Using Wavelet Techniques to Approximate the Subjacent Risk of Death

Generating Alternative Scenarios via Bootstrap
  • F. G. Morillas JuradoEmail author
  • I. Baeza Sampere
Part of the Understanding Complex Systems book series (UCS)


In Actuarial science, graduation techniques have been used extensively: the large number of scientific papers and technical documentation published evidences this fact (see Ayuso M et al. (Estadística Actuarial Vida. UBe, Barcelona (2007)), Baeza Sampere and Morillas Jurado (Rev. Anales del Instituto de Actuarios Españoles 135–164 (2011)), London (Graduation: The Revision of Estimates. ACTEX Publications, Connecticut (1985)), Cairns, et al. (Scand Actuar J 2(3):79–113 (2008)) and the references therein). Graduation techniques are defined by Haberman and Renshaw J Inst Actuar 110:135–156 (1983) as a set of principles and techniques for use that are used on raw data so that a more appropriate basis is obtained to make inferences and calculations of premiums, reserves and other variables of interest in the financial and insurance sector. Solvency II (Directive 2009/138/EC) is the regulatory framework used for risk management and for the supervision of insurance companies. This normative is effective from 1/2016 and it establishes the technical exigencies to be applied on some procedures such as mathematical provisioning or pricing. Related to these procedures, this normative introduces the concepts of best-estimate and margin-risk (see also CEIOPS: QIS5 Technical specifications. Technical Report. European Commissions-Internal market and services DG (2010)). The purpose of the former is to approximate the expected loss, and the latter to control the deviation from the best-estimate. In life actuarial methodologies, the probabilities of death are used explicitly and so the estimation of qx has a great impact on best-estimate. A widely recognized technique is that of wavelet techniques which have been applied in several fields such as engineering, digital processing of images, medicine, economy, finances, etc. (see Mallat (A wavelet tour of signal processing. Elsevier, Oxford (2009)). In this paper, we use wavelet techniques to achieve a good approximation of qx with the aim of obtaining a good estimation of the best-estimate. Therefore, as we can deduce from Standards IFRS 17 (view [16]), the knowledge of future scenarios is an important key point. In this research, the best-estimate is obtained using a wavelet-based graduation technique similar to Meneu et al. El Factor de Sostenibilidad: Diseños alternativos y valoración financiero-actuarial de sus efectos sobre los parámetros del sistema. Economía Española y Protección Social, V, 63–96 (2013). Then, using resampling techniques over the deviations between the graduated values and the observed values, we can obtain an approximation to the variability of the estimation and go on to construct several series of alternative scenarios of death. Complementarily, we note that the wavelet techniques present some problems when the amount of data is small; for this reason, we countercheck the cases where we have low-frequency series (as is usually the case in the context of Life Insurers).



This paper is partially supported by Ministerio de Economia y Competitividad (Spanish Government), Grant MTM2016-74921-P.

Thanks are also due to M. Hodkinson for reviewing the English of the paper. The usual disclaimer applies.


  1. 1.
    Ayuso, M., Corrales, H., Guillen, M., Perez-Martín, A.M., Rojo, J.L.: Estadística Actuarial Vida. UBe, Barcelona (2007)Google Scholar
  2. 2.
    Baeza Sampere, I., Morillas Jurado, F.G.: Using wavelet to non-parametric graduation of mortality rates. Rev. Anales del Instituto de Actuarios Españoles, pp. 135–164 (2011)Google Scholar
  3. 3.
    Cairns, A.J.G., Blake, D., Dowd, K.: Modelling and management of mortality risk: a review. Scand. Actuar. J. 2(3), 79–113 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    CEIOPS: QIS5 Technical specifications. Technical Report. European Commissions-Internal market and services DG (2010)Google Scholar
  5. 5.
    Copas, J., Haberman, S.: Non parametric graduation using kernel methods. J. Inst. Actuar. 110, 135–156 (1983)CrossRefGoogle Scholar
  6. 6.
    Donoho, D., Johnstone, I.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall, Boca Raton, FL (1994)zbMATHGoogle Scholar
  9. 9.
    Felipe, A., Guillen, M., Nielsen, J.: Longevity studies based on kernel hazard estimation. Insur. Math. Econ. 28, 191–204 (2001)CrossRefGoogle Scholar
  10. 10.
    Forfar, D., McCutcheon J., Wilkie, A.: On graduation by mathematical formulae. J. Inst. Actuar. 115, 693–694 (1988)CrossRefGoogle Scholar
  11. 11.
    Gavin, J., Haberman, S., Verrall, R.: Moving weighted average graduation using kernel estimation. Math. Econ. 12(2), 113–126 (1993)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gompertz, B.: On the nature of the function of the law of human mortality and on a new mode of determining the value of life contingencies. Trans. R. Soc. 115, 513–585 (1825)CrossRefGoogle Scholar
  13. 13.
    Haberman, S., Renshaw, A.: Generalized linear models and actuarial science. Statistician 4(45), 113–126 (1996)Google Scholar
  14. 14.
    Heligman, L., Pollard, J.: The age pattern of mortality. J. Inst. Actuar. 107, 49–80 (1980)CrossRefGoogle Scholar
  15. 15.
    Human Mortality Database.: University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at or (2017, April 15).
  16. 16.
    IFRS 17 Insurance Contracts. International Accounting Standards Boards (2017). International Financial Reporting Standards. Available at (2018, May 5).
  17. 17.
    Instituto Nacional de Estadística, INE (2017). Tablas de mortalidad de la población de España 1991–2012., April 15 (2017)
  18. 18.
    London, D.: Graduation: The Revision of Estimates. ACTEX Publications, Connecticut (1985)Google Scholar
  19. 19.
    Mallat, S.G.: A Wavelet Tour of Signal Processing. Elsevier, Oxford (2009)zbMATHGoogle Scholar
  20. 20.
    McCullagh, P., Nelder, J.A.: Generalized Linear Models. Chapman and Hall, New York (1983)CrossRefGoogle Scholar
  21. 21.
    Meneu, R., Devesa, J.E., Devesa, M., Nagore, A.: El Factor de Sostenibilidad: Diseños alternativos y valoración financiero-actuarial de sus efectos sobre los parámetros del sistema. Economía Española y Protección Social, V, 63–96 (2013)Google Scholar
  22. 22.
    Morillas. F.G., Baeza I., Pavia, J.M.: Risk of death: a two-step method using wavelets and piecewise harmonic interpolation. Estadística Española 58, 191 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied EconomyUniversity of ValenciaValenciaSpain

Personalised recommendations