Advertisement

ROS Integration for Miniature Mobile Robots

  • Andrew WestEmail author
  • Farshad Arvin
  • Horatio Martin
  • Simon Watson
  • Barry Lennox
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10965)

Abstract

In this paper, the feasibility of using the Robot Operating System (ROS) for controlling miniature size mobile robots was investigated. Open-source and low-cost robots employ limited processors, hence running ROS on such systems is very challenging. Therefore, we provide a compact, low-cost, and open-source module enabling miniature multi and swarm robotic systems of different sizes and types to be integrated with ROS. To investigate the feasibility of the proposed system, several experiments using a single robot and multi-robots were implemented and the results demonstrated the amenability of the system to be integrated in low-cost and open-source miniature size mobile robots.

Keywords

Robot Operating System (ROS) Mobile robots Swarm robotics Communication 

Notes

Acknowledgement

This work was supported by the EPSRC Projects (Project No. EP/P01366X/1 and Project No. EP/P018505/1).

References

  1. 1.
    Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)Google Scholar
  2. 2.
    Foote, T.: TF: the transform library. In: 2013 IEEE International Conference on Technologies for Practical Robot Applications (TePRA). Open-Source Software Workshop, pp. 1–6, April 2013Google Scholar
  3. 3.
    Kam, H.R., Lee, S.H., Park, T., Kim, C.H.: RViz: a toolkit for real domain data visualization. Telecommun. Syst. 60(2), 337–345 (2015)CrossRefGoogle Scholar
  4. 4.
    Guimarães, R.L., de Oliveira, A.S., Fabro, J.A., Becker, T., Brenner, V.A.: ROS navigation: concepts and tutorial. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 625, pp. 121–160. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-26054-9_6CrossRefGoogle Scholar
  5. 5.
    Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-319-74528-2CrossRefGoogle Scholar
  6. 6.
    Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for heterogeneous swarm robotics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, October 2016Google Scholar
  7. 7.
    Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)CrossRefGoogle Scholar
  8. 8.
    Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V., Mondada, F.: ASEBA: a modular architecture for event-based control of complex robots. IEEE/ASME Trans. Mechatron. 16(2), 321–329 (2011)CrossRefGoogle Scholar
  9. 9.
    Michel, O.: Cyberbotics ltd. Webots™: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 5 (2004)CrossRefGoogle Scholar
  10. 10.
    Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competition, vol. 1, pp. 59–65 (2009)Google Scholar
  11. 11.
    Mondada, F., Franzi, E., Ienne, P.: Mobile robot miniaturisation: a tool for investigation in control algorithms. In: Yoshikawa, T., Miyazaki, F. (eds.) Experimental Robotics III. LNCIS, vol. 200, pp. 501–513. Springer, Heidelberg (1994).  https://doi.org/10.1007/BFb0027617CrossRefGoogle Scholar
  12. 12.
    Caprari, G., Siegwart, R.: Mobile micro-robots ready to use: Alice. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3295–3300. IEEE (2005)Google Scholar
  13. 13.
    Kernbach, S., Thenius, R., Kernbach, O., Schmickl, T.: Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system. Adapt. Behav. 17(3), 237–259 (2009)CrossRefGoogle Scholar
  14. 14.
    Arvin, F., Murray, J., Zhang, C., Yue, S.: Colias: an autonomous micro robot for swarm robotic applications. Int. J. Adv. Robot. Syst. 11(113), 1–10 (2014)Google Scholar
  15. 15.
    Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D., Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: Swarm-bot: a new distributed robotic concept. Auton. Robots 17(2–3), 193–221 (2004)CrossRefGoogle Scholar
  16. 16.
    Hilder, J., Horsfield, A., Millard, A.G., Timmis, J.: The psi swarm: a low-cost robotics platform and its use in an education setting. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016. LNCS (LNAI), vol. 9716, pp. 158–164. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40379-3_16CrossRefGoogle Scholar
  17. 17.
    Bonani, M., et al.: The marxbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4187–4193. IEEE (2010)Google Scholar
  18. 18.
    Fernandes, A., Couceiro, M.S., Portugal, D., Santos, J.M., Rocha, R.P.: Ad hoc communication in teams of mobile robots using zigbee technology. Comput. Appl. Eng. Educ. 23(5), 733–745 (2015)CrossRefGoogle Scholar
  19. 19.
    Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost robot with scalable operations designed for collective behaviors. Robot. Auton. Syst. 62(7), 966–975 (2014)CrossRefGoogle Scholar
  20. 20.
    McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speaking swarmish: human-robot interface design for large swarms of autonomous mobile robots. In: AAAI Spring Symposium (2006)Google Scholar
  21. 21.
    Araújo, A., Portugal, D., Couceiro, M.S., Rocha, R.P.: Integrating arduino-based educational mobile robots in ROS. J. Intell. Robot. Syst. 77(2), 281–298 (2014)CrossRefGoogle Scholar
  22. 22.
    Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., Lennox, B.: Mona: an affordable open-source mobile robot for education and research. J. Intell. Robot. Syst. (2018)Google Scholar
  23. 23.
    Arvin, F., Samsudin, K., Ramli, A.R.: Development of IR-based short-range communication techniques for swarm robot applications. Adv. Electr. Comput. Eng. 10(4), 61–68 (2010)CrossRefGoogle Scholar
  24. 24.
    Arvin, F., Bekravi, M.: Encoderless position estimation and error correction techniques for miniature mobile robots. Turk. J. Electr. Eng. Comput. Sci. 21, 1631–1645 (2013)CrossRefGoogle Scholar
  25. 25.
    Arvin, F., Watson, S., Turgut, A.E., Espinosa, J., Krajník, T., Lennox, B.: Perpetual robot swarm: long-term autonomy of mobile robots using on-the-fly inductive charging. J. Intell. Robot. Syst. (2017)Google Scholar
  26. 26.
    Arvin, F., Turgut, A.E., Krajník, T., Yue, S.: Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adapt. Behav. 24(2), 102–118 (2016)CrossRefGoogle Scholar
  27. 27.
    Schmickl, T., et al.: Get in touch: cooperative decision making based on robot-to-robot collisions. Auton. Agents Multi-Agent Syst. 18(1), 133–155 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andrew West
    • 1
    Email author
  • Farshad Arvin
    • 1
  • Horatio Martin
    • 1
  • Simon Watson
    • 1
  • Barry Lennox
    • 1
  1. 1.Robotics for Extreme Environments Lab (REEL), School of Electrical and Electronic EngineeringThe University of ManchesterManchesterUK

Personalised recommendations