Possible Explanations

  • Mario GrazianoEmail author
Part of the SpringerBriefs in Philosophy book series (BRIEFSPHILOSOPH)


The first part of this book emphasised several experiments proving how humans resort to two systems of numerical representation: one is inborn and approximative, while the other is culture-influenced, language-dependent, and lies at the basis of exact knowledge. Nevertheless, it is still unclear how these two systems interact with each other to provide an accurate representation of natural numbers. In other words, the seminal question of whether mathematics has developed starting from the approximative system or rather from the precise system remains unanswered.

In some of his works, Stanislas Dehaene supported the idea that both systems are necessary to develop precise arithmetic computation, but that the approximative system is more rudimental, because it contains the basic components of the concept of number. For example, in a work written in partnership with Feigenson, he observed that: “two distinct core systems of numerical representations are present in human infants...


  1. Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences of the United States of America, 113, 4909–4917.CrossRefGoogle Scholar
  2. Atkinson, J., Campbell, F. W., & Francis, M. R. (1976). The magic number 4 ± 0: A new look at visual numerosity judgments. Perception, 5, 327–334.CrossRefGoogle Scholar
  3. Baroody, A. J. (1984). More precisely defining and measuring the order-irrelevance principle. Journal of Experimental Child Psychology, 38, 33–41.CrossRefGoogle Scholar
  4. Baroody, A. J., & Gannon, K. E. (1984). The development of the commutativity principle and economical addition strategies. Cognition and Instruction, 1, 321–339.CrossRefGoogle Scholar
  5. Beck, J. (2017). Can bootstrapping explain concept learning? Cognition, 158, 110–121.CrossRefGoogle Scholar
  6. Briars, D., & Siegler, R. S. (1984). A feature analysis of preschoolers’ counting knowledge. Developmental Psychology, 20, 607–618.CrossRefGoogle Scholar
  7. Brouwer, L. E. J. (1912). Intuitionism and formalism. In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics. selected readings, (1964). Cambridge: Cambridge University Press.Google Scholar
  8. Brouwer, L. E. J. (1981). Brouwer’s Cambridge lectures in intuitionism. Cambridge: Cambridge University Press.Google Scholar
  9. Bruner, J. S. (1968). Processes of cognitive growth: Infancy. Worcester, MA: Clark University Press.Google Scholar
  10. Butterworth, B. (1999). The mathematical brain. London: Macmillan.Google Scholar
  11. Carey, S. (2001). Cognitive foundations of arithmetic: Evolution and ontogenesis. Mind and Language, 16(1), 37–55.CrossRefGoogle Scholar
  12. Carey, S. (2004). Bootstrapping and the origin of concepts. Daedalus, 133, 59–68.CrossRefGoogle Scholar
  13. Carey, S. (2009a). The origin of concepts. New York: Oxford University Press.CrossRefGoogle Scholar
  14. Carey, S. (2009b). Where our number concepts come from. The Journal of Philosophy, 106, 220–254.CrossRefGoogle Scholar
  15. Casadei, F. (1999). Alcuni pregi e limiti della teoria cognitivista della metafora. Lingua e Stile, XXXIV(2), 167–180.Google Scholar
  16. Casadei, F. (2003). Per un bilancio della Semantica Cognitiva. In L. Gaeta & S. Luraghi (Eds.), Introduzione alla Linguistica Cognitiva (pp. 37–55). Roma: Carocci.Google Scholar
  17. Cellucci, C. (2013). Rethinking logic: Logic in relation to mathematics, evolution, and method. Dordrecht, Heidelberg, New York, London: Springer.CrossRefGoogle Scholar
  18. Chomsky, N. (1957). Syntactic structures. The Hague, Paris: Mouton.Google Scholar
  19. Cooper, D. E. (1986). Metaphor. Oxford: Blackwell.Google Scholar
  20. Dehaene, S. (1997). The number sense. How the mind creates mathematics. New York: Oxford University Press.Google Scholar
  21. Dehaene, S. (2011). The number sense. How the mind creates mathematics. Revised and Updated Edition. New York: Oxford University Press.Google Scholar
  22. Dehaene, S., & Brannon, E. (2011). Space, time and number in the brain. Searching for the foundations of mathematical thought. Amsterdam: Elsevier Academic Press.Google Scholar
  23. Dieudonné, J. (1981). History of functional analysis. Amsterdam: North-Holland.Google Scholar
  24. Dodge, E., & Lakoff, G. (2005). Image schemas: From linguistic analysis to neural grounding. In B. Hampe (Ed.), From perception to meaning: Image schemata in cognitive linguistics (pp. 57–91). Berlin-New York: Mouton de Gruyter.CrossRefGoogle Scholar
  25. Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314.CrossRefGoogle Scholar
  26. Feigenson, L., Carey, S., & Spelke, E. (2002). Infants’ discrimination of number vs. continuous extent. Cognitive Psychology, 44, 33–66.CrossRefGoogle Scholar
  27. Fillmore, C. (1985). Frames and the semantics of understanding. Quaderni di Semantica, 6, 222–254.Google Scholar
  28. Fodor, J. A. (2008). The language of thought revisited. New York: Oxford University Press.CrossRefGoogle Scholar
  29. Fuson, K. C. (1988). Children’s counting and concepts of number. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  30. Fuson, K. C., & Hall, J. W. (1983). The acquisition of eraly number word meanings. In H. Ginsburg (Ed.), The development of children’s mathematical thinking (pp. 49–107). New-York: Academic Press.Google Scholar
  31. Fuson, K. C., Pergament, G. G., & Lyons, B. G. (1985). Collection terms and preschoolers’ use of the cardinality rule. Cognitive Psychology, 17, 315–323.CrossRefGoogle Scholar
  32. Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455–479.CrossRefGoogle Scholar
  33. Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.CrossRefGoogle Scholar
  34. Geary, D. C. (1994). Children’s mathematical development: Research and practical applications. Washington, DC: APA.CrossRefGoogle Scholar
  35. Gelman, R. (1993). A rational-constructivist account of early learning about numbers and objects. In D. Medin (Ed.), The psychology of learning and motivation. San Diego, CA: Academic Press.Google Scholar
  36. Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.Google Scholar
  37. Gelman, R., Greeno, J. G. (1989). On the nature of competence: Principles for understanding in a domain. In L. B. Resnick (Ed.), Knowing and learning: Issues for a cognitive science of instruction, 125–186. Hillsdale, NJ: LEA.Google Scholar
  38. Gelman, R., & Meck, E. (1983). Preschooler’s counting: Principles before skills. Cognition, 13, 343–359.CrossRefGoogle Scholar
  39. Gelman, R., & Meck, E. (1986). The notion of principle: The case of counting. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 29–57). Hillsdale, NJ, US: Lawrence Erlbaum Associates.Google Scholar
  40. Gelman, R., Meck, E., & Merkin, S. (1986). Young children’s numerical competence. Cognitive Development, 1, 1–29.CrossRefGoogle Scholar
  41. Gelman, R., & Tucker, M. F. (1975). Further investigations of the young child’s conception of number. Child Development, 46, 167–175.CrossRefGoogle Scholar
  42. Gibbs, R. W. (2005). The psychological status of image schemas. In B. Hampe (Ed.), From perception to meaning: Image schemata in cognitive linguistics (pp. 113–135). Berlin-New York: Mouton de Gruyter.CrossRefGoogle Scholar
  43. Glucksberg, S., & Keysar, B. (1993). How metaphor works. In A. Ortony (Ed.), Metaphor and thought (pp. 401–424). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  44. Graziano, M. (2013). Numbers in mind. Between intuitionism and cognitive science. Reti, Saperi, Linguaggi, 4, 72–79.Google Scholar
  45. Graziano, M. (2015). Numerical cognition and philosophy of mathematics. Dehaene’s (neuro)intuitionism and the relevance of language. Rivista Italiana di Filosofia del Linguaggio, SFL 2014, 362–377.Google Scholar
  46. Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79, 329–343.CrossRefGoogle Scholar
  47. Halford, G. S. (1993). Children’s understanding: The development of mental models. Hillsdale, NJ: Erlbaum.Google Scholar
  48. Hanna, R. (2006). Rationality and logic. Cambridge, MA: The MIT Press.Google Scholar
  49. Hespos, S. J., & Spelke, E. S. (2004). Conceptual precursors to language. Nature, 430(6998), 453–456.CrossRefGoogle Scholar
  50. Hutchins, E. (1996). Cognition in the wild. Cambridge: MIT Press.Google Scholar
  51. Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh. New York: Perseus Book.Google Scholar
  52. Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Chicago: Chicago University Press.Google Scholar
  53. Lakoff, G., & Johnson, M. (1987). Women, fire and dangerous things: What categories reveal about the mind. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  54. Lakoff, G. (1987). Women, fire, and dangerous things. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  55. Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic books.Google Scholar
  56. Langacker, R. W. (1987). Fondations of cognitive grammar, vol 1: Theoretical prerequisites. Stanford: Stanford University Press.Google Scholar
  57. Lave, J. (1988). Cognition in practice. Mind mathematics and culture in everyday life. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  58. Lépine, R., Barrouillet, P., & Camos, V. (2003). New evidence about the nature of the subitizing process. The XIII Conference of the European Society for Cognitive Psychology. Grenade, Espagne.Google Scholar
  59. Lolli, G. (2004). Da dove viene la matematica. Recensione di G. Lakoff, R. E. Nunez, Where Mathematics comes from.
  60. Longo, G. (2005). The cognitive foundations of mathematics: Human gestures in proofs and mathematical incompleteness of formalisms. In M. Okada, et al. (Eds.), Images and reasoning (pp. 105–134). Tokio: Keio University Press.Google Scholar
  61. Majid, A., Bowerman, M., Kita, S., Haun, D. B., & Levinson, S. C. (2004). Can language restructure cognition? The case for space. Trends in Cognitive Science, 8(3), 108–114.CrossRefGoogle Scholar
  62. Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology: General, 111, 1–22.CrossRefGoogle Scholar
  63. Molko, N., Wilson, A., & Dehaene, S. (2004). Dyscalculie, le sens perdu des nombres. La Recherche, 10, 42–49.Google Scholar
  64. Ortony, A. (1993). Metaphor and thought. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  65. Piazza, M., Fumarola, A., Chinello, A., & Melcher, D. (2011). Subitizing reflects visuo-spatial object individuation capacity. Cognition, 121(1), 147–153.CrossRefGoogle Scholar
  66. Poincaré, H. (1907). The value of science. New York: The Science Press.Google Scholar
  67. Pylyshyn, Z. W. (1998). The role of visual indexes in spatial vision and imagery. In R. Wright (Ed.), Visual attention (pp. 215–231). Oxford: Oxford University Press.Google Scholar
  68. Resnick, L. B. (1986). The development of mathematical intuition. In M. Perimutter (Ed.), Perspectives on intellectual: The Minnesota symposia on child psychology. Hillsdale, NJ: LEA.Google Scholar
  69. Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607–614.CrossRefGoogle Scholar
  70. Rey, G. (2014). Innate and learned: Carey, mad dog nativism, and the poverty of stimuli and analogies (yet again). Mind and Language, 29, 109–132.CrossRefGoogle Scholar
  71. Rips, L. J., Bloomfield, A., & Asmuth, J. (2008). From numerical concepts to concepts of number. Behavioral and Brain Sciences, 31, 623–642.CrossRefGoogle Scholar
  72. Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental Psycology, 104, 192–233.CrossRefGoogle Scholar
  73. Searle, J. R. (1979). The metaphor. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  74. Shapiro, S. (2004). Foundations of mathematics: Metaphysics, epistemology, structure. The Philosophical Quarterly, 54, 16–37.CrossRefGoogle Scholar
  75. Shipley, E. F., & Shepperson, B. (1990). The what-if of counting. Cognition, 36, 285–289.CrossRefGoogle Scholar
  76. Siegler, R. S., & Crowley, K. (1994). Constraints on learning in nonprivileged domains. Cognitive Psychology, 27, 194–226.CrossRefGoogle Scholar
  77. Sperber, D., & Wilson, D. (1986). Relevance: Communication and cognition. Oxford: Blackwell.Google Scholar
  78. Sperber, D., & Wilson, D. (2006). A deflationary account of metaphor. UCL Work. Pap. Linguist, 18, 171–203.Google Scholar
  79. Svenson, O. (1975). Analysis of time required by children for simple addition. Acta Psychologica, 39, 289–302.CrossRefGoogle Scholar
  80. Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies can show us about spatial attention: Evidence for limited capacity preat-tentive processing. Journal of Experimental Psychology: Human Per- ception and Performance, 19, 331–351.Google Scholar
  81. Varela, F. J., Thompson, E. T., & Rosch, E. (1992). The embodied mind: Cognitive science and human experience. Cambridge, MA: The MIT Press.Google Scholar
  82. Xu, F. (2003). Numerosity discrimination in infants: Evidence for two systems of representations. Cognition, 89, 15–25.Google Scholar
  83. Wilson, D., & Carston, R. (2006). Metaphor, relevance and the ‘Emergent Property’ issue. Mind and Language, 21(3), 230–260.Google Scholar
  84. Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.Google Scholar
  85. Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155–193.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Cognitive SciencesUniversity of MessinaMessinaItaly

Personalised recommendations