ROS Integration for Miniature Mobile Robots
- 5 Citations
- 1.4k Downloads
Abstract
In this paper, the feasibility of using the Robot Operating System (ROS) for controlling miniature size mobile robots was investigated. Open-source and low-cost robots employ limited processors, hence running ROS on such systems is very challenging. Therefore, we provide a compact, low-cost, and open-source module enabling miniature multi and swarm robotic systems of different sizes and types to be integrated with ROS. To investigate the feasibility of the proposed system, several experiments using a single robot and multi-robots were implemented and the results demonstrated the amenability of the system to be integrated in low-cost and open-source miniature size mobile robots.
Keywords
Robot Operating System (ROS) Mobile robots Swarm robotics CommunicationNotes
Acknowledgement
This work was supported by the EPSRC Projects (Project No. EP/P01366X/1 and Project No. EP/P018505/1).
References
- 1.Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)Google Scholar
- 2.Foote, T.: TF: the transform library. In: 2013 IEEE International Conference on Technologies for Practical Robot Applications (TePRA). Open-Source Software Workshop, pp. 1–6, April 2013Google Scholar
- 3.Kam, H.R., Lee, S.H., Park, T., Kim, C.H.: RViz: a toolkit for real domain data visualization. Telecommun. Syst. 60(2), 337–345 (2015)CrossRefGoogle Scholar
- 4.Guimarães, R.L., de Oliveira, A.S., Fabro, J.A., Becker, T., Brenner, V.A.: ROS navigation: concepts and tutorial. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 625, pp. 121–160. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9_6CrossRefGoogle Scholar
- 5.Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-74528-2CrossRefGoogle Scholar
- 6.Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for heterogeneous swarm robotics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, October 2016Google Scholar
- 7.Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)CrossRefGoogle Scholar
- 8.Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V., Mondada, F.: ASEBA: a modular architecture for event-based control of complex robots. IEEE/ASME Trans. Mechatron. 16(2), 321–329 (2011)CrossRefGoogle Scholar
- 9.Michel, O.: Cyberbotics ltd. Webots™: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 5 (2004)CrossRefGoogle Scholar
- 10.Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competition, vol. 1, pp. 59–65 (2009)Google Scholar
- 11.Mondada, F., Franzi, E., Ienne, P.: Mobile robot miniaturisation: a tool for investigation in control algorithms. In: Yoshikawa, T., Miyazaki, F. (eds.) Experimental Robotics III. LNCIS, vol. 200, pp. 501–513. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0027617CrossRefGoogle Scholar
- 12.Caprari, G., Siegwart, R.: Mobile micro-robots ready to use: Alice. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3295–3300. IEEE (2005)Google Scholar
- 13.Kernbach, S., Thenius, R., Kernbach, O., Schmickl, T.: Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system. Adapt. Behav. 17(3), 237–259 (2009)CrossRefGoogle Scholar
- 14.Arvin, F., Murray, J., Zhang, C., Yue, S.: Colias: an autonomous micro robot for swarm robotic applications. Int. J. Adv. Robot. Syst. 11(113), 1–10 (2014)Google Scholar
- 15.Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D., Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: Swarm-bot: a new distributed robotic concept. Auton. Robots 17(2–3), 193–221 (2004)CrossRefGoogle Scholar
- 16.Hilder, J., Horsfield, A., Millard, A.G., Timmis, J.: The psi swarm: a low-cost robotics platform and its use in an education setting. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016. LNCS (LNAI), vol. 9716, pp. 158–164. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40379-3_16CrossRefGoogle Scholar
- 17.Bonani, M., et al.: The marxbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4187–4193. IEEE (2010)Google Scholar
- 18.Fernandes, A., Couceiro, M.S., Portugal, D., Santos, J.M., Rocha, R.P.: Ad hoc communication in teams of mobile robots using zigbee technology. Comput. Appl. Eng. Educ. 23(5), 733–745 (2015)CrossRefGoogle Scholar
- 19.Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost robot with scalable operations designed for collective behaviors. Robot. Auton. Syst. 62(7), 966–975 (2014)CrossRefGoogle Scholar
- 20.McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speaking swarmish: human-robot interface design for large swarms of autonomous mobile robots. In: AAAI Spring Symposium (2006)Google Scholar
- 21.Araújo, A., Portugal, D., Couceiro, M.S., Rocha, R.P.: Integrating arduino-based educational mobile robots in ROS. J. Intell. Robot. Syst. 77(2), 281–298 (2014)CrossRefGoogle Scholar
- 22.Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., Lennox, B.: Mona: an affordable open-source mobile robot for education and research. J. Intell. Robot. Syst. (2018)Google Scholar
- 23.Arvin, F., Samsudin, K., Ramli, A.R.: Development of IR-based short-range communication techniques for swarm robot applications. Adv. Electr. Comput. Eng. 10(4), 61–68 (2010)CrossRefGoogle Scholar
- 24.Arvin, F., Bekravi, M.: Encoderless position estimation and error correction techniques for miniature mobile robots. Turk. J. Electr. Eng. Comput. Sci. 21, 1631–1645 (2013)CrossRefGoogle Scholar
- 25.Arvin, F., Watson, S., Turgut, A.E., Espinosa, J., Krajník, T., Lennox, B.: Perpetual robot swarm: long-term autonomy of mobile robots using on-the-fly inductive charging. J. Intell. Robot. Syst. (2017)Google Scholar
- 26.Arvin, F., Turgut, A.E., Krajník, T., Yue, S.: Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adapt. Behav. 24(2), 102–118 (2016)CrossRefGoogle Scholar
- 27.Schmickl, T., et al.: Get in touch: cooperative decision making based on robot-to-robot collisions. Auton. Agents Multi-Agent Syst. 18(1), 133–155 (2009)MathSciNetCrossRefGoogle Scholar