A Strong Averaging Principle for Lévy Diffusions in Foliated Spaces with Unbounded Leaves

  • Paulo Henrique da Costa
  • Michael A. HögeleEmail author
  • Paulo Regis Ruffino
Part of the Understanding Complex Systems book series (UCS)


This article extends a strong averaging principle for Lévy diffusions which live on the leaves of a foliated manifold subject to small transversal Lévy type perturbation to the case of non-compact leaves. The main result states that the existence of p-th moments of the foliated Lévy diffusion for \(p\geqslant 2\) and an ergodic convergence of its coefficients in Lp implies the strong Lp convergence of the fast perturbed motion on the time scale tε to the system driven by the averaged coefficients. In order to compensate the non-compactness of the leaves we use an estimate of the dynamical system for each of the increments of the canonical Marcus equation derived in da Costa and Högele (Potential Anal 47(3):277–311, 2017), the boundedness of the coefficients in Lp and a nonlinear Gronwall-Bihari type estimate. The price for the non-compactness are slower rates of convergence, given as p-dependent powers of ε strictly smaller than 1∕4.



The author PHC would like to thank the Department of Mathematics of Brasilia University for providing support. The authors MAH and PRR would like express his gratitude for the hospitality received at the Departameto de Matemática at Universidade de Brasília and the IMECC at UNICAMP in February 2018. The funding of MAH by the FAPA project “Stochastic dynamics of Lévy driven systems” at the School of Science at Universidad de los Andes is greatly acknowledged. The author PRR is partially supported by Brazilian CNPq proc. nr. 305462/2016-4, by FAPESP proc. nr. 2015/07278-0 and 2015/50122-0.


  1. 1.
    Amann, H.: Ordinary Differential Equations: An Introduction to Nonlinear Analysis. de Gruyter Studies in Mathematics, vol. 13. Walter de Gruyter & Co., Berlin (1990)Google Scholar
  2. 2.
    Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  3. 3.
    Arnold, V.: Mathematical Methods in Classical Mechanics, 2nd edn. Springer, Berlin (1989)CrossRefGoogle Scholar
  4. 4.
    Bakhtin, V., Kifer, Y.: Nonconvergence examples in averaging. Geometric and probabilistic structures in dynamics. Contemp. Math. 469, 1–17 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Borodin, A., Freidlin, M.: Fast oscillating random perturbations of dynamical systems with conservation laws. Ann. Inst. H. Poincaré. Prob. Statist. 31, 485–525 (1995)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cannas, A.: Lectures on Symplectic Geometry. Lecture Notes in Mathematics, vol. 1764. Springer, Berlin (2008)Google Scholar
  7. 7.
    Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations. Ann. Probab. 19(3), 899–948 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    da Costa, P.H., Högele, M.A.: Strong averaging along foliated Lévy diffusions with heavy tails on compact leaves. Potential Anal. 47(3), 277–311 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, Berlin (1991)zbMATHGoogle Scholar
  10. 10.
    Gargate, I.I.G., Ruffino, P.R.: An averaging principle for diffusions in foliated spaces. Ann. Probab. 44(1), 567–588 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Garnett, L.: Foliation, the ergodic theorem and Brownian motion. J. Funct. Anal. 51, 285–311 (1983)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Högele, M.A., Ruffino, P.R.: Averaging along foliated Lévy diffusions. Nonlinear Anal. 112, 1–14 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kabanov, Y., Pergamenshchikov, S.: Two-Scale Stochastic Systems: Asymptotic Analysis and Control. Springer, Berlin (2003)CrossRefGoogle Scholar
  14. 14.
    Kakutani, S., Petersen, K.: The speed of convergence in the ergodic theorem. Monat. Mathematik 91, 11–18 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Khasminski, R., Krylov, N.: On averaging principle for diffusion processes with null-recurrent fast component. Stoch Proc. Appl. 93, 229–240 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Krengel, U.: On the speed of convergence of the ergodic theorem. Monat. Mathematik 86, 3–6 (1978)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kulik, A.: Exponential ergodicity of the solutions of SDEs with a jump noise. Stoch. Proc. Appl. 119, 602–632 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kunita, H.: Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms. In: Rao, M.M. (ed.) Real and Stochastic Analysis, pp. 305–373. Birkhäuser, Basel (2004)CrossRefGoogle Scholar
  19. 19.
    Kurtz, T.G., Pardoux, E., Protter, Ph.: Stratonovich stochastic differential equations driven by general semimartingales. Ann. lH.I.P. Sect. B 31(2), 351–377 (1995)Google Scholar
  20. 20.
    Li, X.-M.: An averaging principle for a completely integrable stochastic Hamiltonian systems. Nonlinearity 21, 803–822 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Namachchvaya, S., Sowers, R.: Rigorous stochastic averaging at a center with additive noise. Meccanica 37, 85–114 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63(1), 20–63 (1956)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pachpatte, B.G.: Inequalities for Differential and Integral Equations. Academic, San Diego (1998)zbMATHGoogle Scholar
  24. 24.
    Protter, Ph.: Stochastic Integration and Differential Equations. Springer, Berlin (2004)zbMATHGoogle Scholar
  25. 25.
    Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, 2nd edn. Springer, Berlin (2007)zbMATHGoogle Scholar
  26. 26.
    Sato, K.-I.: Lévy processes and infinitely divisible distributions. Probab. Theory Relat. Fields 111, 287321 (1998)Google Scholar
  27. 27.
    Sowers, R.: Stochastic averaging with a flattened Hamiltonian: a Markov process on a stratified space (a whiskered sphere). Trans. Am. Math. Soc. 354, 853–900 (2002)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Tondeur, P.: Foliations on Riemannian Manifolds. Universitext. Springer, Berlin (1988)CrossRefGoogle Scholar
  29. 29.
    Volsov, V.M.: Some types of calculation connected with averaging in the theory of non-linear vibrations. USSR Comput. Math. Math. Phys. 3(1), 1–64 (1962)CrossRefGoogle Scholar
  30. 30.
    Volsov, V.M., Morgunov, B.I.: Methods of calculating stationary resonance vibrational and rotational motions of certain non-linear systems. USSR Comput. Math. Math. Phys. 8(2), 1–62 (1968)CrossRefGoogle Scholar
  31. 31.
    Walcak, P.: Dynamics of Foliations, Groups and Pseudogroups. Birkhäuser, Basel (2004)Google Scholar
  32. 32.
    Xu, Y., Duan, J., Xu, W.: An averaging principle for stochastic dynamical systems with Lvy noise. Physica D 240, 1395–1401 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Paulo Henrique da Costa
    • 1
  • Michael A. Högele
    • 2
    Email author
  • Paulo Regis Ruffino
    • 3
  1. 1.Departamento de MatemáticaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Departamento de MatemáticasUniversidad de los AndesBogotáColombia
  3. 3.IMECCUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations