R. (1969). The fine structure of the muscle tendon junction in the rat. Acta Anatomica, 73, 588–604.PubMedCrossRefGoogle Scholar
  431. Mackay, D. M. (1963). Psychophysics perceived intensity: A theoretical basis for Fechner’s and Steven’s laws. Science, 139, 1213–1216.CrossRefGoogle Scholar
  432. Maffulli, N., King, J., & Helms, P. (1994). Training in elite young athletes (the training of young athletes (TOYA) study): Injuries, flexibility and isometric strength. British Journal of Sports Medicine, 28, 123–136.PubMedPubMedCentralCrossRefGoogle Scholar
  433. Magnusson, S. P. (1998). Passive properties of human skeletal muscle during stretch maneuvers-a review. Scandinavian Journal of Medicine & Science in Sports, 8, 65–77.CrossRefGoogle Scholar
  434. Magnusson, S. P., Simonsen, E., Aagaard, P., Sorensen, H., & Kjaer, M. (1996). A mechanism for altered flexibility in human skeletal muscle. Journal of Physiology (London), 497, 291–298.CrossRefGoogle Scholar
  435. Magnusson, S. P., Simonsen, E., Dyhre-Poulsen, P., Aagaard, P., Mohr, T., & Kjaer, M. (1996). Viscoelastic stress relaxation during static stretch in human skeletal muscle in the absence of EMG activity. Medicine & Science in Sports & Exercise, 6, 323–328.Google Scholar
  436. Mahieu, N. N., Mcnair, P., De Muynck, M., Stevens, V., Blanckaert, I., Smits, N., et al. (2007). Effect of static and ballistic stretching on the muscle-tendon tissue properties. Medicine and Science in Sports and Exercise, 39, 494–501.PubMedCrossRefGoogle Scholar
  437. Makino, A., Shin, H. Y., Komai, Y., Fukuda, S., Coughlin, M., Sugihara-Seki, M., et al. (2007). Mechanotransduction in leukocyte activation: A review. Biorheology, 44, 221–249.PubMedGoogle Scholar
  438. Malliaropoulos, N., Papalexandris, S., Papalada, A., & Papacostas, E. (2004). The role of stretching in rehabilitation of hamstring injuries: 80 athletes follow-up. Medicine and Science in Sports and Exercise, 36, 756–759.PubMedCrossRefGoogle Scholar
  439. Malm, C., Nyberg, P., Engstrom, M., Sjodin, B., Lenkei, R., & Ekblom, B. (2000). Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. The Journal of Physiology, 529, 243–262.PubMedPubMedCentralCrossRefGoogle Scholar
  440. Mammoto, T., & Ingber, D. E. (2010). Mechanical control of tissue and organ development. Development, 137, 1407–1420.PubMedPubMedCentralCrossRefGoogle Scholar
  441. Maniotis, A. J., Chen, C. S., & Ingber, D. E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences of the USA, 94, 849–854.PubMedCrossRefGoogle Scholar
  442. Margadant, F., Chew, L. L., Hu, X., Yu, H., Bate, N., Zhang, X., et al. (2011). Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biology, 9, e1001223.PubMedPubMedCentralCrossRefGoogle Scholar
  443. Marino, A., & Giotta, N. (2008). Cinacalcet, fetuin-A and interleukin-6. Nephrology, Dialysis, Transplantation, 23, 1461.Google Scholar
  444. Marino, M., Scuderi, F., Provenzano, C., & Bartoccioni, E. (2011). Skeletal muscle cells: From local inflammatory response to active immunity. Gene Therapy, 18, 109–116.PubMedCrossRefGoogle Scholar
  445. Marmelzat, W. L. (1977). Medicine and history-the contributions to dermatologic surgery of Aulus Cornelius Celsus (Circa 30 B.C. - A.D. 50). The Journal of Dermatologic Surgery and Oncology, 3, 161–166.PubMedCrossRefGoogle Scholar
  446. Marschall, F. (1999). Wie beinflussen unterschiedliche dehnintensitaten kurzfristig die veranderung der bewegungsreichweite? (Effects of different stretch-intensity on the acute change of range of motion). Deutsche Zeitschrift fur Sportmedizin, 50, 5–9.Google Scholar
  447. Marsolais, D., Cote, C. H., & Frenette, J. (2001). Neutrophils and macrophages accumulate sequentially following Achilles tendon injury. Journal of Orthopaedic Research, 19, 1203–1209.PubMedCrossRefGoogle Scholar
  448. Martinez, F. O., Helming, L., & Gordon, S. (2009). Alternative activation of macrophages: An immunologic functional perspective. Annual Review of Immunology, 27, 451–483.PubMedCrossRefGoogle Scholar
  449. Martinez, F. O., Sica, A., Mantovani, A., & Locati, M. (2008). Macrophage activation and polarization. Frontiers in Bioscience, 13, 453–461.PubMedCrossRefGoogle Scholar
  450. Martins, W. R., Carvalho, M. M., Mota, M. R., Cipriano, G. F. B., Mendes, F. A. S., Diniz, L. R., et al. (2013). Diacutaneous fibrolysis versus passive stretching after articular immobilisation: Muscle recovery and extracellular matrix remodelling. Osteoarthritis Medical Hypotheses, 1, 17–22.Google Scholar
  451. Maruyama, K., Kimura, S., Ohashi, K., & Kuwano, Y. (1981). Connectin, an elastic protein of muscle, identification of “titin” with connectin. Journal of Biochemistry, 89, 701–709.PubMedCrossRefGoogle Scholar
  452. Massimino, M. L., Rapizzi, E., Cantini, M., Libera, L. D., Mazzoleni, F., Arslan, P., et al. (1997). ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. Biochemical and Biophysical Research Communications, 235, 75759.CrossRefGoogle Scholar
  453. Mastorakos, G., Chrousos, G. P., & Weber, J. S. (1993). Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. The Journal of Clinical Endocrinology and Metabolism, 77, 1690–1694.PubMedGoogle Scholar
  454. Maturana, H. R., & Varela, F. J. (1975). Autopoietic systems. Champaign, IL: University of Illinois BLC Report 9.Google Scholar
  455. Mayer, U. (2003). Integrins: Redundant or important players in skeletal muscle. JBC, 278, 14587–14590.CrossRefGoogle Scholar
  456. Mayerson, N. H., & Milano, R. A. (1984). Goniometric measurement reliability in physical medicine. Archives of Physical Medicine and Rehabilitation, 65, 92–94.PubMedGoogle Scholar
  457. Mazzochi, F. (2008). Complexity in biology-Exceeding the limits of reductionism and determinism using complexity theory. EMBO Reports, 9, 10–14.CrossRefGoogle Scholar
  458. Mcburney, D. H., & Balaban, C. D. (2009). A heuristic model of sensory adaptation. Attention, Perception, & Psychophysics, 71, 1941–1961.CrossRefGoogle Scholar
  459. Mccall, G. E., Byrnes, W. C., Dickinson, A., Pattany, P. M., & Fleck, S. J. (1996). Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. Journal of Applied Physiology, 81, 2004–2012.PubMedCrossRefGoogle Scholar
  460. Mcclure, P., Blackburn, L., & Dusold, C. (1994). The use of splints in the treatment of joint stiffness: Biologic rationale and an algorithm for making clinical decisions. Physical Therapy, 74, 1101–1107.CrossRefGoogle Scholar
  461. Mcelhinny, A. S., Kazmierski, S. T., Labeit, S., & Gregorio, C. C. (2003). Nebulin: The nebulous multifunctional giant of striated muscle. Trends in Cardiovascular Medicine, 13, 195–201.PubMedCrossRefGoogle Scholar
  462. Mcelhinny, A. S., Kolmerer, B., Fowler, V. M., Labeit, S., & Gregorio, C. C. (2001). The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. The Journal of Biological Chemistry, 276, 583–592.PubMedCrossRefGoogle Scholar
  463. Mcewen, B. S., & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43, 2–15.PubMedCrossRefGoogle Scholar
  464. Mcgee, D. W., Bamberg, T., Vitukus, S. J. D., & Mcghee, J. R. (1995). A synergistic relationship between TNF-α, IL-1β, and TGF-β1 on IL-6 secretion by the IEC-6 intestinal epithelial cell line. Immunology, 86, 6–11.PubMedPubMedCentralGoogle Scholar
  465. Mclachlan, A. D., & Karn, J. (1982). Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature, 299, 226–231.PubMedCrossRefGoogle Scholar
  466. Mclennan, I. S. (1993). Resident macrophages (ED2- and ED3-positive) do not phagocytose degenerating rat skeletal muscle fibres. Cell and Tissue Research, 272, 193–196.PubMedCrossRefGoogle Scholar
  467. Mclennan, I. S. (1996). Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. Journal of Anatomy, 188, 17–28.PubMedPubMedCentralGoogle Scholar
  468. Mcloughlin, T. J., Mylona, E., Hornberger, T. A., Esser, K. A., & Pizza, F. X. (2003). Inflammatory cells in rat skeletal muscle are elevated after electrically stimulated contractions. Journal of Applied Physiology, 94, 876–882.PubMedCrossRefGoogle Scholar
  469. Mcmahon, T. A. (1984). Muscles, reflexes, and locomotion. Princeton, NJ: Princeton University Press.Google Scholar
  470. Mcnulty, R. J. (2006). Fibroblasts and myofibroblasts: Their source, function and role in disease. The International Journal of Biochemistry & Cell Biology, 39, 666–671.CrossRefGoogle Scholar
  471. Medhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454, 428–435.CrossRefGoogle Scholar
  472. Medzhitov, R. (2010). Inflammation 2010: New adventures of an old flame. Cell, 140, 771–771.PubMedCrossRefGoogle Scholar
  473. Meier-Ewert, H. K., Ridker, P. M., Rifai, N., Price, N., Dinges, D. F., & Mullington, J. M. (2001). Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects. Clinical Chemistry, 47, 426–430.PubMedGoogle Scholar
  474. Meredith Jr., J. E., Fazeli, B., & Schwartz, M. A. (1993). The extracellular matrix as a cell survival factor. Molecular Biology of the Cell, 4, 953–961.PubMedPubMedCentralCrossRefGoogle Scholar
  475. Messner, K., Wei, Y., Andersson, B., Gillquist, J., & Rasanen, T. (1999). Rat model of Achilles tendon disorder. A pilot study. Cells, Tissues, Organs, 165, 30–39.PubMedCrossRefGoogle Scholar
  476. Metsios, G. S., Stavropoulos-Kalinoglou, A., & Kitas, G. D. (2015). The role of exercise in the management of rheumatoid arthritis. Expert Review of Clinical Immunology, 11, 1121–1130.PubMedCrossRefGoogle Scholar
  477. Meyer, L. C., & Wright, N. T. (2013). Structure of giant muscle proteins. Frontiers in Physiology, 4, 1–12.CrossRefGoogle Scholar
  478. Michele, D. E., & Campbell, K. P. (2003). Dystrophin-glycoprotein complex: Post-translational processing and dystroglycan function. JBC, 278, 15457–15460.CrossRefGoogle Scholar
  479. Miller, B. F., Olesen, J. L., Hansen, M., Dossing, S., Crameri, R. M., Welling, R. J., et al. (2005). Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. The Journal of Physiology, 567, 1021–1033.PubMedPubMedCentralCrossRefGoogle Scholar
  480. Miller, M. K., Bang, M.-L., Witt, C. C., Labeit, D., Trombitas, C., Watanabe, K., et al. (2003). The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules. Journal of Molecular Biology, 333, 951–964.PubMedCrossRefGoogle Scholar
  481. Milz, S., Ockert, B., & Putz, R. (2009). Tenocytes and the extracellular matrix: A reciprocal relationship. Orthopade, 38, 1071–1079.PubMedCrossRefGoogle Scholar
  482. Minutti, C. M., Knipper, J. A., Allen, J. E., & Zaiss, D. M. W. (2017). Tissue-specific contribution of macrophages to wound healing. Seminars in Cell & Developmental Biology, 61, 3–11.CrossRefGoogle Scholar
  483. Mitroulis, I., Alexaki, V. I., Kourtzelis, I., Ziogas, A., Hajishengallis, G., & Chavakis, T. (2015). Leukocyte integrins: Role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacology & Therapeutics, 147, 123–135.CrossRefGoogle Scholar
  484. Mittal, M., Siddiqui, R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling, 20, 1126–1166.CrossRefGoogle Scholar
  485. Moore, M. A., & Hutton, R. S. (1980). Electromyographic investigation of muscle stretching techniques. Medicine and Science in Sports and Exercise, 12, 322–329.PubMedCrossRefGoogle Scholar
  486. Morcelli, M. H., Oliveira, J. M. C. A., & Navega, M. T. (2013). Comparison of static, ballistic and contract-relax stretching in hamstring muscle. Fisioterapia e Pesquisa, 20, 244–249.CrossRefGoogle Scholar
  487. Moreau, N. G., Simpson, K. N., Teefey, S. A., & Diamano, D. L. (2010). Muscle architecture predicts maximum strength and is related to activity levels in cerebral palsy. Physical Therapy, 90, 1619–1630.PubMedPubMedCentralCrossRefGoogle Scholar
  488. Morozov, V. I., Tsyplenkov, P. V., Goldberg, N. D., & Kalinski, M. I. (2006). The effects of high-intensity exercise on skeletal muscle neutrophil myeloperoxidase in untrained and trained rats. European Journal of Applied Physiology, 97, 716–722.PubMedCrossRefGoogle Scholar
  489. Mueller, M. J., & Maluf, K. (2002). Tissue adaptation to physical stress: A proposed “physical stress theory” to guide physical therapist practice, education, and research. Physical Therapy, 82, 383–403.Google Scholar
  490. Mujika, I., Chatard, J.-C., Busso, T., Geyssant, A., Barale, F., & Lacoste, L. (1995). The effects of training on performance in competitive swimming. Canadian Journal of Applied Physiology, 20, 395–406.CrossRefGoogle Scholar
  491. Muller, W. A. (2013). Getting leukocytes to the site of inflammation. Veterinary Pathology, 50, 7–22.PubMedPubMedCentralCrossRefGoogle Scholar
  492. Murphy, D. R. (1994). A critical look at static stretching: Are we doing our patients. Chiropractic Sports Medicine, 5, 67–70.Google Scholar
  493. Murphy, R. M. (2009). Calpains, skeletal muscle function and exercise. Proceedings of the Australian Physiological Society, 40, 95–102.Google Scholar
  494. Murray, P. J., & Wynn, T. A. (2011). Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology, 11, 723–737.PubMedPubMedCentralCrossRefGoogle Scholar
  495. Nakamura, M., Ikezoe, T., Takeno, Y., & Ichihashi, N. (2012). Effects of a 4-week static stretch training program on passive stiffness of human gastrocnemius muscle-tendon unit in vivo. European Journal of Applied Physiology, 112, 2749–2755.PubMedCrossRefGoogle Scholar
  496. Nathan, C., & Ding, A. (2010). Nonresolving inflammation. Cell, 140, 871–882.PubMedCrossRefGoogle Scholar
  497. Nelson, C. M., & Bissell, M. J. (2006). Of extracellular matrix, scaffolds, and signaling: Tissue architecture regulates development, homeostasis, and cancer. Annual Review of Cell and Developmental Biology, 22, 287–309.PubMedPubMedCentralCrossRefGoogle Scholar
  498. Newham, D. J., Jones, D. A., & Edwards, R. H. T. (1983). Large delayed plasma creatine kinase changes after stepping exercise. Muscle & Nerve, 6, 380–385.CrossRefGoogle Scholar
  499. Newham, D. J., Mcphail, G., Mills, K. R., & Edwards, R. H. T. (1983). Ultrastructural change after concentric and eccentric contractions of human muscle. Journal of Neurosurgical Sciences, 61, 109–122.CrossRefGoogle Scholar
  500. Ng, I. C. L., Maull, R., & Yip, N. (2009). Outcome-based contracts as a driver for systems thinking and service-dominant logic in service science: Evidence from the defence industry. European Management Journal, 27, 377–387.CrossRefGoogle Scholar
  501. Nicola, N. A. (1994). Cytokine pleiotropy and redundancy: A view from the receptor. Stem Cells, 12, 3–12.PubMedGoogle Scholar
  502. Nielsen, A. R., Mounier, R., Plomgaard, P., Mortensen, O. H., Penkowa, M., Speerschneider, T., et al. (2007). Expression of interleukin-15 in human skeletal muscle - effect of exercise and muscle fibre type composition. The Journal of Physiology, 584, 305–312.PubMedPubMedCentralCrossRefGoogle Scholar
  503. Nieman, D. C. (1997). Immune response to heavy exercise. Journal of Applied Physiology, 82, 1385–1394.PubMedCrossRefGoogle Scholar
  504. Nieman, D. C., Nehlsen-Cannarella, S. L., Fagoaga, O. R., Henson, D. A., Utter, A., Davis, M. J., et al. (1998). Influence of mode and carbohydrate on the cytokine response to heavy exertion. Medicine and Science in Sports and Exercise, 30, 671–678.PubMedCrossRefGoogle Scholar
  505. Nikolaou, P. K., Macdonald, B. L., Glisson, R. R., Seaber, A. V., & Garrett Jr., W. E. (1987). Biomechanical and histological evaluation of muscle after controlled strain injury. The American Journal of Sports Medicine, 15, 9–14.CrossRefGoogle Scholar
  506. Nishikawa, K. C., Monroy, J. A., Uyeno, T. E., Yeo, S. H., Pai, D. K., & Lindstedt, S. L. (2012). Is titin a ‘winding filament’? A new twist on muscle contraction. Proceedings of the Royal Society B: Biological Sciences, 279, 981–990.PubMedCrossRefGoogle Scholar
  507. Novak, M. L., & Koh, T. J. (2013). Phenotype transitions of macrophages orchestrate tissue repair. The American Journal of Pathology, 183, 1352–1363.PubMedPubMedCentralCrossRefGoogle Scholar
  508. Nussbaumer, S., Leunig, M., Glatthorn, J. F., Stauffacher, S., Gerber, H., & Maffiuletti, N. A. (2010). Validity and test-retest reliability of manual goniometers for measuring passive hip range of motion in femoroacetabular impingement patients. BMC Musculoskeletal Disorders, 11, 1–11.CrossRefGoogle Scholar
  509. O’hara, J., Cartwright, A., Wade, C. D., Hough, A. D., & Shum, G. L. (2011). Efficacy of static stretching and proprioceptive neuromuscular facilitation stretch on hamstrings length after a single session. Journal of Strength and Conditioning Research, 25, 1586–1591.CrossRefGoogle Scholar
  510. Offer, G., & Sessions, R. (1995). Computer modelling of the a-helical coiled coil: Packing of side-chains in the inner core. Journal of Molecular Biology, 249, 967–987.PubMedCrossRefGoogle Scholar
  511. Ohlendieck, K. (1996). Towards an understanding of the dystrophin-glycoprotein complex: Linkage between the extracellular matrix and the membrane cytoskeleton in muscle fibers. European Journal of Cell Biology, 69, 1–10.PubMedGoogle Scholar
  512. Oiwa, K., & Manstein, D. J. (Eds.). (2007). Controlled nanoscale motion. Berlin: Springer.Google Scholar
  513. Oltvai, Z. N., & Barabasi, A.-L. (2002). Life’s complexity pyramid. Science, 298, 763–764.PubMedCrossRefGoogle Scholar
  514. Orimo, S., Hiyamuta, E., Arahata, K., & Sugita, H. (1991). Analysis of inflammatory cells and complement C3 in bupivacaine-induced myonecrosis. Muscle & Nerve, 14, 515–520.CrossRefGoogle Scholar
  515. Orr, A. W., Helmke, B. P., Blackman, B. R., & Schwartz, M. A. (2006). Mechanisms of mechanotransduction. Developmental Cell, 10, 11–20.PubMedCrossRefGoogle Scholar
  516. Ostapiuk-Karolczuk, J., Zembron-Lacny, A., Naczk, M., Gajewski, M., Kasperska, A., Dziewiecka, H., et al. (2012). Cytokines and cellular inflammatory sequence in non-athletes after prolonged exercise. The Journal of Sports Medicine and Physical Fitness, 52, 563–568.PubMedGoogle Scholar
  517. Osternig, L. R., Robertson, R., Troxel, R., & Hansen, P. (1987). Muscle activation during proprioceptive neuromuscular facilitation (PNF) stretching techniques. American Journal of Physical Medicine & Rehabilitation, 66, 298–307.CrossRefGoogle Scholar
  518. Ostrowski, K., Rohde, T., Asp, S., Schjerling, P., & Pedersen, B. K. (1999). Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. The Journal of Physiology, 515, 287–291.PubMedPubMedCentralCrossRefGoogle Scholar
  519. Ostrowski, K., Rohde, T., Zacho, M., Asp, S., & Pedersen, B. K. (1998). Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. The Journal of Physiology, 508, 949–953.PubMedPubMedCentralCrossRefGoogle Scholar
  520. Ostrowski, K., Schjerling, P., & Pedersen, B. K. (2000). Physical activity and plasma interleukin-6 in humans - effect of intensity of exercise. European Journal of Applied Physiology, 83, 512–515.PubMedCrossRefGoogle Scholar
  521. Ottenheijm, C. A., & Granzier, H. (2010). Lifting the nebula: Novel insights into skeletal muscle contractility. Physiology (Bethesda), 25, 304–310.Google Scholar
  522. Page, P. (2012). Current concepts in muscle stretching for exercise and rehabilitation. IJSPT, 7, 109–119.PubMedGoogle Scholar
  523. Palmer, J. F. (1835). The works of John Hunter, F.R.S. with notes. London: Longman, Rees, Orme, Brown, Green, & Longman.Google Scholar
  524. Palmisano, M. G., Bremner, S. N., Hornberger, T. A., Meyer, G. A., Domenighetti, A. A., Shah, S. B., et al. (2015). Skeletal muscle intermediate filaments form a stress-transmitting and stress-signaling network. Journal of Cell Science, 128, 219–224.PubMedPubMedCentralCrossRefGoogle Scholar
  525. Paluch, E. K., Nelson, C. M., Biais, N., Fabry, B., Moeller, J., Pruitt, B. L., et al. (2015). Mechanotransduction: Use the force(s). BMC Biology, 13, 1–14.CrossRefGoogle Scholar
  526. Papadimitriou, J. M., Robertson, T. A., Mitchell, C. A., & Grounds, M. D. (1990). The process of new plasmalemma formation in focally injured skeletal muscle fibers. Journal of Structural Biology, 103, 124–134.PubMedCrossRefGoogle Scholar
  527. Pardo, J. V., D’Angelo Siliciano, J., & Craig, S. W. (1983). A vinculin-containing cortical lattice in skeletal muscle: Transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proceedings of the National Academy of Sciences of the USA, 80, 1008–1012.PubMedCrossRefGoogle Scholar
  528. Peake, J. M., Nosaka, K., & Suzuki, K. (2005). Characterization of inflammatory responses to eccentric exercise in humans. Exercise Immunology Review, 11, 64–85.PubMedGoogle Scholar
  529. Peake, J. M., Suzuki, K., Hordern, M., Wilson, G., Nosaka, K., & Coombes, J. S. (2005). Plasma cytokine changes in relation to exercise intensity and muscle damage. European Journal of Applied Physiology, 95, 514–521.PubMedCrossRefGoogle Scholar
  530. Pedersen, B. K. (2006). The anti-inflammatory effect of exercise: Its role in diabetes and cardiovascular disease control. Essays in Biochemistry, 42, 105–117.PubMedCrossRefGoogle Scholar
  531. Pedersen, B. K., Akerstrom, T. C. A., Nielsen, A. R., & Fischer, C. P. (2007). Role of myokines in exercise and metabolism. Journal of Applied Physiology, 103, 1093–1098.PubMedCrossRefGoogle Scholar
  532. Pedersen, B. K., & Febbraio, M. A. (2008). Muscle as an endocrine organ: Focus on muscle derived interleukin-6. Physiological Reviews, 88, 1379–1406.PubMedCrossRefGoogle Scholar
  533. Pedersen, B. K., & Fischer, C. P. (2007). Beneficial health effects of exercise - The role of IL-6 as a myokine. Trends in Pharmacological Sciences, 28, 152–156.PubMedCrossRefGoogle Scholar
  534. Pedersen, B. K., & Hoffman-Goetz, L. (2000). Exercise and the immune system: Regulation, integration and adaption. Physiological Reviews, 80, 1055–1081.CrossRefGoogle Scholar
  535. Pedersen, B. K., Ostrowski, K., Rohde, T., & Bruunsgaard, H. (1998). The cytokine response to strenuous exercise. Canadian Journal of Physiology and Pharmacology, 76, 505–511.PubMedCrossRefGoogle Scholar
  536. Pedersen, B. K., Steensberg, A., Fischer, C. P., Keller, C., Ostrowski, K., & Schjerling, P. (2001). Exercise and cytokines with particular focus on muscle-derived IL-6. Exercise Immunology Review, 7, 18–31.PubMedGoogle Scholar
  537. Pepys, M. B., & Hirschfield, G. M. (2003). C-reactive protein: A critical update. The Journal of Clinical Investigation, 111, 1805–1812.PubMedPubMedCentralCrossRefGoogle Scholar
  538. Perrimon, N., & Bernfield, M. (2001). Cellular functions of proteoglycans-an overview. Seminars in Cell & Developmental Biology, 12, 65–67.CrossRefGoogle Scholar
  539. Peter, A. K., Cheng, H., Ross, R. S., Knowlton, K. U., & Chen, J. (2011). The costamere bridges sarcomeres to the sarcolemma in striated muscle. Progress in Pediatric Cardiology, 31, 83–88.PubMedPubMedCentralCrossRefGoogle Scholar
  540. Pfuhl, M., Winder, S. J., & Pastore, A. (1994). Nebulin, a helical actin binding protein. The EMBO Journal, 13, 1782–1789.PubMedPubMedCentralCrossRefGoogle Scholar
  541. Philippou, A., Maridaki, M., Theos, A., & Koutsilieris, M. (2012). Cytokines in muscle damage. Advances in Clinical Chemistry, 58, 49–87.PubMedCrossRefGoogle Scholar
  542. Phillipson, M., Heit, B., Colarusso, P., Liu, L., Ballantyne, C. M., & Kubes, P. (2006). Intramural crawling of neutrophils to emigration sites: A molecularly distinct process from adhesion in the recruitment cascade. JEM, 203, 2569–2575.CrossRefGoogle Scholar
  543. Pickup, M. W., Mouw, J. K., & Weaver, V. M. (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO, 15, 1243–1253.CrossRefGoogle Scholar
  544. Pizza, F. X., Koh, T. J., Mcgregor, S. J., & Brooks, S. V. (2002). Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. Journal of Applied Physiology, 92, 1873–1878.CrossRefGoogle Scholar
  545. Pizza, F. X., Petersen, J. M., Baas, J. H., & Koh, T. J. (2005). Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. The Journal of Physiology, 562, 899–913.PubMedCrossRefGoogle Scholar
  546. Plow, E. F., Haas, T. A., Zhang, L., Loftus, J., & Smith, J. W. (2000). Ligand binding to integrins. JBC, 275, 21785–21788.CrossRefGoogle Scholar
  547. Porat, R., Poutsiaka, D. D., Miller, L. C., Granowitz, E. V., & Dinarello, C. A. (1992). Interleukin-1 (IL-1) receptor blockade reduces endotoxin and Borrelia burgdorferi-stimulated IL-8 synthesis in human mononuclear cells. FASEB, 6, 2482–2486.CrossRefGoogle Scholar
  548. Powell, P. L., Roy, R. R., Kanim, P. M., Bello, A., & Edgerton, V. R. (1984). Predictability of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. Journal of Applied Physiology, 57, 1715–1721.PubMedCrossRefGoogle Scholar
  549. Power, K., Behm, D., Farrel, C., Carroll, M., & Young, W. (2004). An acute bout of static stretching: Effects on force and jumping performance. Medicine and Science in Sports and Exercise, 36, 1389–1396.PubMedCrossRefGoogle Scholar
  550. Powers, K., Nishikawa, K., Joumaa, V., & Herzog, W. (2016). Decreased force enhancement in skeletal muscle sarcomeres with a deletion in titin. The Journal of Experimental Biology, 219, 1311–1316.PubMedCrossRefGoogle Scholar
  551. Prentice, S. F. (1985). Warming-up and stretching for improved physical performance and prevention of sports related injuries. Sports Medicine, 2, 267–278.PubMedCrossRefGoogle Scholar
  552. Previtera, M. L. (2004). Mechanotransduction in the immune system. Cellular and Molecular Bioengineering, 7, 473–481.CrossRefGoogle Scholar
  553. Proske, U., Morgan, D. L., & Gregory, J. (1993). Thixotropy in skeletal muscle and in muscle spindles: A review. Progress in Neurobiology, 41, 704–721.CrossRefGoogle Scholar
  554. Puklin-Faucher, E., & Sheetz, M. P. (2009). The mechanical integrin cycle. JCS, 122, 179–186.CrossRefGoogle Scholar
  555. Puri, K. D., Doggett, T. A., Huang, C.-Y., Douangpanya, J., Hayflick, J. S., Turner, M., et al. (2005). The role of endothelial PI3Kγ activity in neutrophil trafficking. Blood, 106, 150–157.PubMedPubMedCentralCrossRefGoogle Scholar
  556. Purslow, P. (Ed.). (2008). The extracellular matrix of skeletal and cardiac muscle. Boston, MA: Springer.Google Scholar
  557. Qi, J., Fox, A. M., Alexopoulos, L. G., Chi, L., Bynum, D., Guilak, F., et al. (2006). IL-1β decreases the elastic modulus of human tenocytes. Journal of Applied Physiology, 101, 189–195.PubMedCrossRefGoogle Scholar
  558. Quinones, S. R., Neblock, D. S., & Berg, R. A. (1986). Regulation of collagen production and collagen mRNA amounts in fibroblasts in response to culture conditions. Biochemical Journal, 239, 179–183.PubMedPubMedCentralCrossRefGoogle Scholar
  559. Raj, D. A., Booker, T. S., & Belcastro, A. N. (1998). Striated muscle calcium-stimulated cysteine protease (calpain-like) activity promotes myeloperoxidase activity with exercise. Pflügers Archiv - European Journal of Physiology, 435, 804–809.PubMedCrossRefGoogle Scholar
  560. Ralphs, J. R., Waggett, A. D., & Benjamin, M. (2002). Actin stress fibres and cell-cell adhesion molecules in tendons: Organisation in vivo and response to mechanical loading of tendon cells in vitro. Matrix Biology, 21, 67–74.PubMedCrossRefGoogle Scholar
  561. Ramadori, G., Van Damme, J., Rieder, H., & Meyer Zum Buschenfelde, K. H. (1988). Interleukin 6, the third mediator of acute-phase reaction, modulates hepatic protein synthesis in human and mouse. Comparison with interleukin 1 beta and tumor necrosis factor-alpha. European Journal of Immunology, 18, 1259–1264.CrossRefGoogle Scholar
  562. Randazzo, D., Giacomello, E., Lorenzini, S., Rossi, D., Pierantozzi, E., Blaauw, B., et al. (2013). Obscurin is required for ankyin B-dependent dystrophin localization and sarcolemma integrity. JCB, 200, 523–536.PubMedCrossRefGoogle Scholar
  563. Ransone, J., Geissler, G., Wilson, P., & Adams, B. (2012). Chapter 9: Soft tissue damage and healing. Monaco: IAAF.Google Scholar
  564. Rather, L. J. (1971). Disturbance of function (Functio Laesa): The legendary fifth cardinal sign of inflammation, added by Galen to the four cardinal signs of Celsus. Bulletin of the New York Academy of Medicine, 47, 303–322.PubMedPubMedCentralGoogle Scholar
  565. Rayment, I., Rypniewski, W. R., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M., et al. (1993). Three-dimensional structure of myosin subfragment-1: A molecular motor. Science, 261, 50–58.PubMedCrossRefGoogle Scholar
  566. Reihmane, D., & Dela, F. (2013). Interleukin-6: Possible biological roles during exercise. European Journal of Sport Science, 14, 242–250.PubMedCrossRefGoogle Scholar
  567. Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor Perspectives in Biology, 2011, 1–19.Google Scholar
  568. Ricard-Blum, S., & Ruggiero, F. (2005). The collagen superfamily: From teh extracellular matrix to the cell membrane. Pathologie Biologie, 53, 430–442.PubMedCrossRefGoogle Scholar
  569. Ritchie, D. G. (1990). Interleukin 6 stimulates hepatic glucose release from prelabeled glycogen pools. American Journal of Physiology. Endocrinology and Metabolism, 258, E57–E64.CrossRefGoogle Scholar
  570. Robertson, T. A., Maley, M. A. L., Grounds, M. D., & Papadimitriou, J. M. (1993). The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Experimental Cell Research, 207, 321–331.PubMedCrossRefGoogle Scholar
  571. Rock, K. L., & Kono, H. (2008). The inflammatory response to cell death. Annual Review of Pathology, 3, 99–126.PubMedPubMedCentralCrossRefGoogle Scholar
  572. Rodgers, U. R., & Weiss, A. S. (2005). Cellular interactions with elastin. Pathologie Biologie, 53, 390–398.PubMedCrossRefGoogle Scholar
  573. Ross, T. D., Coon, B. G., Yun, S., Baeyens, N., Tanaka, K., Ouyang, M., et al. (2013). Integrins in mechanotransduction. Current Opinion in Cell Biology, 25, 613–618.PubMedPubMedCentralCrossRefGoogle Scholar
  574. Rothstein, J. M., Miller, P. J., & Roettger, R. F. (1983). Goniometric reliability in a clinical setting: Elbow and knee measurement. Physical Therapy, 63, 1611–1615.PubMedCrossRefGoogle Scholar
  575. Roy, R. R., & Edgerton, V. R. (Eds.). (1992). Skeletal muscle architecture and performance. Oxford, UK: Blackwell Scientific Publications.Google Scholar
  576. Rubtsov, A. M., & Lopina, O. D. (2000). Ankyrins. FEBS Letters, 482, 1–5.PubMedCrossRefGoogle Scholar
  577. Rui, Y., Bai, J., & Perrimon, N. (2010). Sarcomere formation occurs by the assembly of multiple latent protein complexes. PLoS Genetics, 6, 1–13.CrossRefGoogle Scholar
  578. Ruoslahti, E., & Pierschbacher, M. D. (1988). New perspectives in cell adhesion: RGD and integrins. Science, 238, 491–497.CrossRefGoogle Scholar
  579. Sady, S. P., Wortman, M., & Blanke, D. (1982). Flexibility training: Ballistic, static or proprioceptive neuromuscular facilitation? Archives of Physical Medicine and Rehabilitation, 63, 261–263.PubMedGoogle Scholar
  580. Safran, M., Seaber, A., & Garrett, W. (1989). Warm-up and muscular injury prevention: An update. Sports Medicine, 8, 239–249.PubMedCrossRefGoogle Scholar
  581. Saido, T. C., Sorimachi, H., & Suzuki, K. (1994). Calpain: New perspectives in molecular diversity and physiological-pathological involvement. FASEB, 8, 814–822.CrossRefGoogle Scholar
  582. Salvini, T. F., Durigan, J. L. Q., Peviani, S. M., & Russo, T. L. (2012). Effects of electrical stimulation and stretching on the adaptation of denervated skeletal muscle - implications for physical therapy. Revista Brasileira de Fisioterapia, 16, 175–183.PubMedCrossRefGoogle Scholar
  583. Samols, D., Agrawal, A., & Kushner, I. (2002). Acute phase proteins. Cytokine Reference, 1–16.Google Scholar
  584. Sanger, J. M., & Sanger, J. W. (2008). The dynamic Z bands of striated muscle cells. Science Signaling, 12, 1–4.Google Scholar
  585. Sanger, J. W., Kang, S., Siebrands, C. C., Freeman, N., Du, A., Wang, J., et al. (2005). How to build a myofibril. Journal of Muscle Research and Cell Motility, 26, 343–354.PubMedCrossRefGoogle Scholar
  586. Sanger, J. W., & Sanger, J. M. (2001). Fishing out proteins that bind titin. JCB, 154, 21–24.PubMedCrossRefGoogle Scholar
  587. Sanger, J. W., Sanger, J. M., & Franzini-Armstrong, C. (Eds.). (2004). Assembly of the skeletal muscle cell. New York: McGraw-Hill.Google Scholar
  588. Sapir, L., & Tzlil, S. (2017). Talking over the extracellular matrix: How do cells communicate mechanically? Seminars in Cell & Developmental Biology, 71, 99–105.CrossRefGoogle Scholar
  589. Scapini, P., Lapinet-Vera, J. A., Gasperini, S., Calzettie, F., Bazzoni, F., & Casatella, M. A. (2000). The neutrophil as a cellular source of chemokines. Immunological Reviews, 177, 195–203.PubMedCrossRefGoogle Scholar
  590. Schenkel, A. R., Mamdouh, Z., & Muller, W. A. (2004). Locomotion of monocytes on endothelium is a critical step during extravasation. Nature Immunology, 5, 393–400.PubMedCrossRefGoogle Scholar
  591. Schiaffino, S., & Hanzlikova, V. (1970). On the mechanisms of compensatory hypertrophy in skeletal muscle. Experientia, 26, 152–153.PubMedCrossRefGoogle Scholar
  592. Schulkin, J. (2004). Allostasis, homeostasis, and the costs of physiological. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  593. Schutt, C. E., & Lindberg, U. (1992). Actin as the generator of tension during muscle contraction. Proceedings of the National Academy of Sciences of the USA, 89, 319–323.PubMedCrossRefGoogle Scholar
  594. Schwartz, M. A. (2010). Integrins and extracellular matrix in mechanotransduction. Cold Spring Harbor Perspectives in Biology, 2010, 1–13.Google Scholar
  595. Schweitzer, S. C., Klymkowsky, M. W., Bellin, R. M., Robson, R. M., Capetanaki, Y., & Evans, R. M. (2001). Paranemin and the organization of desmin filament networks. JCS, 114, 1079–1089.Google Scholar
  596. Scott, A., Khan, K. M., Cook, J. L., & Duronio, V. (2004). What do we mean by the term “inflammation”? A contemporary science update for sports medicine. British Journal of Sports Medicine, 38, 372–380.PubMedPubMedCentralCrossRefGoogle Scholar
  597. Sebestyen, M. G., Fritz, J. D., Wolff, J. A., & Greaser, M. L. (1996). Primary structure of the kinase domain region of rabbit skeletal and cardiac muscle titin. Journal of Muscle Research and Cell Motility, 17, 343–348.PubMedCrossRefGoogle Scholar
  598. Seiler, S. (2010). What is best practice for training intensity and duration distribution in endurance athletes? International Journal of Sports Physiology and Performance, 5, 276–291.CrossRefGoogle Scholar
  599. Selkirk, S. B. (2000). Proteoglycans and pattern formation-sugar biochemistry meets developmental genetics. Trends in Genetics, 16, 206–212.CrossRefGoogle Scholar
  600. Shah, S. B., Davis, J., Weisleder, N., Kostavassili, I., Mcculloch, A. D., Ralston, E., et al. (2004). Structural and functional roles of Desmin in mouse skeletal muscle during passive deformation. Biophysical Journal, 86, 2993–3008.PubMedPubMedCentralCrossRefGoogle Scholar
  601. Shah, S. B., Su, F.-C., Jordan, K., Milner, D. J., Friden, J., Capetanaki, Y., et al. (2002). Evidence for increased myofibrillar mobility in desmin-null mouse skeletal muscle. The Journal of Experimental Biology, 205, 321–325.PubMedGoogle Scholar
  602. Sharma, P., & Maffulli, N. (2006). Biology of tendon injury: Healing, modeling and remodeling. The Journal of Musculoskeletal and Neuronal Interactions, 6, 181–190.PubMedGoogle Scholar
  603. Sharman, M. J., Cresswell, A. G., & Riek, S. (2006). Proprioceptive neuromuscular facilitation stretching - mechanisms and clinical implications. Sports Medicine, 36, 929–939.PubMedCrossRefGoogle Scholar
  604. Shek, P. N., & Shephard, R. J. (1998). Physical exercise as a human model of limited inflammatory response. Canadian Journal of Physiology and Pharmacology, 76, 589–597.PubMedCrossRefGoogle Scholar
  605. Shellock, F. G., & Prentice, W. E. (1985). Warming-up and stretching for improved physical performance and prevention of sports related injuries. Sports Medicine, 2, 267–278.PubMedCrossRefGoogle Scholar
  606. Shimizu, Y., & Shaw, S. (1991). Lymphocyte interactions with extracellular matrix. The FASEB Journal, 5, 2292–2299.PubMedCrossRefGoogle Scholar
  607. Shrier, I., & Gossal, K. (2000). Myths and truths of stretching. The Physician and Sportsmedicine, 28, 1–10.Google Scholar
  608. Silver, F. H. (2006). Mechanosensing and mechanochemical transduction in extracellular matrix. New York: Springer.Google Scholar
  609. Sindrilaru, A., Peters, T., Wieschalka, S., Baican, C., Baican, A., Peter, H., et al. (2011). An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. The Journal of Clinical Investigation, 121, 985–997.PubMedPubMedCentralCrossRefGoogle Scholar
  610. Sjoblom, B., Salmazo, A., & Djinovic-Carugo, K. (2008). α-Actinin structure and regulation. Cellular and Molecular Life Sciences, 65, 2688–2701.PubMedCrossRefGoogle Scholar
  611. Slauson, D. O., & Cooper, B. J. (2002). Mechanisms of disease: A textbook of comparative pathology. St. Louis, MO: Mosby.Google Scholar
  612. Small, K., Mcnaughton, L., & Matthews, M. (2008). A systematic review into the efficacy of static stretching as part of a warm-up for the prevention of exercise-related injury. Research in Sports Medicine, 16, 213–231.PubMedCrossRefGoogle Scholar
  613. Smith, C., Kruger, M. J., Smith, R. M., & Myburgh, K. H. (2008). The inflammatory response to skeletal muscle injury: Illuminating complexities. Sports Medicine, 38, 947–969.PubMedCrossRefGoogle Scholar
  614. Smith, C. A. (1994). The warm-up procedure: To stretch or not to stretch. A brief review. The Journal of Orthopaedic and Sports Physical Therapy, 19, 12–17.PubMedCrossRefGoogle Scholar
  615. Smith, L. L. (1991). Acute inflammation: The underlying mechanism in delayed onset muscle soreness? Medicine and Science in Sports and Exercise, 23, 542-551.Google Scholar
  616. Smith, L. L., Anwar, A., Fragen, M., Rananto, C., Johnson, R., & Holbert, D. (2000). Cytokines and cell adhesion molecules associated with high-intensity eccentric exercise. European Journal of Applied Physiology, 82, 61–67.PubMedCrossRefGoogle Scholar
  617. Smith, L. L., Brunetz, M., Chenier, T., Mccammon, M., Houmard, J., Franklin, M., et al. (1993). The effects of static and ballistic stretching on delayed onset muscle soreness and creatine kinase. Research Quarterly for Exercise and Sport, 64, 103–107.PubMedCrossRefGoogle Scholar
  618. Smith, L. R., Meyer, G. A., & Lieber, R. L. (2013). Systems analysis of biological networks in skeletal muscle function. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 5, 55–71.PubMedCrossRefGoogle Scholar
  619. Song, W. K., Wang, W. C., Foster, R. F., Biesler, D. A., & Kaufman, S. J. (1992). H36-alpha 7 is a novel integrin alpha chain that is developmentally regulated during skeletal myogenesis. JCB, 117, 643–657.PubMedCrossRefGoogle Scholar
  620. Sorichter, S., Puschendorf, B., & Mair, J. (1999). Skeletal muscle injury by eccentric muscle action: Muscle protein as markers of muscle fiber injury. Exercise Immunology Review, 5, 5–21.PubMedGoogle Scholar
  621. Sorimachi, H., Freiburg, A., Kolmerer, B., Ishiura, S., Stier, G., Gregorio, C. C., et al. (1997). Tissue-specific expression and α-actinin binding properties of the Z-disc titin: Implications for the nature of vertebrate Z-discs. Journal of Molecular Biology, 270, 688–695.PubMedCrossRefGoogle Scholar
  622. Soslowsky, L. J., Thomopoulos, S., Tun, S., Flanagan, C. L., Keefer, C. C., Mastaw, J., et al. (2000). Overuse activity injures the supraspinatus tendon in an animal model: A histologic and biomechanical study. Journal of Shoulder and Elbow Surgery, 9, 79–84.PubMedCrossRefGoogle Scholar
  623. Sothern, R. B., Roitman-Johnson, B., Kanabrocki, E. L., Yager, J. G., Roodell, M. M., Weatherbee, J. A., et al. (1995). Circadian characteristics of circulating interleukin-6 in men. The Journal of Allergy and Clinical Immunology, 95, 1029–1035.PubMedCrossRefGoogle Scholar
  624. Spencer, M. J., Lu, B., & Tidball, J. G. (1996). Calpain II expression is increased by changes in mechanical loading of muscle in vivo. Journal of Cellular Biochemistry, 64, 55–56.CrossRefGoogle Scholar
  625. Sprenger, H., Jacobs, C., Nain, M., Gressner, A. M., Prinz, H., Wesemann, W., et al. (1992). Enhanced release of cytokines, interleukin-2 receptors and neopterin after long distance running. Clinical Immunology and Immunopathology, 63, 188–195.PubMedCrossRefGoogle Scholar
  626. Springer, T. A. (1994). Traffic signals for lymphocyte recruitment and leukocyte emigration: The multistep paradigm. Cell, 76, 301–314.PubMedCrossRefGoogle Scholar
  627. Squire, J. M. (1997). Architecture and function in the muscle sarcomere. Current Opinion in Structural Biology, 7, 247–257.PubMedCrossRefGoogle Scholar
  628. Squire, J. M., Al-Khayat, H. A., Knupp, C., & Luther, P. K. (2005). Molecular architecture in muscle contractile assemblies. Advances in Protein Chemistry, 71, 17–87.PubMedCrossRefGoogle Scholar
  629. Srirangan, S., & Choy, E. H. (2010). The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Therapeutic Advances in Musculoskeletal Disease, 2, 247–256.PubMedPubMedCentralCrossRefGoogle Scholar
  630. St. Pierre, B. A., & Tidball, J. G. (1994). Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension. Journal of Applied Physiology, 77, 290–297.PubMedCrossRefGoogle Scholar
  631. Starkie, R. L., Rolland, J., Angus, D. J., Anderson, M. J., & Febraio, M. A. (2001). Circulating monocytes are not the source of elevations in plasma IL-6 and TNF-α levels after prolonged running. American Journal of Physiology. Cell Physiology, 280, C769–C774.PubMedCrossRefGoogle Scholar
  632. Steensberg, A., Febbraio, M. A., Osada, T., Schjerling, P., Van Hall, G., Saltin, B., et al. (2001). Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. The Journal of Physiology, 537, 633–639.PubMedPubMedCentralCrossRefGoogle Scholar
  633. Steensberg, A., Keller, C., Starkie, R. L., Osada, T., Febbraio, M. A., & Pedersen, B. K. (2002). Il-6 and TNF-alpha expression in, and release from contracting human skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 283, E1272–E1278.PubMedCrossRefGoogle Scholar
  634. Steensberg, A., Van Hall, G., Osada, T., Sacchetti, M., Saltin, B., & Pedersen, B. K. (2000). Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. The Journal of Physiology, 529, 237–242.PubMedPubMedCentralCrossRefGoogle Scholar
  635. Stevens, S. S. (1971). Issues in psychophysical measurement. Psychological Review, 78, 426–450.CrossRefGoogle Scholar
  636. Stone, M. R., O’Neill, A., Catino, D., & Bloch, R. J. (2005). Specific interaction of the actin-binding domain of dystrophin with intermediate filaments contraining keratin 19. Molecular Biology of the Cell, 16, 4280–4293.PubMedPubMedCentralCrossRefGoogle Scholar
  637. Stouthard, J. M. L., Romjin, J. A., Van Der Poll, T., Endert, E., Klein, S., Bakker, P. J. M., et al. (1995). Endocrinologic and metabolic effects of interleukin-6 in humans. American Journal of Physiology-Endocrinology and Metabolism, 268, E813–E819.CrossRefGoogle Scholar
  638. Streetz, K. L., Wustefeld, T., Klein, C., Manns, M. P., & Trautwein, C. (2001). Mediators of inflammation and acute phase response in the liver. Cellular and Molecular Biology (Noisy-le-Grand, France), 47, 661–673.Google Scholar
  639. Stromer, M. H. (1995). Immunocytochemistry of the muscle cell cytoskeleton. Microscopy Research and Technique, 31, 95–105.PubMedCrossRefGoogle Scholar
  640. Stromer, M. H. (1998). The cytoskeleton in skeletal, cardiac and smooth muscle cells. Histology and Histopathology, 13, 283–291.PubMedGoogle Scholar
  641. Stromer, M. H., & Goll, D. E. (1972). Studies on purified α-actinin. Journal of Molecular Biology, 67, 489–494.PubMedCrossRefGoogle Scholar
  642. Subramanian, A., & Schilling, T. F. (2015). Tendon development and musculoskeletal assembly: Emerging role for the extracellular matrix. Development, 142, 4191–4204.PubMedPubMedCentralCrossRefGoogle Scholar
  643. Summers, A. P., & Koob, T. J. (2002). The evolution of tendon-morphology and material properties. Comparative Biochemistry and Physiology, 133, 1159–1170.PubMedCrossRefGoogle Scholar
  644. Summers, C., Rankin, S. M., Condliffe, A. M., Singh, N., Michael Peters, A., & Chilvers, E. R. (2010). Neutrophil kinetics in health and disease. Trends in Immunology, 31, 318–324.PubMedPubMedCentralCrossRefGoogle Scholar
  645. Sundd, P., Pospieszalska, M. K., & Ley, K. (2013). Neutrophil rolling at high shear: Flattening, catch bond behavior, tethers and slings. Molecular Immunology, 55, 59–69.PubMedCrossRefGoogle Scholar
  646. Suzuki, K., Hata, S., Kawabata, Y., & Sorimachi, H. (2004). Structure, activation, and biology of calpain. Diabetes, 53, S12–S18.PubMedCrossRefGoogle Scholar
  647. Szczesna, D., & Potter, J. D. (2002). The role of troponin in the Ca2+ - Regulation of skeletal muscle contraction. Results and Problems in Cell Differentiation, 36, 171–190.PubMedCrossRefGoogle Scholar
  648. Takahasi, K. (Ed.). (1990). Calpain substrate specificity. Boca Ratan, FL: CRC Press.Google Scholar
  649. Takahasi, M., Wand, S. R., Marchuk, L. L., Frank, C. B., & Lieber, R. L. (2010). Asynchronous muscle tendon adaptation after surgical tensioning procedures. JBJS, 92, 664–674.CrossRefGoogle Scholar
  650. Talag, T. S. (1973). Residual muscular soreness as influenced by concentric, eccentric and static contractions. Research Quarterly, 44, 458–469.Google Scholar
  651. Tate, C., Hyek, M. F., & Taffet, G. E. (1991). The role of calcium in the energetics of contracting skeletal muscle. Sports Medicine, 12, 208–217.PubMedCrossRefGoogle Scholar
  652. Taylor, D. C., Dalton, J. D., Seaber, A. V., & Garrett, W. E. (1990). Viscoelastic properties of muscle-tendon units. The biomechanical effects of stretching. American Journal of Sports Medicine, 18, 300–309.CrossRefGoogle Scholar
  653. Thacker, S., Gilchrist, J. S., Stroup, D., & Kimsey Jr., C. (2004). The impact of stretching on sports injury risk: A systematic review of the literature. Medicine and Science in Sports and Exercise, 36, 371–378.PubMedCrossRefGoogle Scholar
  654. The Free Dictionary. (2016). Autocrine [Online]. Retrieved May 31, from
  655. Thomas, L. (1972). Notes of a biology-watcher: Germs. The New England Journal of Medicine, 287, 535–555.CrossRefGoogle Scholar
  656. Tidball, J. G. (1983). The geometry of actin filament-membrane associations can modify adhesive strength of myotendinous junction. Cell Motility, 3, 439–447.PubMedCrossRefGoogle Scholar
  657. Tidball, J. G. (1984). Myotendinous junction: Morphological changes and mechanical failure associated with muscle cell atrophy. Experimental and Molecular Pathology, 40, 1–12.PubMedCrossRefGoogle Scholar
  658. Tidball, J. G. (1991). Force transmission across muscle cell membranes. Journal of Biomechanics, 24, 43–52.PubMedCrossRefGoogle Scholar
  659. Tidball, J. G. (1995). Inflammatory cell response to acute muscle injury. Medicine and Science in Sports and Exercise, 27, 1022–1032.CrossRefGoogle Scholar
  660. Tidball, J. G. (2002). Interactions between muscle and the immune system during modified musculoskeletal loading. Clinical Orthopaedics and Related Research, 403S, S100–S109.CrossRefGoogle Scholar
  661. Tidball, J. G. (2005). Inflammatory processes in muscle injury and repair. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 288, R345–R353.CrossRefGoogle Scholar
  662. Tidball, J. G., Burchenko, E., & Frenette, J. (1999). Macrophage invasion does not contribute to muscle membrane injury during inflammation. Journal of Leukocyte Biology, 65, 492–498.PubMedCrossRefGoogle Scholar
  663. Tidball, J. G., O’Halloran, T., & Burridge, K. (1986). Talin at myotendinous junctions. JCB, 103, 1465–1472.PubMedCrossRefGoogle Scholar
  664. Tidball, J. G., & Quan, D. M. (1992). Modifications in myotendinous junction structure following denervation. Acta Neropathologica, 84, 135–140.CrossRefGoogle Scholar
  665. Tidball, J. G., & Villalta, S. A. (2010). Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 298, R1173–R1187.PubMedPubMedCentralCrossRefGoogle Scholar
  666. Tiku, K., Tiku, M. L., & Skosey, J. (1986). Interleukin 1 production by human polymorphonuclear neutrophils. Journal of Immunology, 136, 3677–3685.Google Scholar
  667. Tilg, H., Dinaello, C. A., & Meir, J. W. (1997). IL-6 and APPs: Anti-inflammatory and immunosuppressive mediators. Immunology Today, 18, 428–432.PubMedCrossRefGoogle Scholar
  668. Tilg, H., Trehu, E., Atkins, M. B., Dinaello, C. A., & Meir, J. W. (1994). Interleukin-6 (IL-6) an anti-inflammatory cytokine: Induction of circulating IL-1 receptor anatagonist and soluble necrosis factor receptor p55. Blood, 83, 113–118.PubMedGoogle Scholar
  669. Torgan, C. E., & Daniels, M. P. (2000). Calcineurin localization in skeletal muscle offers insights into potential new targets. The Journal of Histochemistry and Cytochemistry, 54, 119–128.CrossRefGoogle Scholar
  670. Torgan, C. E., & Daniels, M. P. (2001). Regulation of myosin heavy chain expression during rat skeletal muscle development in vivo. Molecular Biology of the Cell, 12, 1499–1508.PubMedPubMedCentralCrossRefGoogle Scholar
  671. Toumi, H., & Best, T. M. (2003). The inflammatory response: Friend or enemy for muscle injury? BJSM, 37, 284–286.PubMedCrossRefGoogle Scholar
  672. Trinick, J. (1996). Cytoskeleton: Titin has a scaffold and spring. Current Biology, 6, 258–260.PubMedCrossRefGoogle Scholar
  673. Trombitas, K., Greaser, M. L., Labeit, S., Jin, J.-P., Kellermayer, M., Helmes, M., et al. (1998). Titin extensibility in situ: Entropic elasticity of permanently folded and permanently unfolded molecular segments. The Journal of Cell Biology, 140, 853–859.PubMedPubMedCentralCrossRefGoogle Scholar
  674. Trotter, J. A. (1993). Functional morphology of force transmission in skeletal muscle. Acta Anatomica, 146, 205–222.PubMedCrossRefGoogle Scholar
  675. Trotter, J. A., Corbett, K., & Avner, B. P. (1981). Structure and function of the murine muscle-tendon junction. The Anatomical Record, 201, 293–302.PubMedCrossRefGoogle Scholar
  676. Trotter, J. A., Eberhard, S., & Samora, A. (1983). Structural connections of the muscle-tendon junction. Cell Motility, 3, 431–438.PubMedCrossRefGoogle Scholar
  677. Trotter, J. A., Hsi, K., Samora, A., & Wofsy, C. (1985). A morphometric analysis of the muscle-tendon junction. The Anatomical Record, 213, 26–32.PubMedCrossRefGoogle Scholar
  678. Trotter, J. A., Samora, A., & Baca, J. (1985). Three-dimensional structure of the murine muscle-tendon junction. The Anatomical Record, 213, 16–25.PubMedCrossRefGoogle Scholar
  679. Trybus, K. M. (1994). Role of myosin light chains. Journal of Muscle Research and Cell Motility, 15, 587–594.PubMedCrossRefGoogle Scholar
  680. Tsigos, C., Papanicolaou, D. A., Kyrou, I., Defensor, R., Mitsiadis, C. S., & Chrousos, G. P. (1997). Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. The Journal of Clinical Endocrinology and Metabolism, 82, 4167–4170.PubMedCrossRefGoogle Scholar
  681. Tskhovrebova, L., Houmeida, A., & Trinick, J. (2006). Can the passive elasticity of muscle be explained directly from the mechanics of individual titin molecules? Journal of Muscle Research and Cell Motility, 26, 285–289.CrossRefGoogle Scholar
  682. Tskhovrebova, L., & Trinick, J. (2001). Flexibility and extensibility in the titin molecule: Analysis of electron microscope data. Journal of Molecular Biology, 310, 755–771.PubMedCrossRefGoogle Scholar
  683. Tskhovrebova, L., & Trinick, J. (2003). Titin: Properties and family relationships. Nature Reviews. Molecular Cell Biology, 4, 1405–1414.CrossRefGoogle Scholar
  684. Tskhovrebova, L., Walker, M. L., Gunter Grossman, J., Nasir Khan, G., Baron, A., & Trinick, J. (2010). Shape and flexibility in the Titin 11-domain super repeat. Journal of Molecular Biology, 397, 1092–1105.PubMedCrossRefGoogle Scholar
  685. Tu, M. K., Levin, J. B., Hamilton, A. N., & Borodinsky, L. N. (2016). Calcium signaling in skeletal muscle development, maintenance and regulation. Cell Calcium, 59, 91–97.PubMedPubMedCentralCrossRefGoogle Scholar
  686. Uda, S., & Kuroda, S. (2016). Analysis of cellular signal transduction from an information theoretic approach. Seminars in Cell & Developmental Biology, 51, 24–31.CrossRefGoogle Scholar
  687. Ullum, H., Haahr, P. M., Diamant, M., Palmo, J., Halkjaer-Kristensen, J., & Pedersen, B. K. (1994). Bicycle exercise enhances plasma IL-6 but does not change IL-1α, IL-1β, IL-6 or TNF-α pre-mRNA in BMNC. Journal of Applied Physiology, 77, 93–97.PubMedCrossRefGoogle Scholar
  688. Unick, J., Kieffer, S. H., Cheesman, W., & Feeney, A. (2005). The acute effects of static and ballistic stretching on vertical jump performance in trained women. Journal of Strength and Conditioning Research, 19, 206–212.PubMedGoogle Scholar
  689. Valdivia, M., Vega-Macaya, F., & Olguin, P. (2017). Mechanical control of myotendinous junction formation and tendon differentiation during development. Frontiers in Cell and Development Biology, 5, 1–8.CrossRefGoogle Scholar
  690. Van Der Flier, A., & Sonnenberg, A. (2001). Function and interactions of integrins. Cell and Tissue Research, 305, 285–298.PubMedCrossRefGoogle Scholar
  691. Van Der Ven, P. F., Bartsch, J. W., & Gautel, M. (2000). A Functional knock-out of titin results in defective myofibril assembly. JCS, 113, 1405–1414.Google Scholar
  692. Van Regenmortel, M. H. V. (2004). Reductionism and complexity in molecular biology. EMBO Reports, 5, 1016–1020.PubMedCrossRefGoogle Scholar
  693. Vandenburgh, H., Hatfaludy, S., Sohar, I., & Shansky, J. (1990). Stretch induced prostaglandins and protein turnover in cultured skeletal muscle. The American Journal of Physiology, 259, C232–C240.PubMedCrossRefGoogle Scholar
  694. Vandenburgh, H. H., Hatfaludy, S., Karlisch, P., & Shansky, J. (1991). Mechanically induced alterations in cultured skeletal muscle growth. Journal of Biomechanics, 24, 91–99.PubMedCrossRefGoogle Scholar
  695. Veskler, B. A. (Ed.). (2005). Progress in Immunology Research. New York: Nova Science Publishers.Google Scholar
  696. Vestweber, D. (2007). Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunological Reviews, 218, 178–196.PubMedCrossRefGoogle Scholar
  697. Vgontzas, A. N., Papanicolaou, D. A., Bixler, E. O., Lotsikas, A., Zachman, K., Kales, A., et al. (1999). Circadian interleukin-6 secretion and quantity and depth of sleep. The Journal of Clinical Endocrinology and Metabolism, 84, 2603–2607.PubMedCrossRefGoogle Scholar
  698. Vigushin, D. M., Pepys, M. B., & Hawkins, P. N. (1993). Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. The Journal of Clinical Investigation, 91, 1351–1357.PubMedPubMedCentralCrossRefGoogle Scholar
  699. Vihko, V., Rantamaki, J., & Salminen, A. (1978). Exhaustive physical exercise and acid hydralase activity in mouse skeletal muscle. Histochemistry, 57, 237–249.PubMedCrossRefGoogle Scholar
  700. Viidik, A. (1969). Tensile strength properties of Achilles tendon systems in trained and untrained rabbits. Acta Orthopaedica Scandinavica, 40, 261–272.PubMedCrossRefGoogle Scholar
  701. Vikstrom, K. L., Seiler, S. H., Sohn, R. L., Strauss, M., Weiss, A., Welikson, R. E., et al. (1997). The vertebrate myosin heavy chain: Genetics and assembly properties. Cell Structure and Function, 22, 123–129.PubMedCrossRefGoogle Scholar
  702. Voermans, N. C., Bonnemann, C. G., Huijing, P. A., Hamel, B. C., Van Kuppevelt, T. H., De Haan, A., et al. (2008). Clinical and molecular overlap between myopathies and inherited connective tissue diseases. Neuromuscular Disorders, 18, 843–856.PubMedCrossRefGoogle Scholar
  703. Volk, T. (1995). Metapatterns - Across space, time, and mind. New York: Columbia University Press.Google Scholar
  704. Von Bertalanffy, L. (1968). General system theory: Foundations, development, applications. New York: George Braziller.Google Scholar
  705. Von Der Ecken, J., Muller, M., Lehman, W., Manstein, D. J., Penczek, P. A., & Raunser, S. (2015). Structure of the F-actin-tropomyosin complex. Nature, 519, 114–117.PubMedCrossRefGoogle Scholar
  706. Von Vietinghoff, S., & Ley, K. (2008). Homeostatic regulation of blood neutrophil counts. Journal of Immunology, 181, 5183–5188.CrossRefGoogle Scholar
  707. Voss, D. (1967). Proprioceptive neuromuscular facilitation. American Journal of Physical Medicine, 46, 838–898.PubMedGoogle Scholar
  708. Wahl, S. M., Hunt, D. A., Wakefield, L. M., Mccartney-Francis, N., Wahl, L. M., Roberts, A. B., et al. (1987). Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proceedings of the National Academy of Sciences of the USA, 84, 5788–5792.PubMedCrossRefGoogle Scholar
  709. Wainwright, S. A. (1988). Axis and Circumference - The cylindrical shape of plants and animals. Cambridge, MA: Harvard University Press.Google Scholar
  710. Wakabayashi, T. (2015). Mechanism of the calcium-regulation of muscle contraction - In pursuit of its structural basis. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 91, 321–350.PubMedPubMedCentralCrossRefGoogle Scholar
  711. Wallin, D., Ekblom, B., Grahn, R., & Nordenborg, T. (1985). Improvement of muscle flexibility-a comparison between two techniques. The American Journal of Sports Medicine, 13, 263–268.PubMedCrossRefGoogle Scholar
  712. Walsh, L. D., Allen, T. G., Gandevia, S. C., & Proske, U. (2006). Effect of eccentric exercise on position sense at the human forearm in different postures. Journal of Applied Physiology, 100, 1109–1116.PubMedCrossRefGoogle Scholar
  713. Wang, J. H., Yang, G., Li, Z., & Shen, W. (2004). Fibroblast responses to cyclic mechanical stretching depend on cell orientation to the stretching direction. Journal of Biomechanics, 37, 573–576.PubMedCrossRefGoogle Scholar
  714. Wang, J. H.-C., Thampatty, B. P., Lin, J.-S., & Im, H. J. (2007). Mechanoregulation of gene expression in fibroblasts. Gene, 391, 1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  715. Wang, K., Mccarter, R., Wright, J., Beverly, J., & Ramirez-Mitchell, R. (1993). Viscoelasticity of the sarcomere matrix of skeletal muscles-the titin-myosin composite filament is a dual-stage molecular spring. Biophysical Journal, 64, 1161–1177.PubMedPubMedCentralCrossRefGoogle Scholar
  716. Wang, K., & Ramirez-Mitchell, R. (1983). A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle. The Journal of Cell Biology, 92, 562–570.CrossRefGoogle Scholar
  717. Wang, K., & Wright, J. (1988). Architecture of the sarcomere matrix of skeletal muscle: Immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. JCB, 107, 2199–2212.PubMedCrossRefGoogle Scholar
  718. Wang, K., Wright, J., & Ramirez-Mitchell, R. (1985). Architecture of the titin/nebulin containing cytoskeletal lattice of the striated muscle sarcomere-evidence of elastic and inelastic domains of the bipolar filaments. Biophysical Journal, 47, 349a.CrossRefGoogle Scholar
  719. Ward, P. A. (Ed.). (2010). Part I. The inflammatory response - An overview. Cambridge, UK: Cambridge University Press.Google Scholar
  720. Warren, G. L., Lowe, D. A., & Armstrong, R. B. (1993). Mechanical factors in the initiation of eccentric contraction-induced injury in rat soleus muscle. The Journal of Physiology, 464, 457–475.PubMedPubMedCentralCrossRefGoogle Scholar
  721. Watson, P. A. (1991). Function follows form: Generation of intracellular signals by cell deformation. The FASEB Journal, 5, 2013–2019.PubMedCrossRefGoogle Scholar
  722. Weerapong, P., Hume, P., & Kolt, G. (2004). Stretching: Mechanisms and benefits for sport performance and injury prevention. The Physical Therapy Review, 9, 189–206.CrossRefGoogle Scholar
  723. Weller, A., Isenmann, S., & Vestweber, D. (1992). Cloning of the mouse endothelial selectins-expression of both E- and P- selectin is inducible by tumor necrosis factor α. Proceedings of the National Academy of Sciences of the USA, 267, 15176–15183.Google Scholar
  724. Wessel, J., & Wan, A. (1994). Effect of stretching on the intensity of delayed-onset muscle soreness. Clinical Journal of Sport Medicine, 4, 83–87.CrossRefGoogle Scholar
  725. West, J. B. (2014). Galen and the beginnings of western philosophy. American Journal of Physiology. Lung Cellular and Molecular Physiology, 307, L121–L128.PubMedCrossRefGoogle Scholar
  726. Westerhoff, H. V., & Palsson, B. O. (2004). The evolution of molecular biology into systems biology. Nature Biotechnology, 22, 1249–1252.PubMedCrossRefGoogle Scholar
  727. Wette, S. G., Smith, H. K., Lamb, G. D., & Murphy, R. M. (2017). Characterization of muscle ankyrin repeat proteins in human skeletal muscle. American Journal of Physiology. Cell Physiology, 313, C327–C339.PubMedPubMedCentralCrossRefGoogle Scholar
  728. Whicher, J. T., & Westacott, C. I. (Eds.). (1992). The acute phase response. London: Kluwer Academic.Google Scholar
  729. White, S. P., Cohen, C., & Phillips Jr., G. N. (1987). Structure of co-crystals of tropomyosin and troponin. Nature, 325, 745–830.CrossRefGoogle Scholar
  730. Wickiewicz, T. L., Roy, R. R., Powell, P. L., & Edgerton, V. R. (1983). Muscle architecture of the human lower limb. Clinical Orthopaedics and Related Research, 179, 275–283.CrossRefGoogle Scholar
  731. Wickiewicz, T. L., Roy, R. R., Powell, P. L., Petrine, J. J., & Edgerton, V. R. (1984). Muscle architecture and force velocity relationships in humans. Journal of Applied Physiology, 57, 435–443.PubMedCrossRefGoogle Scholar
  732. Willems, J., Joniau, M., Cinque, S., & Van Damme, J. (1989). Human granulocyte chemotactic peptide (IL-8) as a specific neutrophil degranulator: Comparison with other monokines. Immunology, 67, 540–542.PubMedPubMedCentralGoogle Scholar
  733. Williams, P. E., & Goldspink, G. (1971). Longitudinal growth of striated muscle fibers. Journal of Cell Science, 9, 751–767.PubMedGoogle Scholar
  734. Williams, P. E., & Goldspink, G. (1978a). Changes in sarcomere length and physiological properties in immobilized muscle. Journal of Anatomy, 127, 459–468.PubMedPubMedCentralGoogle Scholar
  735. Williams, P. E., & Goldspink, G. (1978b). The effect of immobilization on the longitudinal growth of striated muscle fibers. Journal of Anatomy, 116, 45–55.Google Scholar
  736. Wilson, G., Elliot, B., & Wood, G. (1992). Stretch shorten cycle performance enhancement through flexibility training. Medicine and Science in Sports and Exercise, 24, 116–123.PubMedCrossRefGoogle Scholar
  737. Wilson, G., Wood, G., & Elliot, B. (1991). The relationship between stiffness of the musculature and static flexibility: An alternative explanation for the occurrence of muscular injury. International Journal of Sports Medicine, 12, 403–407.PubMedCrossRefGoogle Scholar
  738. Winchester, J. B., Nelson, A. G., Landin, D., Young, M. A., & Schexnayder, I. C. (2008). Static stretching impairs sprint performance in collegiate track and field athletes. Journal of Strength and Conditioning Research, 22, 13–19.PubMedCrossRefGoogle Scholar
  739. Witt, C. C., Burkart, C., Labeit, D., Mcnabb, M., Wu, Y., & Granzier, H. (2006). Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. The EMBO Journal, 25, 3843–3855.PubMedPubMedCentralCrossRefGoogle Scholar
  740. Witvrouw, E., Mahieu, N., Roosen, P., & Mcnair, P. (2007). The role of stretching in tendon injuries. British Journal of Sports Medicine, 41, 224–226.PubMedPubMedCentralCrossRefGoogle Scholar
  741. Woo, L.-Y. S., & Buckwalter, J. A. (1988). Injury and repair of the musculoskeletal soft tissues. Park Ridge, IL: American Academy of Orthopaedic Surgeons.Google Scholar
  742. Woo, S. Y., Maynard, J., Butler, D., Lyon, R., Torzilli, P., Akeson, W., et al. (1988). Ligament, Tendon, and Joint Capsule Insertions to Bone. Savannah, GA: American Academy of Orthopaedic Surgeons.Google Scholar
  743. Wren, T. A., Beaupre, G. S., & Carter, D. R. (2000). Mechanobiology of tendon adaptation to compressive loading through fibrocartilage metaplasia. Journal of Rehabilitation Research and Development, 37, 135–143.PubMedGoogle Scholar
  744. Wu, M., Fannin, J., Rice, K. M., Wang, B., & Blough, E. R. (2011). Effect of aging on cellular mechanotransduction. Ageing Research Reviews, 10, 1–15.PubMedCrossRefGoogle Scholar
  745. Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology, 214, 199–210.PubMedPubMedCentralCrossRefGoogle Scholar
  746. Wynn, T. A., & Vannella, K. M. (2016). Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 44, 450–462.PubMedPubMedCentralCrossRefGoogle Scholar
  747. Xia, S., & Kanchanawong, P. (2017). Nanoscale mechanobiology of cell adhesions. Seminars in Cell & Developmental Biology, 71, 53–67.CrossRefGoogle Scholar
  748. Xu, S., Gu, J., Rhodes, T., Belknap, B., Rosenbaum, G., Offer, G., et al. (1999). The M.ADP.Pi state is required for helical order in the thick filaments of skeletal muscles. Biophysical Journal, 77, 2665–2676.PubMedPubMedCentralCrossRefGoogle Scholar
  749. Yamashita, A., Maeda, K., & Maeda, Y. (2003). Crystal structure of CapZ: Structural basis for actin filament barbed end capping. The EMBO Journal, 22, 1529–1538.PubMedPubMedCentralCrossRefGoogle Scholar
  750. Yanagishita, M. (1993). Function of proteoglycans in the extracellular matrix. Acta Pathologica Japonica, 43, 283–293.PubMedGoogle Scholar
  751. Yang, J., Zhang, L., Yu, C., Yang, X.-F., & Wang, H. (2014). Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomarker Research, 2, 1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  752. Yavropoulou, M. P., & Yovos, J. G. (2016). The molecular basis of bone mechanotransduction. Journal of Musculoskeletal & Neuronal Interactions, 16, 221–236.Google Scholar
  753. Yeung, E. W., Belnave, C. D., Ballard, H. J., Bourreau, J.-P., & Allen, D. G. (2002). Development of T-tubular vacuoles in eccentrically damaged mouse muscle fibres. The Journal of Physiology, 540, 581–592.PubMedPubMedCentralCrossRefGoogle Scholar
  754. Yoshida, Y., & Tanaka, T. (2014). Interleukin 6 and rheumatoid arthritis. BioMed Research International, 2014, 1–12.CrossRefGoogle Scholar
  755. Young, P., Ehler, E., & Gautel, M. (2001). Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. JCB, 154, 123–136.PubMedCrossRefGoogle Scholar
  756. Young, W., & Behm, D. (2002). Should static stretching be used during a warm-up or for strength and power activities? Strength & Conditioning Journal, 24, 33–37.CrossRefGoogle Scholar
  757. Young, W., Elias, G., & Power, J. (2006). Effects of static stretching volume and intensity on planter flexor explosive force production and range of motion. The Journal of Sports Medicine and Physical Fitness, 46, 403–411.PubMedGoogle Scholar
  758. Young, W. B., & Behm, D. G. (2003). Effects of running, static stretching and practice jumps on explosive force production and jumping performance. The Journal of Sports Medicine and Physical Fitness, 43, 21–27.PubMedGoogle Scholar
  759. Zhang, J.-M., & An, J. (2007). Cytokines, inflammation and pain. International Anesthesiology Clinics, 45, 27–37.PubMedPubMedCentralCrossRefGoogle Scholar
  760. Zhou, Q., Chu, P.-H., Huang, C., Cheng, C.-F., Martone, M. E., Knoll, G., et al. (2001). Ablation of cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. JCB, 155, 605–612.PubMedCrossRefGoogle Scholar
  761. Zimkowska, M., Duchesnay, A., Dragun, P., Oberbek, A., Moraczewski, J., & Martelly, I. (2009). Immunoneutralization of TGFβ1 improves skeletal muscle regeneration: Effects on myoblast differentiation and glycosaminoglycan content. International Journal of Cell Biology, 2009, 1–16.CrossRefGoogle Scholar
  762. Zot, A. S., & Potter, J. D. (1987). Structural aspect of troponin-tropomyosin regulation of skeletal muscle contraction. Annual Review of Biophysics and Biophysical Chemistry, 16, 535–559.PubMedCrossRefGoogle Scholar

Further Readings

    A. Molecular Structure of Muscle

    1. Barczyk, M., Carracedo, S., & Gulberg, D. (2010). Integrins. Cell and Tissue Research, 339, 269–280.PubMedCrossRefGoogle Scholar
    2. Burkin, D. J., & Kaufman, S. J. (1999). The a7b1 integrin in muscle development and disease. Cell and Tissue Research, 296, 183–190.PubMedCrossRefGoogle Scholar
    3. Campbell, I. D., & Humphries, M. J. (2011). Integrin structure, activation, and interactions. Cold Spring Harbor Perspectives in Biology, 2011, 1–14.Google Scholar
    4. Clark, K. A., Mcelhinny, A. S., Beckerle, M. C., & Gregorio, C. C. (2002). Striated muscle cytoarchitecture: An intricate web of form and function. Annual Review of Cell and Developmental Biology, 18, 637–706.PubMedCrossRefGoogle Scholar
    5. Craig, R. W., & Padron, R. (2004). Molecular structure of the sarcomere. In A. C. Engel & C. Franzini-Armstrong (Eds.), Myology (3rd ed.). New York: McGraw-Hill.Google Scholar
    6. Geeves, M. A., & Holmes, K. C. (2005). The molecular mechanism of muscle contraction. Advances in Protein Chemistry, 71, 161–193.PubMedCrossRefGoogle Scholar
    7. Green, L. J., Mould, P., & Humphries, M. J. (1998). The integrin b subunit. The International Journal of Biochemistry & Cell Biology, 30, 179–184.CrossRefGoogle Scholar
    8. Holmberg, J., & Durbeej, M. (2013). Laminin-211 in skeletal muscle function. Cell Adhesion & Migration, 7, 111–121.CrossRefGoogle Scholar
    9. Kontrogianni-Konstantopoulos, A., Ackermann, M. A., Bowman, A. L., Yap, S. V., & Bloch, R. J. (2009). Muscle giants: Molecular scaffolds in sarcomeregenesis. Physiological Reviews, 89, 1217–1267.PubMedPubMedCentralCrossRefGoogle Scholar
    10. Mayer, U. (2003). Integrins: Redundant or important players in skeletal muscle. JBC, 278, 14587–14590.CrossRefGoogle Scholar
    11. Plow, E. F., Haas, T. A., Zhang, L., Loftus, J., & Smith, J. W. (2000). Ligand binding to integrins. JBC, 275, 21785–21788.CrossRefGoogle Scholar
    12. Squire, J. M., Al-Khayat, H. A., Knupp, C., & Luther, P. K. (2005). Molecular architecture in muscle contractile assemblies. Advances in Protein Chemistry, 71, 17–87.PubMedCrossRefGoogle Scholar

    B. Myotendon Unit

    1. Charvet, B., Ruggiero, F., & Le Guellec, D. (2012). The development of the myotendinous junction. A review. Muscles, Ligaments, and Tendons Journal, 2, 53–63.Google Scholar
    2. Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor Perspectives in Biology, 3, a004978.PubMedPubMedCentralCrossRefGoogle Scholar

    C. Mechanotransduction

    1. Humphrey, J. D., Dufresne, E. R., & Schwartz, M. A. (2014). Mechanotransduction and extracellular matrix homeostasis. Nature Reviews. Molecular Cell Biology, 15, 802–812.PubMedPubMedCentralCrossRefGoogle Scholar

    D. Rolling, Adhesion Transmigration

    1. Ley, K., Laudanna, C., Cybulsky, M. I., & Noursharhg, S. (2007). Getting to the site of inflammation: The leukocyte adhesion cascade update. Nature Reviews Immunology, 7, 678–689.PubMedCrossRefGoogle Scholar
    2. Muller, W. A. (2013). Getting leukocytes to the site of inflammation. Veterinary Pathology, 50, 7–22.PubMedPubMedCentralCrossRefGoogle Scholar
    3. Sundd, P., Pospieszalska, M. K., & Ley, K. (2013). Neutrophil rolling at high shear: Flattening, catch bond behavior, tethers and slings. Molecular Immunology, 55, 59–69.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nikos C. Apostolopoulos
    • 1
  1. 1.University of TorontoTorontoCanada

Personalised recommendations