Advertisement

EGFR Trafficking in Physiology and Cancer

  • Giusi Caldieri
  • Maria Grazia Malabarba
  • Pier Paolo Di Fiore
  • Sara Sigismund
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 57)

Abstract

Signaling from the epidermal growth factor receptor (EGFR) elicits multiple biological responses, including cell proliferation, migration, and survival. Receptor endocytosis and trafficking are critical physiological processes that control the strength, duration, diversification, and spatial restriction of EGFR signaling through multiple mechanisms, which we review in this chapter. These mechanisms include: (i) regulation of receptor density and activation at the cell surface; (ii) concentration of receptors into distinct nascent endocytic structures; (iii) commitment of the receptor to different endocytic routes; (iv) endosomal sorting and postendocytic trafficking of the receptor through distinct pathways, and (v) recycling to restricted regions of the cell surface. We also highlight how communication between organelles controls EGFR activity along the endocytic route. Finally, we illustrate how abnormal trafficking of EGFR oncogenic mutants, as well as alterations of the endocytic machinery, contributes to aberrant EGFR signaling in cancer.

Notes

Acknowledgements

We thank Rosalind Gunby for critically reading the manuscript. This work was supported by grants from the Associazione Italiana per la Ricerca sul Cancro to PPDF (IG 14404 and MCO 10.000); MIUR (the Italian Ministry of University and Scientific Research), the Italian Ministry of Health, and The Monzino Foundation to PPDF; and the WWCR (Worldwide Cancer Research) to SS (16-1245).

References

  1. Acconcia F, Sigismund S, Polo S (2009) Ubiquitin in trafficking: the network at work. Exp Cell Res 315(9):1610–1618.  https://doi.org/10.1016/j.yexcr.2008.10.014CrossRefPubMedGoogle Scholar
  2. Allanson JE (2007) Noonan syndrome. Am J Med Genet C Semin Med Genet 145C(3):274–279.  https://doi.org/10.1002/ajmg.c.30138CrossRefPubMedGoogle Scholar
  3. Anastasi S, Baietti MF, Frosi Y, Alema S, Segatto O (2007) The evolutionarily conserved EBR module of RALT/MIG6 mediates suppression of the EGFR catalytic activity. Oncogene 26(57):7833–7846.  https://doi.org/10.1038/sj.onc.1210590CrossRefPubMedGoogle Scholar
  4. Antonny B, Burd C, De Camilli P, Chen E, Daumke O, Faelber K, Ford M, Frolov VA, Frost A, Hinshaw JE, Kirchhausen T, Kozlov MM, Lenz M, Low HH, McMahon H, Merrifield C, Pollard TD, Robinson PJ, Roux A, Schmid S (2016) Membrane fission by dynamin: what we know and what we need to know. EMBO J 35(21):2270–2284.  https://doi.org/10.15252/embj.201694613CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arteaga CL, Engelman JA (2014) ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25(3):282–303.  https://doi.org/10.1016/j.ccr.2014.02.025CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arteaga CL, Ramsey TT, Shawver LK, Guyer CA (1997) Unliganded epidermal growth factor receptor dimerization induced by direct interaction of quinazolines with the ATP binding site. J Biol Chem 272(37):23247–23254CrossRefGoogle Scholar
  7. Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12(2):104–117.  https://doi.org/10.1038/nrm3048CrossRefPubMedGoogle Scholar
  8. Bache KG, Brech A, Mehlum A, Stenmark H (2003) Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J Cell Biol 162(3):435–442.  https://doi.org/10.1083/jcb.200302131CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bao J, Gur G, Yarden Y (2003) Src promotes destruction of c-Cbl: implications for oncogenic synergy between Src and growth factor receptors. Proc Natl Acad Sci U S A 100(5):2438–2443.  https://doi.org/10.1073/pnas.0437945100CrossRefPubMedPubMedCentralGoogle Scholar
  10. Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G (1996) All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 271(9):5251–5257CrossRefGoogle Scholar
  11. Baumdick M, Bruggemann Y, Schmick M, Xouri G, Sabet O, Davis L, Chin JW, Bastiaens PI (2015) EGF-dependent re-routing of vesicular recycling switches spontaneous phosphorylation suppression to EGFR signaling. Elife 4.  https://doi.org/10.7554/elife.12223
  12. Beattie EC, Zhou J, Grimes ML, Bunnett NW, Howe CL, Mobley WC (1996) A signaling endosome hypothesis to explain NGF actions: potential implications for neurodegeneration. Cold Spring Harb Symp Quant Biol 61:389–406CrossRefGoogle Scholar
  13. Belleudi F, Leone L, Maggio M, Torrisi MR (2009) Hrs regulates the endocytic sorting of the fibroblast growth factor receptor 2b. Exp Cell Res 315(13):2181–2191.  https://doi.org/10.1016/j.yexcr.2009.03.022CrossRefPubMedGoogle Scholar
  14. Bjorkelund H, Gedda L, Barta P, Malmqvist M, Andersson K (2011) Gefitinib induces epidermal growth factor receptor dimers which alters the interaction characteristics with (1)(2)(5)I-EGF. PLoS ONE 6(9):e24739.  https://doi.org/10.1371/journal.pone.0024739CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bou-Assaly W, Mukherji S (2010) Cetuximab (erbitux). AJNR Am J Neuroradiol 31(4):626–627.  https://doi.org/10.3174/ajnr.A2054CrossRefPubMedGoogle Scholar
  16. Boucrot E, Ferreira AP, Almeida-Souza L, Debard S, Vallis Y, Howard G, Bertot L, Sauvonnet N, McMahon HT (2015) Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517(7535):460–465.  https://doi.org/10.1038/nature14067CrossRefPubMedPubMedCentralGoogle Scholar
  17. Caldieri G, Barbieri E, Nappo G, Raimondi A, Bonora M, Conte A, Verhoef LGGC, Confalonieri S, Malabarba MG, Bianchi F, Cuomo A, Bonaldi T, Martini E, Mazza D, Pinton P, Tacchetti C, Polo S, Di Fiore PP, Sigismund S (2017) Reticulon 3-dependent ER-PM contact sites control EGFR nonclathrin endocytosis. Science 356(6338):617–624.  https://doi.org/10.1126/science.aah6152CrossRefPubMedPubMedCentralGoogle Scholar
  18. Caligiuri MA, Briesewitz R, Yu J, Wang L, Wei M, Arnoczky KJ, Marburger TB, Wen J, Perrotti D, Bloomfield CD, Whitman SP (2007) Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood 110(3):1022–1024.  https://doi.org/10.1182/blood-2006-12-061176CrossRefPubMedPubMedCentralGoogle Scholar
  19. Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C, Tacchetti C, Persani L, Lohse MJ (2009) Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 7(8):e1000172.  https://doi.org/10.1371/journal.pbio.1000172
  20. Capuani F, Conte A, Argenzio E, Marchetti L, Priami C, Polo S, Di Fiore PP, Sigismund S, Ciliberto A (2015) Quantitative analysis reveals how EGFR activation and downregulation are coupled in normal but not in cancer cells. Nat Commun 6:7999.  https://doi.org/10.1038/ncomms8999CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cardone L, Carlucci A, Affaitati A, Livigni A, DeCristofaro T, Garbi C, Varrone S, Ullrich A, Gottesman ME, Avvedimento EV, Feliciello A (2004) Mitochondrial AKAP121 binds and targets protein tyrosine phosphatase D1, a novel positive regulator of src signaling. Mol Cell Biol 24(11):4613–4626.  https://doi.org/10.1128/MCB.24.11.4613-4626.2004CrossRefPubMedPubMedCentralGoogle Scholar
  22. Carey KD, Garton AJ, Romero MS, Kahler J, Thomson S, Ross S, Park F, Haley JD, Gibson N, Sliwkowski MX (2006) Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib. Cancer Res 66(16):8163–8171.  https://doi.org/10.1158/0008-5472.CAN-06-0453CrossRefPubMedGoogle Scholar
  23. Carlucci A, Porpora M, Garbi C, Galgani M, Santoriello M, Mascolo M, di Lorenzo D, Altieri V, Quarto M, Terracciano L, Gottesman ME, Insabato L, Feliciello A (2010) PTPD1 supports receptor stability and mitogenic signaling in bladder cancer cells. J Biol Chem 285(50):39260–39270.  https://doi.org/10.1074/jbc.M110.174706CrossRefPubMedPubMedCentralGoogle Scholar
  24. Carpenter G, Cohen S (1976) 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol 71(1):159–171CrossRefGoogle Scholar
  25. Carpentier JL, Gorden P, Anderson RG, Goldstein JL, Brown MS, Cohen S, Orci L (1982) Co-localization of 125I-epidermal growth factor and ferritin-low density lipoprotein in coated pits: a quantitative electron microscopic study in normal and mutant human fibroblasts. J Cell Biol 95(1):73–77CrossRefGoogle Scholar
  26. Chaudhary N, Gomez GA, Howes MT, Lo HP, McMahon KA, Rae JA, Schieber NL, Hill MM, Gaus K, Yap AS, Parton RG (2014) Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol 12(4):e1001832.  https://doi.org/10.1371/journal.pbio.1001832CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chi S, Cao H, Wang Y, McNiven MA (2011) Recycling of the epidermal growth factor receptor is mediated by a novel form of the clathrin adaptor protein Eps15. J Biol Chem 286(40):35196–35208.  https://doi.org/10.1074/jbc.M111.247577CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chua BT, Lim SJ, Tham SC, Poh WJ, Ullrich A (2010) Somatic mutation in the ACK1 ubiquitin association domain enhances oncogenic signaling through EGFR regulation in renal cancer derived cells. Mol Oncol 4(4):323–334.  https://doi.org/10.1016/j.molonc.2010.03.001CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chung BM, Dimri M, George M, Reddi AL, Chen G, Band V, Band H (2009) The role of cooperativity with Src in oncogenic transformation mediated by non-small cell lung cancer-associated EGF receptor mutants. Oncogene 28(16):1821–1832.  https://doi.org/10.1038/onc.2009.31CrossRefPubMedPubMedCentralGoogle Scholar
  30. Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I (2010) Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464(7289):783–787.  https://doi.org/10.1038/nature08827CrossRefPubMedGoogle Scholar
  31. Clague MJ, Liu H, Urbe S (2012) Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev Cell 23(3):457–467.  https://doi.org/10.1016/j.devcel.2012.08.011CrossRefPubMedGoogle Scholar
  32. Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R (2005) FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist 10(7):461–466.  https://doi.org/10.1634/theoncologist.10-7-461CrossRefPubMedGoogle Scholar
  33. Cohen-Saidon C, Cohen AA, Sigal A, Liron Y, Alon U (2009) Dynamics and variability of ERK2 response to EGF in individual living cells. Mol Cell 36(5):885–893.  https://doi.org/10.1016/j.molcel.2009.11.025CrossRefPubMedGoogle Scholar
  34. Collinet C, Stoter M, Bradshaw CR, Samusik N, Rink JC, Kenski D, Habermann B, Buchholz F, Henschel R, Mueller MS, Nagel WE, Fava E, Kalaidzidis Y, Zerial M (2010) Systems survey of endocytosis by multiparametric image analysis. Nature 464(7286):243–249.  https://doi.org/10.1038/nature08779CrossRefPubMedGoogle Scholar
  35. Conte A, Sigismund S (2016) Chapter Six—The ubiquitin network in the control of EGFR Endocytosis and Signaling. Prog Mol Biol Transl Sci 141:225–276.  https://doi.org/10.1016/bs.pmbts.2016.03.002CrossRefPubMedGoogle Scholar
  36. Cosker KE, Courchesne SL, Segal RA (2008) Action in the axon: generation and transport of signaling endosomes. Curr Opin Neurobiol 18(3):270–275.  https://doi.org/10.1016/j.conb.2008.08.005CrossRefPubMedPubMedCentralGoogle Scholar
  37. Coumailleau F, Furthauer M, Knoblich JA, Gonzalez-Gaitan M (2009) Directional Delta and Notch trafficking in Sara endosomes during asymmetric cell division. Nature 458(7241):1051–1055.  https://doi.org/10.1038/nature07854CrossRefPubMedGoogle Scholar
  38. Damke H, Baba T, van der Bliek AM, Schmid SL (1995) Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol 131(1):69–80CrossRefGoogle Scholar
  39. Di Guglielmo GM, Baass PC, Ou WJ, Posner BI, Bergeron JJ (1994) Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J 13(18):4269–4277PubMedPubMedCentralGoogle Scholar
  40. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5(5):410–421.  https://doi.org/10.1038/ncb975CrossRefPubMedGoogle Scholar
  41. Dubois EA, Cohen AF (2009) Panitumumab. Br J Clin Pharmacol 68(4):482–483.  https://doi.org/10.1111/j.1365-2125.2009.03492.xCrossRefPubMedPubMedCentralGoogle Scholar
  42. Dunbar AJ, Gondek LP, O’Keefe CL, Makishima H, Rataul MS, Szpurka H, Sekeres MA, Wang XF, McDevitt MA, Maciejewski JP (2008) 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 68(24):10349–10357.  https://doi.org/10.1158/0008-5472.CAN-08-2754CrossRefPubMedPubMedCentralGoogle Scholar
  43. Dunn WA, Connolly TP, Hubbard AL (1986) Receptor-mediated endocytosis of epidermal growth factor by rat hepatocytes: receptor pathway. J Cell Biol 102(1):24–36CrossRefGoogle Scholar
  44. Earp HS, Austin KS, Blaisdell J, Rubin RA, Nelson KG, Lee LW, Grisham JW (1986) Epidermal growth factor (EGF) stimulates EGF receptor synthesis. J Biol Chem 261(11):4777–4780PubMedGoogle Scholar
  45. Ebner R, Derynck R (1991) Epidermal growth factor and transforming growth factor-alpha: differential intracellular routing and processing of ligand-receptor complexes. Cell Regul 2(8):599–612CrossRefPubMedCentralGoogle Scholar
  46. Eden ER, White IJ, Tsapara A, Futter CE (2010) Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat Cell Biol 12(3):267–272.  https://doi.org/10.1038/ncb2026CrossRefPubMedGoogle Scholar
  47. Eden ER, Sanchez-Heras E, Tsapara A, Sobota A, Levine TP, Futter CE (2016) Annexin A1 tethers membrane contact sites that mediate ER to endosome cholesterol transport. Dev Cell 37(5):473–483.  https://doi.org/10.1016/j.devcel.2016.05.005CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ekstrand AJ, Sugawa N, James CD, Collins VP (1992) Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci U S A 89(10):4309–4313CrossRefPubMedCentralGoogle Scholar
  49. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186.  https://doi.org/10.1126/science.1070919CrossRefPubMedGoogle Scholar
  50. Fan Z, Masui H, Altas I, Mendelsohn J (1993) Blockade of epidermal growth factor receptor function by bivalent and monovalent fragments of 225 anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res 53(18):4322–4328PubMedGoogle Scholar
  51. Feng Q, Baird D, Peng X, Wang J, Ly T, Guan JL, Cerione RA (2006) Cool-1 functions as an essential regulatory node for EGF receptor- and Src-mediated cell growth. Nat Cell Biol 8(9):945–956.  https://doi.org/10.1038/ncb1453CrossRefPubMedGoogle Scholar
  52. Ferby I, Reschke M, Kudlacek O, Knyazev P, Pante G, Amann K, Sommergruber W, Kraut N, Ullrich A, Fassler R, Klein R (2006) Mig6 is a negative regulator of EGF receptor-mediated skin morphogenesis and tumor formation. Nat Med 12(5):568–573.  https://doi.org/10.1038/nm1401CrossRefPubMedGoogle Scholar
  53. Ferrandon S, Feinstein TN, Castro M, Wang B, Bouley R, Potts JT, Gardella TJ, Vilardaga JP (2009) Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol 5(10):734–742.  https://doi.org/10.1038/nchembio.206CrossRefPubMedPubMedCentralGoogle Scholar
  54. Fortian A, Sorkin A (2014) Live-cell fluorescence imaging reveals high stoichiometry of Grb2 binding to the EGF receptor sustained during endocytosis. J Cell Sci 127(Pt 2):432–444.  https://doi.org/10.1242/jcs.137786CrossRefPubMedPubMedCentralGoogle Scholar
  55. Frechin M, Stoeger T, Daetwyler S, Gehin C, Battich N, Damm EM, Stergiou L, Riezman H, Pelkmans L (2015) Cell-intrinsic adaptation of lipid composition to local crowding drives social behaviour. Nature 523(7558):88–91.  https://doi.org/10.1038/nature14429CrossRefPubMedGoogle Scholar
  56. French AR, Sudlow GP, Wiley HS, Lauffenburger DA (1994) Postendocytic trafficking of epidermal growth factor-receptor complexes is mediated through saturable and specific endosomal interactions. J Biol Chem 269(22):15749–15755PubMedGoogle Scholar
  57. French AR, Tadaki DK, Niyogi SK, Lauffenburger DA (1995) Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction. J Biol Chem 270(9):4334–4340CrossRefGoogle Scholar
  58. Friedman LM, Rinon A, Schechter B, Lyass L, Lavi S, Bacus SS, Sela M, Yarden Y (2005) Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci U S A 102(6):1915–1920.  https://doi.org/10.1073/pnas.0409610102CrossRefPubMedPubMedCentralGoogle Scholar
  59. Friedman JR, Dibenedetto JR, West M, Rowland AA, Voeltz GK (2013) Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol Biol Cell 24(7):1030–1040.  https://doi.org/10.1091/mbc.E12-10-0733CrossRefPubMedPubMedCentralGoogle Scholar
  60. Frosi Y, Anastasi S, Ballaro C, Varsano G, Castellani L, Maspero E, Polo S, Alema S, Segatto O (2010) A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. J Cell Biol 189(3):557–571.  https://doi.org/10.1083/jcb.201002032CrossRefPubMedPubMedCentralGoogle Scholar
  61. Fry WH, Simion C, Sweeney C, Carraway KL 3rd (2011) Quantity control of the ErbB3 receptor tyrosine kinase at the endoplasmic reticulum. Mol Cell Biol 31(14):3009–3018.  https://doi.org/10.1128/MCB.05105-11CrossRefPubMedPubMedCentralGoogle Scholar
  62. Gan HK, Walker F, Burgess AW, Rigopoulos A, Scott AM, Johns TG (2007) The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 increases the formation of inactive untethered EGFR dimers. Implications for combination therapy with monoclonal antibody 806. J Biol Chem 282(5):2840–2850.  https://doi.org/10.1074/jbc.M605136200CrossRefPubMedGoogle Scholar
  63. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Zhu HJ, Walker F, Frenkel MJ, Hoyne PA, Jorissen RN, Nice EC, Burgess AW, Ward CW (2002) Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 110(6):763–773CrossRefGoogle Scholar
  64. Goh LK, Sorkin A (2013) Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol 5(5):a017459.  https://doi.org/10.1101/cshperspect.a017459CrossRefPubMedPubMedCentralGoogle Scholar
  65. Goh LK, Huang F, Kim W, Gygi S, Sorkin A (2010) Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J Cell Biol 189(5):871–883.  https://doi.org/10.1083/jcb.201001008CrossRefPubMedPubMedCentralGoogle Scholar
  66. Gorden P, Carpentier JL, Cohen S, Orci L (1978) Epidermal growth factor: morphological demonstration of binding, internalization, and lysosomal association in human fibroblasts. Proc Natl Acad Sci U S A 75(10):5025–5029CrossRefPubMedCentralGoogle Scholar
  67. Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C, Kreil S, Jones A, Score J, Metzgeroth G, Oscier D, Hall A, Brandts C, Serve H, Reiter A, Chase AJ, Cross NC (2009) Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113(24):6182–6192.  https://doi.org/10.1182/blood-2008-12-194548CrossRefPubMedGoogle Scholar
  68. Grandal MV, Zandi R, Pedersen MW, Willumsen BM, van Deurs B, Poulsen HS (2007) EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes. Carcinogenesis 28(7):1408–1417.  https://doi.org/10.1093/carcin/bgm058CrossRefPubMedGoogle Scholar
  69. Grimes ML, Zhou J, Beattie EC, Yuen EC, Hall DE, Valletta JS, Topp KS, LaVail JH, Bunnett NW, Mobley WC (1996) Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J Neurosci 16(24):7950–7964CrossRefGoogle Scholar
  70. Grovdal LM, Stang E, Sorkin A, Madshus IH (2004) Direct interaction of Cbl with pTyr 1045 of the EGF receptor (EGFR) is required to sort the EGFR to lysosomes for degradation. Exp Cell Res 300(2):388–395.  https://doi.org/10.1016/j.yexcr.2004.07.003CrossRefPubMedGoogle Scholar
  71. Gschweitl M, Ulbricht A, Barnes CA, Enchev RI, Stoffel-Studer I, Meyer-Schaller N, Huotari J, Yamauchi Y, Greber UF, Helenius A, Peter M (2016) A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. Elife 5:e13841.  https://doi.org/10.7554/eLife.13841CrossRefPubMedPubMedCentralGoogle Scholar
  72. Guha A, Sriram V, Krishnan KS, Mayor S (2003) Shibire mutations reveal distinct dynamin-independent and -dependent endocytic pathways in primary cultures of Drosophila hemocytes. J Cell Sci 116(Pt 16):3373–3386.  https://doi.org/10.1242/jcs.00637CrossRefPubMedGoogle Scholar
  73. Gur G, Rubin C, Katz M, Amit I, Citri A, Nilsson J, Amariglio N, Henriksson R, Rechavi G, Hedman H, Wides R, Yarden Y (2004) LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J 23(16):3270–3281.  https://doi.org/10.1038/sj.emboj.7600342CrossRefPubMedPubMedCentralGoogle Scholar
  74. Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI (2002) Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295(5560):1708–1711.  https://doi.org/10.1126/science.1067566CrossRefGoogle Scholar
  75. Haj FG, Sabet O, Kinkhabwala A, Wimmer-Kleikamp S, Roukos V, Han HM, Grabenbauer M, Bierbaum M, Antony C, Neel BG, Bastiaens PI (2012) Regulation of signaling at regions of cell-cell contact by endoplasmic reticulum-bound protein-tyrosine phosphatase 1B. PLoS ONE 7(5):e36633.  https://doi.org/10.1371/journal.pone.0036633CrossRefPubMedPubMedCentralGoogle Scholar
  76. Han W, Zhang T, Yu H, Foulke JG, Tang CK (2006) Hypophosphorylation of residue Y1045 leads to defective downregulation of EGFRvIII. Cancer Biol Ther 5(10):1361–1368CrossRefGoogle Scholar
  77. Hanover JA, Willingham MC, Pastan I (1984) Kinetics of transit of transferrin and epidermal growth factor through clathrin-coated membranes. Cell 39(2 Pt 1):283–293CrossRefGoogle Scholar
  78. Henne WM, Stenmark H, Emr SD (2013) Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol 5(9).  https://doi.org/10.1101/cshperspect.a016766
  79. Hinrichsen L, Harborth J, Andrees L, Weber K, Ungewickell EJ (2003) Effect of clathrin heavy chain- and alpha-adaptin-specific small inhibitory RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells. J Biol Chem 278(46):45160–45170.  https://doi.org/10.1074/jbc.M307290200CrossRefPubMedGoogle Scholar
  80. Hirsch FR, Janne PA, Eberhardt WE, Cappuzzo F, Thatcher N, Pirker R, Choy H, Kim ES, Paz-Ares L, Gandara DR, Wu YL, Ahn MJ, Mitsudomi T, Shepherd FA, Mok TS (2013) Epidermal growth factor receptor inhibition in lung cancer: status 2012. J Thorac Oncol 8(3):373–384.  https://doi.org/10.1097/JTO.0b013e31827ed0ffCrossRefPubMedGoogle Scholar
  81. Howe CL, Mobley WC (2005) Long-distance retrograde neurotrophic signaling. Curr Opin Neurobiol 15(1):40–48.  https://doi.org/10.1016/j.conb.2005.01.010CrossRefPubMedGoogle Scholar
  82. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21(6):737–748.  https://doi.org/10.1016/j.molcel.2006.02.018CrossRefPubMedGoogle Scholar
  83. Huang F, Zeng X, Kim W, Balasubramani M, Fortian A, Gygi SP, Yates NA, Sorkin A (2013) Lysine 63-linked polyubiquitination is required for EGF receptor degradation. Proc Natl Acad Sci U S A 110(39):15722–15727.  https://doi.org/10.1073/pnas.1308014110CrossRefPubMedPubMedCentralGoogle Scholar
  84. Huotari J, Meyer-Schaller N, Hubner M, Stauffer S, Katheder N, Horvath P, Mancini R, Helenius A, Peter M (2012) Cullin-3 regulates late endosome maturation. Proc Natl Acad Sci U S A 109(3):823–828.  https://doi.org/10.1073/pnas.1118744109CrossRefPubMedPubMedCentralGoogle Scholar
  85. Ibach J, Radon Y, Gelleri M, Sonntag MH, Brunsveld L, Bastiaens PI, Verveer PJ (2015) Single particle tracking reveals that EGFR signaling activity is amplified in clathrin-coated pits. PLoS ONE 10(11):e0143162.  https://doi.org/10.1371/journal.pone.0143162CrossRefPubMedPubMedCentralGoogle Scholar
  86. Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, Steyaert J, Rasmussen SG, Sunahara RK, El-Samad H, Huang B, von Zastrow M (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495(7442):534–538.  https://doi.org/10.1038/nature12000CrossRefPubMedPubMedCentralGoogle Scholar
  87. Irannejad R, Tsvetanova NG, Lobingier BT, von Zastrow M (2015) Effects of endocytosis on receptor-mediated signaling. Curr Opin Cell Biol 35:137–143.  https://doi.org/10.1016/j.ceb.2015.05.005CrossRefPubMedPubMedCentralGoogle Scholar
  88. Jaramillo ML, Leon Z, Grothe S, Paul-Roc B, Abulrob A, O’Connor McCourt M (2006) Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting. Exp Cell Res 312(15):2778–2790.  https://doi.org/10.1016/j.yexcr.2006.05.008CrossRefPubMedGoogle Scholar
  89. Jekely G, Rorth P (2003) Hrs mediates downregulation of multiple signalling receptors in Drosophila. EMBO Rep 4(12):1163–1168.  https://doi.org/10.1038/sj.embor.7400019CrossRefPubMedPubMedCentralGoogle Scholar
  90. Jiang X, Huang F, Marusyk A, Sorkin A (2003) Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol Biol Cell 14(3):858–870.  https://doi.org/10.1091/mbc.E02-08-0532CrossRefPubMedPubMedCentralGoogle Scholar
  91. Johannes L, Parton RG, Bassereau P, Mayor S (2015) Building endocytic pits without clathrin. Nat Rev Mol Cell Biol 16(5):311–321.  https://doi.org/10.1038/nrm3968CrossRefPubMedGoogle Scholar
  92. Johnson H, Del Rosario AM, Bryson BD, Schroeder MA, Sarkaria JN, White FM (2012) Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts. Mol Cell Proteomics 11(12):1724–1740.  https://doi.org/10.1074/mcp.M112.019984CrossRefPubMedPubMedCentralGoogle Scholar
  93. Kalaidzidis I, Miaczynska M, Brewinska-Olchowik M, Hupalowska A, Ferguson C, Parton RG, Kalaidzidis Y, Zerial M (2015) APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. J Cell Biol 211(1):123–144.  https://doi.org/10.1083/jcb.201311117CrossRefPubMedPubMedCentralGoogle Scholar
  94. Kalia M, Kumari S, Chadda R, Hill MM, Parton RG, Mayor S (2006) Arf6-independent GPI-anchored protein-enriched early endosomal compartments fuse with sorting endosomes via a Rab5/phosphatidylinositol-3’-kinase-dependent machinery. Mol Biol Cell 17(8):3689–3704.  https://doi.org/10.1091/mbc.E05-10-0980CrossRefPubMedPubMedCentralGoogle Scholar
  95. Kario E, Marmor MD, Adamsky K, Citri A, Amit I, Amariglio N, Rechavi G, Yarden Y (2005) Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling. J Biol Chem 280(8):7038–7048.  https://doi.org/10.1074/jbc.M408575200CrossRefPubMedGoogle Scholar
  96. Kelley LC, Weed SA (2012) Cortactin is a substrate of activated Cdc42-associated kinase 1 (ACK1) during ligand-induced epidermal growth factor receptor downregulation. PLoS ONE 7(8):e44363.  https://doi.org/10.1371/journal.pone.0044363CrossRefPubMedPubMedCentralGoogle Scholar
  97. Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 274(42):30169–30181CrossRefGoogle Scholar
  98. Kilpatrick BS, Eden ER, Hockey LN, Yates E, Futter CE, Patel S (2017) An endosomal NAADP-sensitive two-pore Ca2+ channel regulates ER-endosome membrane contact sites to control growth factor signaling. Cell Rep 18(7):1636–1645.  https://doi.org/10.1016/j.celrep.2017.01.052CrossRefPubMedPubMedCentralGoogle Scholar
  99. Kirchhausen T, Owen D, Harrison SC (2014) Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol 6(5):a016725.  https://doi.org/10.1101/cshperspect.a016725CrossRefPubMedPubMedCentralGoogle Scholar
  100. Kleiman LB, Maiwald T, Conzelmann H, Lauffenburger DA, Sorger PK (2011) Rapid phospho-turnover by receptor tyrosine kinases impacts downstream signaling and drug binding. Mol Cell 43(5):723–737.  https://doi.org/10.1016/j.molcel.2011.07.014CrossRefPubMedPubMedCentralGoogle Scholar
  101. Kon S, Kobayashi N, Satake M (2014) Altered trafficking of mutated growth factor receptors and their associated molecules: implication for human cancers. Cell Logist 4:e28461.  https://doi.org/10.4161/cl.28461CrossRefPubMedPubMedCentralGoogle Scholar
  102. Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J (2015) A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 84:739–764.  https://doi.org/10.1146/annurev-biochem-060614-034402CrossRefPubMedPubMedCentralGoogle Scholar
  103. Lakadamyali M, Rust MJ, Zhuang X (2006) Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124(5):997–1009.  https://doi.org/10.1016/j.cell.2005.12.038CrossRefPubMedPubMedCentralGoogle Scholar
  104. Lampugnani MG, Orsenigo F, Gagliani MC, Tacchetti C, Dejana E (2006) Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 174(4):593–604.  https://doi.org/10.1083/jcb.200602080CrossRefPubMedPubMedCentralGoogle Scholar
  105. Lemmon MA (2009) Ligand-induced ErbB receptor dimerization. Exp Cell Res 315(4):638–648.  https://doi.org/10.1016/j.yexcr.2008.10.024CrossRefPubMedGoogle Scholar
  106. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134.  https://doi.org/10.1016/j.cell.2010.06.011CrossRefPubMedPubMedCentralGoogle Scholar
  107. Lemmon MA, Schlessinger J, Ferguson KM (2014) The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol 6(4):a020768.  https://doi.org/10.1101/cshperspect.a020768CrossRefPubMedPubMedCentralGoogle Scholar
  108. Lemmon MA, Freed DM, Schlessinger J, Kiyatkin A (2016) The dark side of cell signaling: positive roles for negative regulators. Cell 164(6):1172–1184.  https://doi.org/10.1016/j.cell.2016.02.047CrossRefPubMedPubMedCentralGoogle Scholar
  109. Lenferink AE, Pinkas-Kramarski R, van de Poll ML, van Vugt MJ, Klapper LN, Tzahar E, Waterman H, Sela M, van Zoelen EJ, Yarden Y (1998) Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J 17(12):3385–3397.  https://doi.org/10.1093/emboj/17.12.3385CrossRefPubMedPubMedCentralGoogle Scholar
  110. Leung EL, Tam IY, Tin VP, Chua DT, Sihoe AD, Cheng LC, Ho JC, Chung LP, Wong MP (2009) SRC promotes survival and invasion of lung cancers with epidermal growth factor receptor abnormalities and is a potential candidate for molecular-targeted therapy. Mol Cancer Res 7(6):923–932.  https://doi.org/10.1158/1541-7786.MCR-09-0003CrossRefPubMedGoogle Scholar
  111. Levine TP, Patel S (2016) Signalling at membrane contact sites: two membranes come together to handle second messengers. Curr Opin Cell Biol 39:77–83.  https://doi.org/10.1016/j.ceb.2016.02.011CrossRefPubMedGoogle Scholar
  112. Levkowitz G, Klapper LN, Tzahar E, Freywald A, Sela M, Yarden Y (1996) Coupling of the c-Cbl protooncogene product to ErbB-1/EGF-receptor but not to other ErbB proteins. Oncogene 12(5):1117–1125PubMedGoogle Scholar
  113. Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, Beguinot L, Geiger B, Yarden Y (1998) c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 12(23):3663–3674CrossRefPubMedCentralGoogle Scholar
  114. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, Yarden Y (1999) Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4(6):1029–1040CrossRefGoogle Scholar
  115. Liberali P, Snijder B, Pelkmans L (2014) A hierarchical map of regulatory genetic interactions in membrane trafficking. Cell 157(6):1473–1487.  https://doi.org/10.1016/j.cell.2014.04.029CrossRefPubMedGoogle Scholar
  116. Licitra L, Storkel S, Kerr KM, Van Cutsem E, Pirker R, Hirsch FR, Vermorken JB, von Heydebreck A, Esser R, Celik I, Ciardiello F (2013) Predictive value of epidermal growth factor receptor expression for first-line chemotherapy plus cetuximab in patients with head and neck and colorectal cancer: analysis of data from the EXTREME and CRYSTAL studies. Eur J Cancer 49(6):1161–1168.  https://doi.org/10.1016/j.ejca.2012.11.018CrossRefPubMedGoogle Scholar
  117. Liu Z, Zanata SM, Kim J, Peterson MA, Di Vizio D, Chirieac LR, Pyne S, Agostini M, Freeman MR, Loda M (2013) The ubiquitin-specific protease USP2a prevents endocytosis-mediated EGFR degradation. Oncogene 32(13):1660–1669.  https://doi.org/10.1038/onc.2012.188CrossRefPubMedGoogle Scholar
  118. Longva KE, Blystad FD, Stang E, Larsen AM, Johannessen LE, Madshus IH (2002) Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J Cell Biol 156(5):843–854.  https://doi.org/10.1083/jcb.200106056CrossRefPubMedPubMedCentralGoogle Scholar
  119. Lund KA, Opresko LK, Starbuck C, Walsh BJ, Wiley HS (1990) Quantitative analysis of the endocytic system involved in hormone-induced receptor internalization. J Biol Chem 265(26):15713–15723PubMedGoogle Scholar
  120. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139.  https://doi.org/10.1056/NEJMoa040938CrossRefPubMedGoogle Scholar
  121. Ma YM, Boucrot E, Villen J, el Affar B, Gygi SP, Gottlinger HG, Kirchhausen T (2007) Targeting of AMSH to endosomes is required for epidermal growth factor receptor degradation. J Biol Chem 282(13):9805–9812.  https://doi.org/10.1074/jbc.M611635200CrossRefPubMedGoogle Scholar
  122. Macdonald-Obermann JL, Pike LJ (2014) Different epidermal growth factor (EGF) receptor ligands show distinct kinetics and biased or partial agonism for homodimer and heterodimer formation. J Biol Chem 289(38):26178–26188.  https://doi.org/10.1074/jbc.M114.586826CrossRefPubMedPubMedCentralGoogle Scholar
  123. Martinelli S, De Luca A, Stellacci E, Rossi C, Checquolo S, Lepri F, Caputo V, Silvano M, Buscherini F, Consoli F, Ferrara G, Digilio MC, Cavaliere ML, van Hagen JM, Zampino G, van der Burgt I, Ferrero GB, Mazzanti L, Screpanti I, Yntema HG, Nillesen WM, Savarirayan R, Zenker M, Dallapiccola B, Gelb BD, Tartaglia M (2010) Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet 87(2):250–257.  https://doi.org/10.1016/j.ajhg.2010.06.015CrossRefPubMedPubMedCentralGoogle Scholar
  124. McCullough J, Clague MJ, Urbe S (2004) AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol 166(4):487–492.  https://doi.org/10.1083/jcb.200401141CrossRefPubMedPubMedCentralGoogle Scholar
  125. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533.  https://doi.org/10.1038/nrm3151CrossRefPubMedGoogle Scholar
  126. Menard L, Parker PJ, Kermorgant S (2014) Receptor tyrosine kinase c-Met controls the cytoskeleton from different endosomes via different pathways. Nat Commun 5:3907.  https://doi.org/10.1038/ncomms4907CrossRefPubMedGoogle Scholar
  127. Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, Wilm M, Parton RG, Zerial M (2004) APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116(3):445–456CrossRefGoogle Scholar
  128. Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW, Biegel JA, Hayes RL, Wong AJ (1995) Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 55(23):5536–5539PubMedGoogle Scholar
  129. Motley A, Bright NA, Seaman MN, Robinson MS (2003) Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol 162(5):909–918.  https://doi.org/10.1083/jcb.200305145CrossRefPubMedPubMedCentralGoogle Scholar
  130. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, Cromer A, Brugge JS, Sansom OJ, Norman JC, Vousden KH (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139(7):1327–1341.  https://doi.org/10.1016/j.cell.2009.11.026CrossRefPubMedGoogle Scholar
  131. Muller PA, Trinidad AG, Timpson P, Morton JP, Zanivan S, van den Berghe PV, Nixon C, Karim SA, Caswell PT, Noll JE, Coffill CR, Lane DP, Sansom OJ, Neilsen PM, Norman JC, Vousden KH (2013) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 32(10):1252–1265.  https://doi.org/10.1038/onc.2012.148CrossRefPubMedGoogle Scholar
  132. Nakamura N, Lill JR, Phung Q, Jiang Z, Bakalarski C, de Mazière A, Klumperman J, Schlatter M, Delamarre L, Mellman I (2014) Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509(7499):240–244.  https://doi.org/10.1038/nature13133
  133. Nevins AK, Thurmond DC (2006) Caveolin-1 functions as a novel Cdc42 guanine nucleotide dissociation inhibitor in pancreatic beta-cells. J Biol Chem 281(28):18961–18972.  https://doi.org/10.1074/jbc.M603604200CrossRefPubMedGoogle Scholar
  134. Nicholson SE, Metcalf D, Sprigg NS, Columbus R, Walker F, Silva A, Cary D, Willson TA, Zhang JG, Hilton DJ, Alexander WS, Nicola NA (2005) Suppressor of cytokine signaling (SOCS)-5 is a potential negative regulator of epidermal growth factor signaling. Proc Natl Acad Sci U S A 102(7):2328–2333.  https://doi.org/10.1073/pnas.0409675102CrossRefPubMedPubMedCentralGoogle Scholar
  135. Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110(6):775–787CrossRefGoogle Scholar
  136. Orth JD, Krueger EW, Weller SG, McNiven MA (2006) A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization. Cancer Res 66(7):3603–3610.  https://doi.org/10.1158/0008-5472.CAN-05-2916CrossRefPubMedGoogle Scholar
  137. Oved S, Mosesson Y, Zwang Y, Santonico E, Shtiegman K, Marmor MD, Kochupurakkal BS, Katz M, Lavi S, Cesareni G, Yarden Y (2006) Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J Biol Chem 281(31):21640–21651.  https://doi.org/10.1074/jbc.M513034200CrossRefPubMedGoogle Scholar
  138. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500.  https://doi.org/10.1126/science.1099314CrossRefPubMedGoogle Scholar
  139. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, Mardis E, Kupfer D, Wilson R, Kris M, Varmus H (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101(36):13306–13311.  https://doi.org/10.1073/pnas.0405220101CrossRefPubMedPubMedCentralGoogle Scholar
  140. Pareja F, Ferraro DA, Rubin C, Cohen-Dvashi H, Zhang F, Aulmann S, Ben-Chetrit N, Pines G, Navon R, Crosetto N, Kostler W, Carvalho S, Lavi S, Schmitt F, Dikic I, Yakhini Z, Sinn P, Mills GB, Yarden Y (2012) Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene 31(43):4599–4608.  https://doi.org/10.1038/onc.2011.587CrossRefPubMedGoogle Scholar
  141. Pedersen MW, Jacobsen HJ, Koefoed K, Hey A, Pyke C, Haurum JS, Kragh M (2010) Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 70(2):588–597.  https://doi.org/10.1158/0008-5472.CAN-09-1417CrossRefPubMedGoogle Scholar
  142. Peeters M, Karthaus M, Rivera F, Terwey JH, Douillard JY (2015) Panitumumab in metastatic colorectal cancer: the importance of tumour RAS status. Drugs 75(7):731–748.  https://doi.org/10.1007/s40265-015-0386-xCrossRefPubMedPubMedCentralGoogle Scholar
  143. Phillips MJ, Voeltz GK (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17(2):69–82.  https://doi.org/10.1038/nrm.2015.8CrossRefPubMedGoogle Scholar
  144. Pierotti MA, Negri T, Tamborini E, Perrone F, Pricl S, Pilotti S (2010) Targeted therapies: the rare cancer paradigm. Mol Oncol 4(1):19–37.  https://doi.org/10.1016/j.molonc.2009.10.003CrossRefPubMedGoogle Scholar
  145. Piper RC, Dikic I, Lukacs GL (2014) Ubiquitin-dependent sorting in endocytosis. Cold Spring Harb Perspect Biol 6(1).  https://doi.org/10.1101/cshperspect.a016808
  146. Poteryaev D, Datta S, Ackema K, Zerial M, Spang A (2010) Identification of the switch in early-to-late endosome transition. Cell 141(3):497–508.  https://doi.org/10.1016/j.cell.2010.03.011CrossRefPubMedGoogle Scholar
  147. Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458(7237):445–452.  https://doi.org/10.1038/nature07961CrossRefPubMedGoogle Scholar
  148. Renard HF, Simunovic M, Lemiere J, Boucrot E, Garcia-Castillo MD, Arumugam S, Chambon V, Lamaze C, Wunder C, Kenworthy AK, Schmidt AA, McMahon HT, Sykes C, Bassereau P, Johannes L (2015) Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517(7535):493–496.  https://doi.org/10.1038/nature14064CrossRefPubMedGoogle Scholar
  149. Resat H, Ewald JA, Dixon DA, Wiley HS (2003) An integrated model of epidermal growth factor receptor trafficking and signal transduction. Biophys J 85(2):730–743CrossRefPubMedCentralGoogle Scholar
  150. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5):735–749.  https://doi.org/10.1016/j.cell.2005.06.043CrossRefPubMedGoogle Scholar
  151. Rocha N, Kuijl C, van der Kant R, Janssen L, Houben D, Janssen H, Zwart W, Neefjes J (2009) Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J Cell Biol 185(7):1209–1225.  https://doi.org/10.1083/jcb.200811005CrossRefPubMedPubMedCentralGoogle Scholar
  152. Roda-Navarro P, Bastiaens PI (2014) Dynamic recruitment of protein tyrosine phosphatase PTPD1 to EGF stimulation sites potentiates EGFR activation. PLoS ONE 9(7):e103203.  https://doi.org/10.1371/journal.pone.0103203CrossRefPubMedPubMedCentralGoogle Scholar
  153. Roepstorff K, Grandal MV, Henriksen L, Knudsen SL, Lerdrup M, Grovdal L, Willumsen BM, van Deurs B (2009) Differential effects of EGFR ligands on endocytic sorting of the receptor. Traffic 10(8):1115–1127.  https://doi.org/10.1111/j.1600-0854.2009.00943.xCrossRefPubMedPubMedCentralGoogle Scholar
  154. Romsicki Y, Reece M, Gauthier JY, Asante-Appiah E, Kennedy BP (2004) Protein tyrosine phosphatase-1B dephosphorylation of the insulin receptor occurs in a perinuclear endosome compartment in human embryonic kidney 293 cells. J Biol Chem 279(13):12868–12875.  https://doi.org/10.1074/jbc.M309600200CrossRefPubMedGoogle Scholar
  155. Roskoski R Jr (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79:34–74.  https://doi.org/10.1016/j.phrs.2013.11.002CrossRefPubMedGoogle Scholar
  156. Rothenberg SM, Engelman JA, Le S, Riese DJ 2nd, Haber DA, Settleman J (2008) Modeling oncogene addiction using RNA interference. Proc Natl Acad Sci U S A 105(34):12480–12484.  https://doi.org/10.1073/pnas.0803217105CrossRefPubMedPubMedCentralGoogle Scholar
  157. Row PE, Prior IA, McCullough J, Clague MJ, Urbe S (2006) The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J Biol Chem 281(18):12618–12624.  https://doi.org/10.1074/jbc.M512615200CrossRefPubMedGoogle Scholar
  158. Rowland AA, Chitwood PJ, Phillips MJ, Voeltz GK (2014) ER contact sites define the position and timing of endosome fission. Cell 159(5):1027–1041.  https://doi.org/10.1016/j.cell.2014.10.023CrossRefPubMedPubMedCentralGoogle Scholar
  159. Roxrud I, Raiborg C, Pedersen NM, Stang E, Stenmark H (2008) An endosomally localized isoform of Eps15 interacts with Hrs to mediate degradation of epidermal growth factor receptor. J Cell Biol 180(6):1205–1218.  https://doi.org/10.1083/jcb.200708115CrossRefPubMedPubMedCentralGoogle Scholar
  160. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, Tamura A, Honda H, Sakata-Yanagimoto M, Kumano K, Oda H, Yamagata T, Takita J, Gotoh N, Nakazaki K, Kawamata N, Onodera M, Nobuyoshi M, Hayashi Y, Harada H, Kurokawa M, Chiba S, Mori H, Ozawa K, Omine M, Hirai H, Nakauchi H, Koeffler HP, Ogawa S (2009) Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460(7257):904–908.  https://doi.org/10.1038/nature08240CrossRefPubMedGoogle Scholar
  161. Sangwan V, Paliouras GN, Abella JV, Dube N, Monast A, Tremblay ML, Park M (2008) Regulation of the Met receptor-tyrosine kinase by the protein-tyrosine phosphatase 1B and T-cell phosphatase. J Biol Chem 283(49):34374–34383.  https://doi.org/10.1074/jbc.M805916200CrossRefPubMedPubMedCentralGoogle Scholar
  162. Sargin B, Choudhary C, Crosetto N, Schmidt MH, Grundler R, Rensinghoff M, Thiessen C, Tickenbrock L, Schwable J, Brandts C, August B, Koschmieder S, Bandi SR, Duyster J, Berdel WE, Muller-Tidow C, Dikic I, Serve H (2007) Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 110(3):1004–1012.  https://doi.org/10.1182/blood-2007-01-066076CrossRefPubMedGoogle Scholar
