Chemical and Physical Effects of Acoustic Bubbles

  • Kenji OkitsuEmail author
  • Francesca Cavalieri
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


During acoustic cavitation which comprises sequence of nucleation, growth, and collapse of bubbles, physical effects due to shockwaves, micro-jets, strong micro-stirring, etc. are produced. In addition, when bubbles were adiabatically collapsed, the temperature and pressure in collapsing bubbles attained extreme high temperature and high pressure which cause high-temperature reactions in gas and/or liquid phases of the bubble interface. Various types of radicals are also formed by the pyrolysis of solutes and/or solvents. In this chapter, chemical and physical effects of acoustic cavitation are introduced to understand characteristics of the bubbles formed.


High temperature High pressure Pyrolysis Radical reaction Shockwave Micro-jet Strong micro-stirring 


  1. 1.
    R. Tronson, M. Ashokkumar, F. Grieser, Comparison of the effects of water-soluble solutes on multibubble sonoluminescence generated in aqueous solutions by 20- and 515-kHz pulsed ultrasound. J. Phys. Chem. B 106, 11064–11068 (2002)CrossRefGoogle Scholar
  2. 2.
    K.R. Weninger, C.G. Camara, S.J. Putterman, Observation of bubble dynamics within luminescent cavitation clouds: sonoluminescence at the nano-scale. Phys. Rev. E 63, 016310 (2001)CrossRefGoogle Scholar
  3. 3.
    K. Yasui, T. Tuziuti, J. Lee, T. Kozuka, A. Towata, Y. Iida, The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J. Chem. Phys. 128, 184705 (2008)CrossRefPubMedGoogle Scholar
  4. 4.
    K. Yasui, Acoustic Cavitation and Bubble Dynamics, Ultrasound and Sonochemistry (Springer Briefs in Molecular Science, Springer, 2018)CrossRefGoogle Scholar
  5. 5.
    E.A. Neppiras, Acoustic cavitation. Phys. Rep. 61, 159–251 (1980)CrossRefGoogle Scholar
  6. 6.
    Kagaku-binran, II-233-234. Ed by The Chemical Society of Japan, Maruzen, Japan (1993)Google Scholar
  7. 7.
    C. Sehgal, R.P. Steer, R.G. Sutherland, R.E. Verrall, Sonoluminescence of argon saturated alkali metal salt solutions as a probe of acoustic cavitation. J. Chem. Phys. 70, 2242–2248 (1979)CrossRefGoogle Scholar
  8. 8.
    D. Peters, Ultrasound in materials chemistry. J. Mater. Chem. 6, 1605–1618 (1996)CrossRefGoogle Scholar
  9. 9.
    T. Tuziuti, S. Hatanaka, K. Yasui, T. Kozuka, H. Mitome, Effect of ambient-pressure reduction on multibubble sonochemiluminescence. J. Chem. Phys. 116, 6221–6227 (2002)Google Scholar
  10. 10.
    K. Okitsu, T. Suzuki, N. Takenaka, H. Bandow, R. Nishimura, Y. Maeda, Acoustic multi-bubble cavitation in water: a new aspect of the effect of rare gas atmosphere on bubble temperature and its relevance to sonochemistry. J. Phys. Chem. B 110, 20081–20084 (2006)CrossRefPubMedGoogle Scholar
  11. 11.
    Kagaku-binran, II-234-235. Ed by The Chemical Society of Japan, Maruzen, Japan (1993)Google Scholar
  12. 12.
    Kagaku-binran, II-66. Ed by The Chemical Society of Japan, Maruzen, Japan (1993)Google Scholar
  13. 13.
    Kagaku-binran, II-156-157. Ed by The Chemical Society of Japan, Maruzen, Japan (1993)Google Scholar
  14. 14.
    K.S. Suslick, R.E. Cline, D.A. Hammerton, The Sonochemical Hot Spot. J. Am. Chem. Soc. 108, 5641–5642 (1986)CrossRefGoogle Scholar
  15. 15.
    V. Misik, N. Miyoshi, P. Riesz, EPR spin-trapping study of the sonolysis of H2O/D2O mixtures: Probing the temperatures of cavitation regions. J. Phys. Chem. 99, 3605–3611 (1995)CrossRefGoogle Scholar
  16. 16.
    B.E. Nolingk, E.A. Nepprias, Cavitation produced by Ultrasonics. Proc. Phys. Soc. B 63B, 674–684 (1950)CrossRefGoogle Scholar
  17. 17.
    E.J. Hart, A. Henglein, Sonolytic decomposition of nitrous oxide in aqueous solution. J. Phys. Chem. 90, 5992–5995 (1986)CrossRefGoogle Scholar
  18. 18.
    E.J. Hart, C.-H. Fischer, A. Henglein, Sonolysis of hydrocarbons in aqueous solution. Radiat. Phys. Chem. 36, 511–516 (1990)Google Scholar
  19. 19.
    J.B. Jeffries, R.A. Copeland, E.B. Flint, K.S. Suslick, Thermal equilibration during cavitation. Science 256, 248 (1992)CrossRefPubMedGoogle Scholar
  20. 20.
    K.S. Suslick, K.A. Kemper, Pressure measurements during acoustic cavitation by sonoluminescence, in Bubble Dynamics and Interface Phenomena, ed. by J.R. Blake (Kluwer, Dordrecht, Netherlands, 1994), pp. 311–320CrossRefGoogle Scholar
  21. 21.
    V. Misik, P. Riesz, EPR study of free radicals induced by ultrasound in organic liquids II. Probing the temperatures of cavitation regions. Ultrason. Sonochem. 3, 25–37 (1996)CrossRefGoogle Scholar
  22. 22.
    A. Tauber, G. Mark, H.-P. Schuchmann, C. von Sonntag, Sonolysis of tert-butyl alcohol in aqueous solution. J. Chem. Soc., Perkin Trans. 2, 1129–1135 (1999)CrossRefGoogle Scholar
  23. 23.
    M. Ashokkumar, F. Grieser, A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles. J. Am. Chem. Soc. 127, 5326–5327 (2005)CrossRefPubMedGoogle Scholar
  24. 24.
    N.C. Eddingsaas, K.S. Suslick, Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. J. Am. Chem. Soc. 129, 3838–3839 (2007)CrossRefPubMedGoogle Scholar
  25. 25.
    T. Kimura, T. Sakamoto, J.-M. Leveque, H. Sohmiya, M. Fujita, S. Ikeda, T. Ando, Standardization of ultrasonic power for sonochemical reaction. Ultrason. Sonochem. 3, S157–S161 (1996)CrossRefGoogle Scholar
  26. 26.
    K. Makino, M.M. Mossoba, P. Riesz, Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J. Phys. Chem. 87, 1369 (1983)CrossRefGoogle Scholar
  27. 27.
    X. Fang, G. Mark, C. von Sonntag, OH radical formation by ultrasound in aqueous solutions. Part I: The chemistry underlying the terephthalate dosimeter. Ultrason. Sonochem. 3, 57–63 (1996)Google Scholar
  28. 28.
    A.K. Jana, S.N. Chatterjee, Estimation of hydroxyl free radicals produced by ultrasound in Fricke solution used as a chemical dosimeter. Ultrason. Sonochem. 2, S87–S91 (1995)CrossRefGoogle Scholar
  29. 29.
    E.J. Hart, A. Henglein, Free radical and free atom reactions in the sonolysis of aqueous iodide and formate solutions. J. Phys. Chem. 89, 4342–4347 (1985)CrossRefGoogle Scholar
  30. 30.
    H. Nomura, S. Koda, K. Yasuda, Y. Kojima, Quantification of ultrasonic intensity based on the decomposition reaction of porphyrin. Ultrason. Sonochem. 3, S153–156 (1996)CrossRefGoogle Scholar
  31. 31.
    C.A. Wakeford, R. Blackburn, P.D. Lickiss, Effect of ionic strength on the acoustic generation of nitrite, nitrate and hydrogen peroxide. Ultrason. Sonochem. 6, 141–148 (1999)Google Scholar
  32. 32.
    V. Misik, P. Riesz, Nitric oxide formation by ultrasound in aqueous solutions. J. Phys. Chem. 100, 17986–17994 (1996)CrossRefGoogle Scholar
  33. 33.
    J. Berlan, T.J. Mason, Sonochemistry: from research laboratories to industrial plants. Ultrasonics 30, 203–212 (1992)CrossRefGoogle Scholar
  34. 34.
    S. Koda, T. Kimura, T. Kondo, H. Mitome, A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrasonics Sonochem. 10, 149 (2003)CrossRefGoogle Scholar
  35. 35.
    T. Tuziuti, K. Yasui, Y. Iida, Spatial study on a multibubble system for sonochemistry by laser-light scattering. Ultrasonics Sonochem. 12, 73–77 (2005)CrossRefGoogle Scholar
  36. 36.
    T. Kozuka, S. Hatanaka, K. Yasui, H. Mitome, Observation of a Sonoluminescing bubble using a stroboscope. Jpn. J. Appl. Phys. 39-1-5-B, 2967 (2000)Google Scholar
  37. 37.
    A. Henglein, M. Gutierrez, Sonochemistry and sonoluminescence: effects of external pressure. J. Phys. Chem. 97, 158–162 (1993)CrossRefGoogle Scholar
  38. 38.
    Y. Asakura, T. Nishida, T. Matsuoka, S. Koda, Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors. Ultrason. Sonochem. 15, 244–250 (2008)Google Scholar
  39. 39.
    A. Henglein, C. Kormann, Scavenging of OH radicals produced in the sonolysis of water. Int. J. Radiat. Biol. 48, 251–258 (1985)Google Scholar
  40. 40.
    M. Ashokkumar, F. Grieser, Single bubble sonoluminescence—a chemist’s overview. Chem. Phys. Chem. 5, 439–448 (2004)CrossRefPubMedGoogle Scholar
  41. 41.
    K. Okitsu, M. Iwatani, K. Okano, M.H. Uddin, R. Nishimura, Mechanism of sonochemical reduction of permanganate to manganese dioxide in aqueous alcohol solutions: reactivities of reducing species formed by alcohol sonolysis. Ultrason. Sonochem. 31, 456–462 (2016)CrossRefPubMedGoogle Scholar
  42. 42.
    A. Henglein, C. Kormann, Scavenging of OH radicals produced in the sonolysis of water. Int. J. Radiat. Biology 48, 251–258 (1985)Google Scholar
  43. 43.
    A.E. Alegria, Y. Lion, T. Kondo, P. Riesz, Sonolysis of aqueous surfactant solutions: probing the interfacial region of cavitation bubbles by spin trapping. J. Phys. Chem. 93, 4908–4913 (1989)CrossRefGoogle Scholar
  44. 44.
    J.Z. Sostaric, P. Mulvaney, F. Grieser, Sonochemical dissolution of MnO2 colloids. J. Chem. Soc. Faraday Trans. 91, 2843–2846 (1995)CrossRefGoogle Scholar
  45. 45.
    B. Yim, H. Okuno, Y. Nagata, R. Nishimura, Y. Maeda, Sonolysis of surfactants in aqueous solutions: an accumulation of solute in the interfacial region of the cavitation bubbles. Ultrason. Sonochem. 9, 209–213 (2002)CrossRefPubMedGoogle Scholar
  46. 46.
    G.J. Price, M. Ashokkumar, F. Grieser, Sonoluminescence quenching of organic compounds in aqueous solution: frequency effects and implications for sonochemistry. J. Am. Chem. Soc. 126, 2755–2762 (2004)CrossRefPubMedGoogle Scholar
  47. 47.
    K. Okitsu, K. Iwasaki, Y. Yobiko, H. Bandow, R. Nishimura, Y. Maeda, Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason. Sonochem. 12, 255–262 (2005)CrossRefPubMedGoogle Scholar
  48. 48.
    B. Nanzai, K. Okitsu, N. Takenaka, H. Bandow, Y. Maeda, Sonochemical degradation of various monocyclic aromatic compounds: relation between hydrophobicities of organic compounds and the decomposition rates. Ultrason. Sonochem. 15, 478–483 (2008)CrossRefPubMedGoogle Scholar
  49. 49.
    K.S. Suslick, J.J. Gawlenowski, P.F. Schubert, H.H. Wang, Alkane sonochemistry. J. Phys. Chem. 87, 2299–2301 (1983)CrossRefGoogle Scholar
  50. 50.
    K. Okitsu, H. Nakamura, N. Takenaka, H. Bandow, Y. Maeda, Y. Nagata, Sonochemical reactions occurring in organic solvents: reaction kinetics and reaction site of radical trapping with 1,1-Diphenyl-2-Picrylhydrazyl. Res. Chem. Intermediates 30, 763–774 (2004)CrossRefGoogle Scholar
  51. 51.
    Y. Mizukoshi, H. Nakamura, H. Bandow, Y. Maeda, Y. Nagata, Sonolysis of organic liquid: effect of vapour pressure and evaporation rate. Ultrasonics Sonochem. 6, 203–209 (1999)CrossRefGoogle Scholar
  52. 52.
    M. Atobe, T. Nonaka, Ultrasonic effects on electro organic processes. Cavitation threshold values of ultrasound-oscillating power, Chem. Lett. 323–324 (1997)Google Scholar
  53. 53.
    T. Tuziuti, K. Yasui, M. Sivakumar, Y. Iida, N. Miyoshi, Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J. Phys. Chem. A 109, 4869–4872 (2005)CrossRefPubMedGoogle Scholar
  54. 54.
    Y. Iida, T. Tuziuti, K. Yasui, T. Kozuka, A. Towata, Protein release from yeast cells as an evaluation method of physical effects in ultrasonic field. Ultrason. Sonochem. 15, 995–1000 (2008)CrossRefPubMedGoogle Scholar
  55. 55.
    K. Yamamoto, P.M. King, X. Wu, T.J. Mason, E.M. Joyce, Effect of ultrasonic frequency and power on the disruption of algal cells. Ultrason. Sonochem. 24, 165–171 (2015)CrossRefPubMedGoogle Scholar
  56. 56.
    G. Portenlanger, H. Heusinger, The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes. Ultrason. Sonochem. 4, 127–130 (1997)CrossRefPubMedGoogle Scholar
  57. 57.
    S. Koda, K. Taguchi, K. Futamura, Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers. Ultrason. Sonochem. 18, 276–281 (2011)CrossRefPubMedGoogle Scholar
  58. 58.
    L.T. Thanh, K. Okitsu, Y. Sadanaga, N. Takenaka, Y. Maeda, H. Bandow, A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Bioresour. Technol. 101, 5394–5401 (2010)CrossRefGoogle Scholar
  59. 59.
    K.S. Suslick, S.J. Doktycz, The sonochemistry of Zn powder. J. Am. Chem. Soc. 111, 2342–2344 (1989)CrossRefGoogle Scholar
  60. 60.
    H.-M. Hung, M.R. Hoffmann, Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound. Environ. Sci. Technol. 32, 3011–3016 (1998)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Humanities and Sustainable System SciencesOsaka Prefecture UniversityOsakaJapan
  2. 2.Department of Chemical EngineeringThe University of MelbourneParkvilleAustralia

Personalised recommendations