Advertisement

Three-Dimensional Manifolds of Constant Energy and Invariants of Integrable Hamiltonian Systems

  • Anatoly T. FomenkoEmail author
  • Kirill I. Solodskih
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

This paper is algebraic and topology study of the manifolds of constant energy of integrable Hamiltonian systems with two degrees of freedom. The Liouville foliation defines the topology of isoenergy manifold, but on any isoenergy manifold there are many non-equivalent Hamiltonian systems. We give some review of recent papers on homotopy invariants and their relation with Fomenko-Zieschang invariants. Also, we discuss relatively new results about Reidemeister torsion and applications in the theory of Hamiltonian systems. The last section is efficiency demonstration of Fomenko-Zieschang invariants in concrete mechanic system. Let us note that many known Hamiltonian systems have been investigated in terms of Fomenko-Zieschang invariants.

References

  1. 1.
    Bolsinov, A.V., Fomenko, A.T.: Integrable Hamiltonian Systems. Geometry, Topology, Classification. Chapman & Hall/CRC, Boca Raton (2004). Translated from the 1999 Russian originalGoogle Scholar
  2. 2.
    Fomenko, A.T.: The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability. Math. USSR Izv. 29, 629–658 (1987)CrossRefGoogle Scholar
  3. 3.
    Fomenko, A.T.: Topological invariants of Liouville integrable Hamiltonian systems. Funct. Anal. Appl. 22(4), 286–296 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fomenko, A.T., Zieschang, H.: A topological invariant and a criterion for equivalence of integrable Hamiltonian systems with two degrees of freedom. Math. USSR Izv. 36(3), 567–596 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bolsinov, A.V., Fomenko, A.T.: Integrable Geodesic Flows on Two-Dimensional Surfaces. Consultants Bureau/Kluwer Academic/Plenum Publishers, New York (2000)CrossRefGoogle Scholar
  6. 6.
    Bolsinov, A.V., Fomenko, A.T.: Orbital isomorphism between two classical integrable systems. In: Lie Groups and Lie Algebras. Their Representations, Generalisations and Applications, pp. 359–382. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  7. 7.
    Bolsinov, A.V., Matveev, V.S., Fomenko, A.T.: Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry. Sb. Math. 189(10), 1441–1466 (1998)zbMATHGoogle Scholar
  8. 8.
    Bolsinov, A.V., Fomenko, A.T.: On dimension of the space of integrable Hamiltonian systems with two degrees of freedom. In: Dinamicheskie sistemy i smezhnye voprosy. Sbornik statej. K 60-letiyu so dnya rozhdeniya akademika D. V. Anosova, pp. 45–69. Nauka. MAIK Nauka, Moskva (1997)Google Scholar
  9. 9.
    Fomenko, A.T., Kantonistova, E.O.: Topological classification of geodesic flows on revolution 2-surfaces with potential. In: Continuous and Distributed Systems II. Theory and Applications, pp. 11–27. Springer, Cham (2015)Google Scholar
  10. 10.
    Fokicheva, V.V., Fomenko, A.T.: Integrable billiards model important integrable cases of rigid body dynamics. Dokl. Math. 92(3), 682–684 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fokicheva, V.V., Fomenko, A.T.: Billiard systems as the models for the rigid body dynamics. In: Advances in Dynamical Systems and Control, pp. 13–33. Springer, Cham (2016)Google Scholar
  12. 12.
    Kudryavtseva, E.A., Nikonov, I.M., Fomenko, A.T.: Maximally symmetric cell decompositions of surfaces and their coverings. Sb. Math. 199(9), 1263–1353 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Brailov, Y.A., Fomenko, A.T.: Lie groups and integrable Hamiltonian systems. In: Recent Advances in Lie Theory. Selected Contributions to the 1st colloquium on Lie Theory and Applications, Vigo, July 2000, pp. 45–76. Heldermann Verlag, Lemgo (2002)Google Scholar
  14. 14.
    Brailov, A.V., Fomenko, A.T.: The topology of integral submanifolds of completely integrable Hamiltonian systems. Math. USSR Sb. 62(2), 373–383 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fomenko, A.T., Konyaev, A.: Algebra and geometry through Hamiltonian systems. In: Continuous and Distributed Systems, pp. 3–21. Springer International Publishing, Cham (2014)Google Scholar
  16. 16.
    Radnović, M., Dragović, V.: Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space. Fundam. Prikl. Mat. 20(2), 51–64 (2015)zbMATHGoogle Scholar
  17. 17.
    Haghighatdoost, G., Oshemkov, A.A.: The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4). Sb. Math. 200(6), 899–921 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fokicheva, V.V.: Classification of billiard motions in domains bounded by confocal parabolas. Sb. Math. 205(8), 1201–1221 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Konyaev, A.Y.: Classification of Lie algebras with generic orbits of dimension 2 in the coadjoint representation. Sb. Math. 205(1), 45–62 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fomenko, A.T., Zieschang, H.: On typical topological properties of integrable Hamiltonian systems. Math. USSR Izv. 32(2), 385–412 (1989)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  22. 22.
    Topalov, P.: Computation of the fine Fomenko-Zieschang invariant for the main integrable cases of rigid body motion. Sb. Math. 187(3), 451–468 (1996)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kirby, R.C., Scharlemann, M.G.: Eight faces of the Poincaré homology 3-sphere. Usp. Mat. Nauk 37(5(227)), 139–159 (1982)Google Scholar
  24. 24.
    Solodskih, K.I.: Graph-manifolds and integrable Hamiltonian systems. Sb. Math. 209(5), 739–758 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Turaev, V.G.: Reidemeister torsion in knot theory. Russ. Math. Surv. 41(1), 119–182 (1986)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Jankins, M., Neumann, W.D.: Lectures on Seifert Manifolds. Brandeis Lecture Notes. Brandeis University, Waltham (1983)Google Scholar
  27. 27.
    Timonina, D.S.: Topological classification of integrable geodesic flows in a potential field on the torus of revolution. Lobachevskii J. Math. 38, 1108–1120 (2017, in print)Google Scholar
  28. 28.
    Kantonistova, E.O.: Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution. Sb. Math. 207(3), 358–399 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kantonistova, E.O.: Liouville classification of integrable Hamiltonian systems on surfaces of revolution. Mosc. Univ. Math. Bull. 70(5), 220–222 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations