Advertisement

The Problem of a Function Maximization on a Type-2 Fuzzy Set

  • S. O. Mashchenko
  • D. O. Kapustian
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

The article focuses on generalizing the concept of the maximizing alternative in the case of the objective function maximization problem on the type-2 fuzzy set (T2FS) of feasible alternatives. An extension of the natural order relation to the class of fuzzy sets is used for comparison of fuzzy sets of alternatives membership degrees. It is shown that such a fuzzy preference relation provides fuzzy sets of membership degrees of T2FSs of feasible alternatives to be normal. With the help of this preference relation a fuzzy set of non-dominated alternatives is constructed. The notion of α-level non-dominated alternative is introduced. It is shown that this is a solution to the optimization problem. In this problem the objective function is maximized with a bounded secondary membership degree of the T2FS of feasible alternatives. The problem of choosing alternatives according to the two criteria (the objective function and secondary degrees of membership to the T2FS of feasible alternatives) is formulated. Its Pareto optimal solutions are called the effective maximizing alternatives. Their properties are investigated.

References

  1. 1.
    Negoita, C.V., Ralescu, D.A.: Applications of Fuzzy Sets to Systems Analysis. Birkhauser/Wiley, Basel/New York (1975)Google Scholar
  2. 2.
    Orlovsky, S.A.: On programming with fuzzy constraint sets. Kybernetes 6, 197–201 (1977). https://doi.org/10.1108/eb005453 CrossRefGoogle Scholar
  3. 3.
    Carlsson, C., Fuller, R.: Fuzzy Reasoning in Decision Making and Optimization. Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg (2002)Google Scholar
  4. 4.
    Lodwik, W.A.: Fuzzy Optimization, Recent Advances and Applications. Springer, Berlin (2010)Google Scholar
  5. 5.
    Ivokhin, E.V., Almodars, B.S.K.: To approaches for solving transportation problem with fuzzy resources. J. Autom. Inf. Sci. 46(10), 45–57 (2014).  https://doi.org/10.1615/JAutomatInfScien.v46 CrossRefGoogle Scholar
  6. 6.
    Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–124 (2002)CrossRefGoogle Scholar
  7. 7.
    Zadeh, L.A.: Quantitative fuzzy semantics. Inform. Sci. 3(2), 159–176 (1971)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Karnik, N.N., Mendel, J.M.: An introduction to type-2 fuzzy logic systems. Univ. of Southern Calif., Los Angeles (online). http://sipi.usc.edu/~mendel/report
  9. 9.
    Harding, J., Walker, C., Walker, E.: The variety generated by the truth value algebra of T2FSs. Fuzzy Sets Syst. 161, 735–749 (2010)CrossRefGoogle Scholar
  10. 10.
    Aisbett, J., Rickard, J.T., Morgenthaler, D.G.: Type-2 fuzzy sets as functions on spaces. IEEE Trans. Fuzzy Syst. 18(6), 841–844 (2010)CrossRefGoogle Scholar
  11. 11.
    Yager, R.R.: Fuzzy subsets of type II in decisions. J. Cybern. 10, 37–159 (1980)MathSciNetGoogle Scholar
  12. 12.
    Chaneau, J.L., Gunaratne, M., Altschaeffl, A.G.: An application of type-2 sets to decision making in engineering. In: Bezdek, J. (ed.) Analysis of Fuzzy Information, vol. II: Artificial Intelligence and Decision Systems. CRC Press, Boca Raton (1987)Google Scholar
  13. 13.
    John, R.I.: Type-2 inferencing and community transport scheduling. In: Proceedings of 4th European Congress Intelligent Techniques Soft Computing, Aachen, Germany, pp. 1369–1372 (1996)Google Scholar
  14. 14.
    Kapustyan, E.A., Nakonechnyi, O.G.: The minimax problems of pointwise observation for a parabolic boundary-value problem. J. Autom. Inf. Sci. 34, 52–63 (2002)CrossRefGoogle Scholar
  15. 15.
    Baas, S.M., Kwakernaak, H.: Rating and ranking of multiple-aspect alternative using fuzzy sets. Automatica 13(1), 47–58 (1977)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chanas, S., Kuchta, D.: Multiobjective programming in optimization of interval objective functions a generalized approach. Eur. J. Oper. Res. 94(3), 594–598 (1996)CrossRefGoogle Scholar
  17. 17.
    Detyniecki, M., Yager, R.R.: Ranking fuzzy numbers using α-weighted valuations. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 8(3), 573–591 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dubois, D., Prade, H.: Ranking of fuzzy numbers in the setting of possibility theory. Inform. Sci. 30(3), 183–224 (1983)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sengupta, A., Kumar, T.P.: Fuzzy preference ordering of intervals. Fuzzy Preference Ordering of Interval Numbers in Decision Problems. Studies in Fuzziness and Soft Computing, pp. 59–89. Springer, Berlin (2009)Google Scholar
  20. 20.
    Yager, R.R., Detyniecki, M., Bouchon-Meunier, B.: A context-dependent method for ordering fuzzy numbers using probabilities. Inf. Sci. 30(3), 237–255 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Skalna et al.: Ordering of Fuzzy Numbers. Advances in Fuzzy Decision Making. Studies in Fuzziness and Soft Computing, vol. 333. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26494-3-2
  22. 22.
    Mashchenko, S.O.: Generalization of Germeyer’s criterion in the problem of decision making under the uncertainty conditions with the fuzzy set of the states of nature. J. Autom. Inf. Sci. 44(12), 26–34 (2012).  https://doi.org/10.1615/JautomatInfScien.v44.i10.20 CrossRefGoogle Scholar
  23. 23.
    Mashchenko, S.O.: A mathematical programming problem with the fuzzy set of indices of constraints. Cybern. Syst. Anal. 49(1), 62–68 (2013). https://doi.org/10.1007/s10559-013-9485-4 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Odovsky, S.A.: Decision-making with a fuzzy preference relation. Int. J. Fuzzy Sets Syst. 1(3), 155–167 (1978)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Orlovsky, S.A.: On formalization of a general fuzzy mathematical problem. Fuzzy Sets Syst., 3(1), 311–321 (1980)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Chang, D.-Y.: Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95(3), 649–655 (1996)CrossRefGoogle Scholar
  27. 27.
    Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17, 8141–8164 (1970)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Branke, J. et al.: Multiobjective Optimization, Interactive and Evolutionary Approaches. A State-of-the-Art Survey. Springer, Berlin (2008)Google Scholar
  29. 29.
    Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic, Orlando (1985)zbMATHGoogle Scholar
  30. 30.
    Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Applications. Wiley, Chichester (1986)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • S. O. Mashchenko
    • 1
  • D. O. Kapustian
    • 1
  1. 1.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations