Advertisement

Applying Circulant Matrices Properties to Synchronization Problems

  • Jose S. CánovasEmail author
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

In this chapter, we use circulant matrices to study discrete dynamical systems of higher dimension than one. We show how these matrices are a common framework which is useful to investigate some dynamical properties of some models provided by natural and social sciences. In particular, discrete models from Biology, Economy and Chemistry are considered and analyzed with tools coming from the properties of circulant matrices. More precisely, the special shape of eigenvalues and eigenvectors of circulant matrices is very useful to check whether the dynamics of systems on phase spaces with dimension greater than two can be reduced to that of one dimensional systems.

Notes

Acknowledgements

This work has been supported by the grants MTM2014-52920-P and MTM 2017-84079-P from Ministerio de Economía y Competitividad (Spain).

References

  1. 1.
    Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Agronsky, S., Ceder, J.: What sets can be - limit sets in En? Real Anal. Exch. 17, 97–109 (1991–1992)zbMATHGoogle Scholar
  3. 3.
    Agronsky, S., Ceder, J.: Each Peano subspace of Ek is an ω–limit set. Real Anal. Exch. 17, 371–378 (1991–1992)zbMATHGoogle Scholar
  4. 4.
    Alsedá, L., Llibre, J., Misiurewicz, M.: Combinatorial Dynamics and Entropy in Dimension One. World Scientific Publishing, Singapore (1993)CrossRefGoogle Scholar
  5. 5.
    Aoki, N., Hiraide, K.: Topological Theory of Dynamical Systems: Recent Advances. North-Holland, Amsterdam (1994)zbMATHGoogle Scholar
  6. 6.
    Ashwin, P., Buescu, J., Stewart, I.: From attractor to chaotic saddle: a tale of transverse instability. Nonlinearity 9, 703–737 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Balibrea, F., Snoha, L.: Topological entropy of Devaney chaotic maps. Topol. Appl. 133, 225–239 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Balibrea, F., Cánovas, J.S., Linero, A.: On ω–limit sets of antitriangular maps. Topology Appl. 137, 13–19 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99, 332–334 (1992)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bischi, G.I., Cerboni Baiardi, L.: Fallacies of composition in nonlinear marketing models. Commun. Nonlinear Sci. Numer. Simul. 20, 209–228 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bischi, G.I., Chiarella, C., Kopel, M., Szidarovszky, F.: Nonlinear Oligopolies. Springer, Berlin (2010)CrossRefGoogle Scholar
  12. 12.
    Blanchard, F., Glasner, E., Kolyada, S., Maass, A.: On Li-Yorke pairs. J. Reine Angew. Math. 547, 51–68 (2002)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Block, L.S., Coppel, W.A.: Dynamics in One Dimension. Lectures Notes in Mathematics, vol. 1513. Springer, Berlin (1992)Google Scholar
  14. 14.
    Block, L., Keesling, J.: Computing the topological entropy of maps of the interval with three monotone pieces. J. Stat. Phys. 66, 755–774 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Block, L., Keesling, J., Li, S., Peterson, K.: An improved algorithm for computing topological entropy. J. Stat. Phys. 55, 929–939 (1989)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bowen, R.: Entropy for group endomorphism and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cánovas, J.S., Linero, A.: Topological dynamic classification of duopoly games. Chaos, Solitons Fractals 12, 1259–1266 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Cánovas, J.S., Muñoz Guilermo, M.: Computing topological entropy for periodic sequences of unimodal maps. Commun. Nonlinear Sci. Numer. Simul. 19, 3119–3127 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cánovas, J.S., Muñoz Guilermo, M.: Computing the topological entropy of continuous maps with at most three different kneading sequences with applications to Parrondo’s paradox. Chaos, Solitons Fractals 83, 1–17 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cánovas, J.S., Muñoz Guilermo, M.: Dynamics on large sets and its applications to oligopoly dynamics. In: Complex Networks and Dynamics. Springer, Berlin (2016)Google Scholar
  21. 21.
    Cánovas, J.S., Linero, A., Soler López, G.: Chaotic synchronization in a coupled lattice related with Belousov–Zhabotinsky reaction. Commun. Nonlinear Sci. Numer. Simul. 62, 418–428 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Davis, P.J.: Circulant Matrices. Wiley, New York (1979)zbMATHGoogle Scholar
  23. 23.
    de Melo, W., van Strien, S.: One–Dimensional Dynamics. Springer, New York (1993)CrossRefGoogle Scholar
  24. 24.
    Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Redwood City (1989)zbMATHGoogle Scholar
  25. 25.
    Dinaburg, E.I.: The relation between topological entropy and metric entropy. Sov. Math. 11, 13–16 (1970)zbMATHGoogle Scholar
  26. 26.
    Du, B.S.: A simple proof of Sharkovsky’s theorem. Am. Math. Mon. 111, 595–599 (2004)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Fedorenko, V.V., Sharkovsky, A.N., Smítal, J.: Characterizations of weakly chaotic maps of the interval. Proc. Am. Math. Soc., 110, 141–148 (1990)MathSciNetCrossRefGoogle Scholar
  28. 28.
    García Guirao, J.L., Lampart, M.: Positive entropy of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 48, 66–71 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    García Guirao, J.L., Lampart, M.: Chaos of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 48, 159–164 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Guckhenheimer, J.: Sensitive dependence to initial conditions for one-dimensional maps. Commun. Math. Phys. 70, 133–160 (1979)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hastings, A.: Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74, 1362–1372 (1993)CrossRefGoogle Scholar
  32. 32.
    Huang, W., Ye, X.: Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos. Topol. Appl. 117, 259–272 (2002)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kaneko, K.: Period-doubling of kink-antikink patterns, quasiperiodicity and antiferro-like structures and spatial intermittency in coupled logistic lattice. Prog. Theor. Phys. 72, 480–486 (1984)CrossRefGoogle Scholar
  34. 34.
    Kaneko, K.: Globally coupled chaos violates law of large numbers, but not the Central-Limit Theorem. Phys. Rev. Lett. 65, 1391–1394 (1990). See also Errata. Phys. Rev. Lett. 66, 243 (1991)Google Scholar
  35. 35.
    Kloeden, P.E.: On Sharkovsky’s cycle coexistence ordering. Bull. Aust. Math. Soc. 20, 171–177 (1979)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Kolyada, S.F.: On dynamics of triangular maps of the square. Ergod. Theory Dyn. Syst. 12, 749–768 (1992)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Kolyada, S.F., Snoha, \(\check {\mathrm{L}}\)., On ω–limit sets of triangular maps. Real Anal. Exch. 18, 115–130 (1992–1993)Google Scholar
  38. 38.
    Kopel, M.: Simple and complex adjustment dynamics in Cournot duopoly models. Chaos, Solitons Fractals 7, 2031–2048 (1996)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Kwietniak, D., Misiurewicz, M.: Exact devaney chaos and entropy. Qual. Theory Dyn. Syst. 6, 169–179 (2005)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Li, R., Wang, J., Lu, T., Jiang, R.: Remark on topological entropy and \(\mathcal {P}\)–chaos of a coupled lattice system with non-zero coupling constant related with Belusov-Zhabotinskii reaction. J. Math. Chem. 54, 1110–1116 (2016)Google Scholar
  42. 42.
    Liu, J., Lu, T., Li, R.: Topological entropy and \(\mathcal {P}\)-chaos of a coupled lattice system with non-zero coupling constant related with Belousov–Zhabotinsky reaction. J. Math. Chem. 53, 1220–1226 (2015)Google Scholar
  43. 43.
    Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Misiurewicz, M., Szlenk, W.: Entropy of piecewise monotone mappings. Stud. Math. 67, 45–63 (1980)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Oseledets, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–231 (1968)zbMATHGoogle Scholar
  46. 46.
    Puu, T.: Chaos in duopoly pricing. Chaos, Solitons Fractals 1, 573–581 (1991)CrossRefGoogle Scholar
  47. 47.
    Puu, T., Norin, A.: Cournot duopoly when the competitors operate under capacity constraints. Chaos, Solitons Fractals 18, 577–592 (2003)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623 (1954)CrossRefGoogle Scholar
  49. 49.
    Ruíz Herrera, A.: Analysis of dispersal effects in metapopulation models. J. Math. Biol. 72, 683–698 (2016)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Sharkovsky, A.N., Kolyada, S.F., Sivak, A.G., Fedorenko, V.V.: Dynamics of One–Dimensional Maps. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  51. 51.
    Singer, D.: Stable orbits and bifurcation of maps of the interval. SIAM J. Appl. Math. 35, 260–267 (1978)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Smítal, J.: Chaotic functions with zero topological entropy. Trans. Am. Math. Soc. 297, 269–282 (1986)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Sumi, N.: Diffeomorphisms with positive entropy and chaos in the sense of Li–Yorke. Ergod. Theory Dyn. Syst. 23, 621–635 (2003)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Thunberg, H.: Periodicity versus chaos in one–dimensional dynamics. SIAM Rev. 43, 3–30 (2001)MathSciNetCrossRefGoogle Scholar
  56. 56.
    van Strien, S., Vargas, E.: Real bounds, ergodicity and negative Schwarzian for multimodal maps. J. Am. Math. Soc. 17, 749–782 (2004)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Winfree, A.T.: The prehistory of the Belousov–Zhabotinsky oscillator. J. Chem. Educ. 61, 661–663 (1984)CrossRefGoogle Scholar
  58. 58.
    Wu, X., Zhu, P.: Li–Yorke chaos in a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 50, 1304–1308 (2012)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Wu, X., Zhu, P.: The principal measure and distributional (p, q)-chaos of a coupled lattice system related with Belousov–Zhabotinsky reaction. J. Math. Chem. 50, 2439–2445 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada y EstadísticaUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations