Convergence Almost Everywhere of Orthorecursive Expansions in Systems of Translates and Dilates

  • Vladimir V. Galatenko
  • Taras P. Lukashenko
  • Victor A. Sadovnichiy
Part of the Understanding Complex Systems book series (UCS)


Systems of translates and dilates have been widely studied in the last decades. In particular, V.I. Filippov and P. Oswald obtained conditions on a generating function which guarantee that dyadic translates and dilates of this function form a representation system in Lp[0, 1]. A.Yu. Kudryavtsev and A.V. Politov showed that under a slightly harder condition on a generating function each element f ∈ L2[0, 1] is represented by its orthorecursive expansion in this system. Here we continue studying orthorecursive expansions in systems of dyadic translates and dilates and present results on convergence almost everywhere of these expansions.



The authors thank Dr. Alexey Galatenko for valuable comments and discussions. The research was supported by the Russian Federation Government Grant No. 14.W03.31.0031.


  1. 1.
    Novikov, I.Ya., Protasov, V.Yu., Skopina, M.A.: Wavelet Theory. American Mathematical Society, Providence (2011)Google Scholar
  2. 2.
    Akansu, A.N., Serdijn, W.A., Selesnick, I.W.: Emerging applications of wavelets: a review. Phys. Commun. 3(1), 1–18 (2010)CrossRefGoogle Scholar
  3. 3.
    Filippov, V.I., Oswald, P.: Representation in L p by series of translates and dilates of one function. J. Approx. Theory 82(1), 15–29 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Politov, A.V.: Orthorecursive expansions in Hilbert spaces. Mosc. Univ. Math. Bull. 65(3), 95–99 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lukashenko, T.P.: Properties of orthorecursive expansions in nonorthogonal systems. Mosc. Univ. Math. Bull. 56(1), 5–9 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Temlyakov, V.N.: Weak greedy algorithms. Adv. Comput. Math. 12(2–3), 213–227 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Temlyakov, V.: Greedy Algorithms. Cambridge University Press, New York (2011)zbMATHGoogle Scholar
  8. 8.
    Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)CrossRefGoogle Scholar
  9. 9.
    Friedman, J.H., Stuetzle, W.: Projection pursuit regression. J. Am. Stat. Assoc. 76, 817–823 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Galatenko, V.V., Lukashenko, T.P., Sadovnichiy, V.A.: Convergence almost everywhere of orthorecursive expansions in functional systems. In: Sadovnichiy, V., Zgurovsky, M. (eds.) Advances in Dynamical Systems and Control. Studies in Systems, Decision and Control, vol. 69. Springer, Cham (2016)zbMATHGoogle Scholar
  11. 11.
    Kolmogorov, A.N., Fomin S.V.: Introductory Real Analysis. Dover Publications, New York (1975)Google Scholar
  12. 12.
    Galatenko, V.V.: On the orthorecursive expansion with respect to a certain function system with computational errors in the coefficients. Mat. Sb. 195(7), 935–949 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Vladimir V. Galatenko
    • 1
  • Taras P. Lukashenko
    • 1
  • Victor A. Sadovnichiy
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations