Advertisement

Anyons and Topological Order

  • Thomas Klein Kvorning
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Topologically ordered phases differ by the topological interaction between the particles they support and you will understand why when you get to Sect. 2.2 of this chapter. However, I will begin this chapter with a more familiar topological interaction, the distinction between bosons and fermions. Attacking this problem from the right angle leads to the notion of particles with other topological interactions—the Abelian anyons. Here you will also see how topological interactions can be understood as an exchange of a Chern-Simons (CS) gauge boson.

References

  1. 1.
    J. Leinaas, J. Myrheim, Il Nuovo Cimento B Series 11 37, 1 (1977).  https://doi.org/10.1007/BF02727953
  2. 2.
    D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).  https://doi.org/10.1103/PhysRevLett.48.1559ADSCrossRefGoogle Scholar
  3. 3.
    B.I. Halperin, Phys. Rev. Lett. 52, 1583 (1984).  https://doi.org/10.1103/PhysRevLett.52.1583ADSCrossRefGoogle Scholar
  4. 4.
    D. Arovas, J.R. Schrieffer, F. Wilczek, Phys. Rev. Lett. 53, 722 (1984).  https://doi.org/10.1103/PhysRevLett.53.722ADSCrossRefGoogle Scholar
  5. 5.
    R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).  https://doi.org/10.1103/PhysRevLett.50.1395ADSCrossRefGoogle Scholar
  6. 6.
    G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991).  https://doi.org/10.1016/0550-3213(91)90407-OADSCrossRefGoogle Scholar
  7. 7.
  8. 8.
    M. Greiter, X. Wen, F. Wilczek, Nucl. Phys. B 374, 567 (1992).  https://doi.org/10.1016/0550-3213(92)90401-VADSCrossRefGoogle Scholar
  9. 9.
    N. Read, D. Green, Phys. Rev. B 61, 10267 (2000).  https://doi.org/10.1103/PhysRevB.61.10267ADSCrossRefGoogle Scholar
  10. 10.
    D.A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).  https://doi.org/10.1103/PhysRevLett.86.268ADSCrossRefGoogle Scholar
  11. 11.
    A. Stern, F. von Oppen, E. Mariani, Phys. Rev. B 70, 205338 (2004).  https://doi.org/10.1103/PhysRevB.70.205338ADSCrossRefGoogle Scholar
  12. 12.
    E. Artin, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 4, 47 (1925).  https://doi.org/10.1007/BF02950718
  13. 13.
    A. Altland, B.D. Simons, Condensed Matter Field Theory, 2nd edn. (Cambridge University Press, Cambridge, 2010).  https://doi.org/10.1017/CBO9780511789984CrossRefMATHGoogle Scholar
  14. 14.
    V. Jones, in Geometric Methods in Operator Algebras, ed. by H. Araki, E.G. Effros (Longman Scientific & Technical, Kyoto, 1983), p. 123Google Scholar
  15. 15.
    E. Witten, Commun. Math. Phys. 121, 351 (1989)ADSCrossRefGoogle Scholar
  16. 16.
  17. 17.
    X.G. Wen, Q. Niu, Phys. Rev. B 41, 9377 (1990).  https://doi.org/10.1103/PhysRevB.41.9377ADSCrossRefGoogle Scholar
  18. 18.
  19. 19.
    X.-G. Wen, Int. J. Mod. Phys. B 06, 1711 (1992).  https://doi.org/10.1142/S0217979292000840ADSCrossRefGoogle Scholar
  20. 20.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations