Advertisement

Asymptotic Translation Uniform Integrability and Multivalued Dynamics of Solutions for Non-autonomous Reaction-Diffusion Equations

  • Michael Z. Zgurovsky
  • Pavlo O. Kasyanov
  • Nataliia V. Gorban
  • Liliia S. Paliichuk
Chapter
  • 672 Downloads
Part of the Understanding Complex Systems book series (UCS)

Abstract

In this note we introduce asymptotic translation uniform integrability condition for a function acting from a positive semi-axes of time-line to a Banach space. We prove that this condition is equivalent to uniform integrability condition. As a result, we obtain the corollaries for the multivalued dynamics (as time t → +) of solutions for non-autonomous reaction-diffusion equations.

Keywords

Multivalued Dynamics Uniform Integrability Condition Chepyzhov Weak Solution Case Generation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations (in Russian). Nauka, Moscow (1989)zbMATHGoogle Scholar
  2. 2.
    Balibrea, F., Caraballo, T., Kloeden, P.E., Valero, J.: Recent developments in dynamical systems: three perspectives. Int. J. Bifurcation Chaos (2010). https://doi.org/10.1142/S0218127410027246
  3. 3.
    Chepyzhov, V.V., Vishik, M.I.: Evolution equations and their trajectory attractors. J. Math. Pures Appl. 76, 913–964 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  5. 5.
    Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare operatorgleichungen und operatordifferentialgleichungen. Akademie-Verlag, Berlin (1978)zbMATHGoogle Scholar
  6. 6.
    Gluzman, M.O., Gorban, N.V., Kasyanov, P.O.: Lyapunov type functions for classes of autonomous parabolic feedback control problems and applications. Appl. Math. Lett. (2014). https://doi.org/10.1016/j.aml.2014.08.006
  7. 7.
    Gorban, N.V., Kasyanov, P.O.: On regularity of all weak solutions and their attractors for reaction-diffusion inclusion in unbounded domain. Contin. Distrib. Syst. Theory Appl. Solid Mech. Appl. 211, (2014). https://doi.org/10.1007/978-3-319-03146-0$_$15
  8. 8.
    Gorban, N.V., Kapustyan, O.V., Kasyanov, P.O.: Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Caratheodory’s nonlinearity. Nonlinear Anal. Theory Methods Appl. 98, 13–26 (2014). https://doi.org/10.1016/j.na.2013.12.004 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gorban, N.V., Kapustyan, O.V., Kasyanov, P.O., Paliichuk, L.S.: On global attractors for autonomous damped wave equation with discontinuous nonlinearity. Contin. Distrib. Syst. Theory Appl. Solid Mech. Appl. 211 (2014). https://doi.org/10.1007/978-3-319-03146-0$_$16
  10. 10.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York (1988)Google Scholar
  11. 11.
    Zgurovsky, M.Z., Mel’nik, V.S., Kasyanov, P.O.: Evolution Inclusions and Variation Inequalities for Earth Data Processing II. Springer, Berlin (2011)zbMATHGoogle Scholar
  12. 12.
    Zgurovsky, M.Z., Kasyanov, P.O., Kapustyan, O.V., Valero, J., Zadoianchuk, N.V.: Evolution Inclusions and Variation Inequalities for Earth Data Processing III. Springer, Berlin (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Michael Z. Zgurovsky
    • 1
  • Pavlo O. Kasyanov
    • 2
  • Nataliia V. Gorban
    • 2
  • Liliia S. Paliichuk
    • 2
  1. 1.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine
  2. 2.Institute for Applied System AnalysisNational Technical University of Ukraine, Igor Sikorsky Kyiv Politechnic InstituteKyivUkraine

Personalised recommendations