  163. Savio MG, Wollscheid N, Cavallaro E, Algisi V, Di Fiore PP, Sigismund S, Maspero E, Polo S (2016) USP9X controls EGFR fate by deubiquitinating the endocytic adaptor Eps15. Curr Biol 26(2):173–183.  https://doi.org/10.1016/j.cub.2015.11.050CrossRefPubMedGoogle Scholar
  164. Sawano A, Takayama S, Matsuda M, Miyawaki A (2002) Lateral propagation of EGF signaling after local stimulation is dependent on receptor density. Dev Cell 3(2):245–257CrossRefGoogle Scholar
  165. Scharaw S, Iskar M, Ori A, Boncompain G, Laketa V, Poser I, Lundberg E, Perez F, Beck M, Bork P, Pepperkok R (2016) The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR. J Cell Biol 215(4):543–558.  https://doi.org/10.1083/jcb.201601090CrossRefPubMedPubMedCentralGoogle Scholar
  166. Schenck A, Goto-Silva L, Collinet C, Rhinn M, Giner A, Habermann B, Brand M, Zerial M (2008) The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 133(3):486–497.  https://doi.org/10.1016/j.cell.2008.02.044CrossRefPubMedGoogle Scholar
  167. Schlessinger J (2014) Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harb Perspect Biol 6(3).  https://doi.org/10.1101/cshperspect.a008912
  168. Schmidt MH, Dikic I (2005) The Cbl interactome and its functions. Nat Rev Mol Cell Biol 6(12):907–918.  https://doi.org/10.1038/nrm1762CrossRefPubMedGoogle Scholar
  169. Schmidt MH, Furnari FB, Cavenee WK, Bogler O (2003) Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc Natl Acad Sci U S A 100(11):6505–6510.  https://doi.org/10.1073/pnas.1031790100CrossRefPubMedPubMedCentralGoogle Scholar
  170. Scott CC, Vacca F, Gruenberg J (2014) Endosome maturation, transport and functions. Semin Cell Dev Biol 31:2–10.  https://doi.org/10.1016/j.semcdb.2014.03.034CrossRefPubMedGoogle Scholar
  171. Segatto O, Anastasi S, Alema S (2011) Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors. J Cell Sci 124(Pt 11):1785–1793.  https://doi.org/10.1242/jcs.083303CrossRefPubMedGoogle Scholar
  172. Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14(5):283–296.  https://doi.org/10.1038/nrm3565CrossRefPubMedPubMedCentralGoogle Scholar
  173. Shen F, Lin Q, Gu Y, Childress C, Yang W (2007) Activated Cdc42-associated kinase 1 is a component of EGF receptor signaling complex and regulates EGF receptor degradation. Mol Biol Cell 18(3):732–742.  https://doi.org/10.1091/mbc.E06-02-0142CrossRefPubMedPubMedCentralGoogle Scholar
  174. Shenoy SK, Lefkowitz RJ (2005) Seven-transmembrane receptor signaling through beta-arrestin. Sci STKE 2005(308):cm10.  https://doi.org/10.1126/stke.2005/308/cm10
  175. Shimizu H, Woodcock SA, Wilkin MB, Trubenova B, Monk NA, Baron M (2014) Compensatory flux changes within an endocytic trafficking network maintain thermal robustness of Notch signaling. Cell 157(5):1160–1174.  https://doi.org/10.1016/j.cell.2014.03.050CrossRefPubMedPubMedCentralGoogle Scholar
  176. Shtiegman K, Kochupurakkal BS, Zwang Y, Pines G, Starr A, Vexler A, Citri A, Katz M, Lavi S, Ben-Basat Y, Benjamin S, Corso S, Gan J, Yosef RB, Giordano S, Yarden Y (2007) Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene 26(49):6968–6978.  https://doi.org/10.1038/sj.onc.1210503CrossRefPubMedGoogle Scholar
  177. Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S (2005) Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci U S A 102(8):2760–2765.  https://doi.org/10.1073/pnas.0409817102CrossRefPubMedPubMedCentralGoogle Scholar
  178. Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15(2):209–219.  https://doi.org/10.1016/j.devcel.2008.06.012CrossRefPubMedGoogle Scholar
  179. Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP (2012) Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 92(1):273–366.  https://doi.org/10.1152/physrev.00005.2011CrossRefPubMedPubMedCentralGoogle Scholar
  180. Sigismund S, Algisi V, Nappo G, Conte A, Pascolutti R, Cuomo A, Bonaldi T, Argenzio E, Verhoef LG, Maspero E, Bianchi F, Capuani F, Ciliberto A, Polo S, Di Fiore PP (2013) Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO J 32(15):2140–2157.  https://doi.org/10.1038/emboj.2013.149CrossRefPubMedPubMedCentralGoogle Scholar
  181. Singh AB, Harris RC (2005) Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17(10):1183–1193.  https://doi.org/10.1016/j.cellsig.2005.03.026CrossRefPubMedGoogle Scholar
  182. Snijder B, Sacher R, Ramo P, Damm EM, Liberali P, Pelkmans L (2009) Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461(7263):520–523.  https://doi.org/10.1038/nature08282CrossRefPubMedGoogle Scholar
  183. Sorkin A, Carpenter G (1993) Interaction of activated EGF receptors with coated pit adaptins. Science 261(5121):612–615CrossRefGoogle Scholar
  184. Sorkin A, Goh LK (2008) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 314(17):3093–3106.  https://doi.org/10.1016/j.yexcr.2008.08.013CrossRefPubMedPubMedCentralGoogle Scholar
  185. Sorkin A, Krolenko S, Kudrjavtceva N, Lazebnik J, Teslenko L, Soderquist AM, Nikolsky N (1991) Recycling of epidermal growth factor-receptor complexes in A431 cells: identification of dual pathways. J Cell Biol 112(1):55–63CrossRefGoogle Scholar
  186. Sousa LP, Lax I, Shen H, Ferguson SM, De Camilli P, Schlessinger J (2012) Suppression of EGFR endocytosis by dynamin depletion reveals that EGFR signaling occurs primarily at the plasma membrane. Proc Natl Acad Sci U S A 109(12):4419–4424.  https://doi.org/10.1073/pnas.1200164109CrossRefPubMedPubMedCentralGoogle Scholar
  187. Spangler JB, Neil JR, Abramovitch S, Yarden Y, White FM, Lauffenburger DA, Wittrup KD (2010) Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci U S A 107(30):13252–13257.  https://doi.org/10.1073/pnas.0913476107CrossRefPubMedPubMedCentralGoogle Scholar
  188. Stern KA, Place TL, Lill NL (2008) EGF and amphiregulin differentially regulate Cbl recruitment to endosomes and EGF receptor fate. Biochem J 410(3):585–594.  https://doi.org/10.1042/BJ20071505CrossRefPubMedPubMedCentralGoogle Scholar
  189. Stoscheck CM, Carpenter G (1984) Characterization of the metabolic turnover of epidermal growth factor receptor protein in A-431 cells. J Cell Physiol 120(3):296–302.  https://doi.org/10.1002/jcp.1041200306CrossRefPubMedGoogle Scholar
  190. Suetsugu S, Yamazaki D, Kurisu S, Takenawa T (2003) Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev Cell 5(4):595–609CrossRefGoogle Scholar
  191. Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, Sabatini DD, De Robertis EM (2010) Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143(7):1136–1148.  https://doi.org/10.1016/j.cell.2010.11.034CrossRefPubMedPubMedCentralGoogle Scholar
  192. Tartaglia M, Gelb BD, Zenker M (2011) Noonan syndrome and clinically related disorders. Best Pract Res Clin Endocrinol Metab 25(1):161–179.  https://doi.org/10.1016/j.beem.2010.09.002CrossRefPubMedPubMedCentralGoogle Scholar
  193. Thalappilly S, Soubeyran P, Iovanna JL, Dusetti NJ (2010) VAV2 regulates epidermal growth factor receptor endocytosis and degradation. Oncogene 29(17):2528–2539.  https://doi.org/10.1038/onc.2010.1CrossRefPubMedGoogle Scholar
  194. Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, Thongprasert S, Tan EH, Pemberton K, Archer V, Carroll K (2005) Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366(9496):1527–1537.  https://doi.org/10.1016/S0140-6736(05)67625-8CrossRefPubMedGoogle Scholar
  195. Tsvetanova NG, von Zastrow M (2014) Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat Chem Biol 10(12):1061–1065.  https://doi.org/10.1038/nchembio.1665CrossRefPubMedPubMedCentralGoogle Scholar
  196. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J et al (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309(5967):418–425CrossRefGoogle Scholar
  197. Umebayashi K, Stenmark H, Yoshimori T (2008) Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation. Mol Biol Cell 19(8):3454–3462.  https://doi.org/10.1091/mbc.E07-10-0988CrossRefPubMedPubMedCentralGoogle Scholar
  198. Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274(5295):2086–2089CrossRefGoogle Scholar
  199. Villasenor R, Nonaka H, Del Conte-Zerial P, Kalaidzidis Y, Zerial M (2015) Regulation of EGFR signal transduction by analogue-to-digital conversion in endosomes. Elife 4.  https://doi.org/10.7554/elife.06156
  200. Villasenor R, Kalaidzidis Y, Zerial M (2016) Signal processing by the endosomal system. Curr Opin Cell Biol 39:53–60.  https://doi.org/10.1016/j.ceb.2016.02.002CrossRefPubMedGoogle Scholar
  201. Vincenzi B, Schiavon G, Silletta M, Santini D, Tonini G (2008) The biological properties of cetuximab. Crit Rev Oncol Hematol 68(2):93–106.  https://doi.org/10.1016/j.critrevonc.2008.07.006CrossRefPubMedGoogle Scholar
  202. Wandinger-Ness A, Zerial M (2014) Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 6(11):a022616.  https://doi.org/10.1101/cshperspect.a022616CrossRefPubMedPubMedCentralGoogle Scholar
  203. Wang Y, Roche O, Yan MS, Finak G, Evans AJ, Metcalf JL, Hast BE, Hanna SC, Wondergem B, Furge KA, Irwin MS, Kim WY, Teh BT, Grinstein S, Park M, Marsden PA, Ohh M (2009) Regulation of endocytosis via the oxygen-sensing pathway. Nat Med 15(3):319–324.  https://doi.org/10.1038/nm.1922CrossRefPubMedGoogle Scholar
  204. Waterman H, Sabanai I, Geiger B, Yarden Y (1998) Alternative intracellular routing of ErbB receptors may determine signaling potency. J Biol Chem 273(22):13819–13827CrossRefGoogle Scholar
  205. Waterman H, Alroy I, Strano S, Seger R, Yarden Y (1999a) The C-terminus of the kinase-defective neuregulin receptor ErbB-3 confers mitogenic superiority and dictates endocytic routing. EMBO J 18(12):3348–3358.  https://doi.org/10.1093/emboj/18.12.3348CrossRefPubMedPubMedCentralGoogle Scholar
  206. Waterman H, Levkowitz G, Alroy I, Yarden Y (1999b) The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J Biol Chem 274(32):22151–22154CrossRefGoogle Scholar
  207. Waterman H, Katz M, Rubin C, Shtiegman K, Lavi S, Elson A, Jovin T, Yarden Y (2002) A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling. EMBO J 21(3):303–313.  https://doi.org/10.1093/emboj/21.3.303CrossRefPubMedPubMedCentralGoogle Scholar
  208. West M, Zurek N, Hoenger A, Voeltz GK (2011) A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J Cell Biol 193(2):333–346.  https://doi.org/10.1083/jcb.201011039CrossRefPubMedPubMedCentralGoogle Scholar
  209. White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE (2006) EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J 25(1):1–12.  https://doi.org/10.1038/sj.emboj.7600759CrossRefPubMedGoogle Scholar
  210. Wiley HS (1988) Anomalous binding of epidermal growth factor to A431 cells is due to the effect of high receptor densities and a saturable endocytic system. J Cell Biol 107(2):801–810CrossRefGoogle Scholar
  211. Wiley HS, Herbst JJ, Walsh BJ, Lauffenburger DA, Rosenfeld MG, Gill GN (1991) The role of tyrosine kinase activity in endocytosis, compartmentation, and down-regulation of the epidermal growth factor receptor. J Biol Chem 266(17):11083–11094PubMedGoogle Scholar
  212. Wiley HS, Shvartsman SY, Lauffenburger DA (2003) Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol 13(1):43–50CrossRefGoogle Scholar
  213. Wilson KJ, Gilmore JL, Foley J, Lemmon MA, Riese DJ 2nd (2009) Functional selectivity of EGF family peptide growth factors: implications for cancer. Pharmacol Ther 122(1):1–8.  https://doi.org/10.1016/j.pharmthera.2008.11.008CrossRefPubMedGoogle Scholar
  214. Wilson KJ, Mill C, Lambert S, Buchman J, Wilson TR, Hernandez-Gordillo V, Gallo RM, Ades LM, Settleman J, Riese DJ 2nd (2012) EGFR ligands exhibit functional differences in models of paracrine and autocrine signaling. Growth Factors 30(2):107–116.  https://doi.org/10.3109/08977194.2011.649918CrossRefPubMedPubMedCentralGoogle Scholar
  215. Wollert T, Yang D, Ren X, Lee HH, Im YJ, Hurley JH (2009) The ESCRT machinery at a glance. J Cell Sci 122(Pt 13):2163–2166.  https://doi.org/10.1242/jcs.029884CrossRefPubMedPubMedCentralGoogle Scholar
  216. Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS, Vogelstein B (1992) Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci U S A 89(7):2965–2969CrossRefPubMedCentralGoogle Scholar
  217. Worthylake R, Opresko LK, Wiley HS (1999) ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem 274(13):8865–8874CrossRefGoogle Scholar
  218. Wu WJ, Tu S, Cerione RA (2003) Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell 114(6):715–725CrossRefGoogle Scholar
  219. Yamamoto H, Komekado H, Kikuchi A (2006) Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell 11(2):213–223.  https://doi.org/10.1016/j.devcel.2006.07.003CrossRefPubMedGoogle Scholar
  220. Yamamoto H, Sakane H, Michiue T, Kikuchi A (2008) Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling. Dev Cell 15(1):37–48.  https://doi.org/10.1016/j.devcel.2008.04.015CrossRefPubMedGoogle Scholar
  221. Yarden Y, Pines G (2012) The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 12(8):553–563.  https://doi.org/10.1038/nrc3309CrossRefPubMedGoogle Scholar
  222. Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, Eck MJ (2007) Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11(3):217–227.  https://doi.org/10.1016/j.ccr.2006.12.017CrossRefPubMedPubMedCentralGoogle Scholar
  223. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125(6):1137–1149.  https://doi.org/10.1016/j.cell.2006.05.013CrossRefPubMedGoogle Scholar
  224. Zhang X, Pickin KA, Bose R, Jura N, Cole PA, Kuriyan J (2007) Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 450(7170):741–744.  https://doi.org/10.1038/nature05998CrossRefPubMedPubMedCentralGoogle Scholar
  225. Zhao S, Sedwick D, Wang Z (2015) Genetic alterations of protein tyrosine phosphatases in human cancers. Oncogene 34(30):3885–3894.  https://doi.org/10.1038/onc.2014.326CrossRefPubMedGoogle Scholar
  226. Zoncu R, Perera RM, Balkin DM, Pirruccello M, Toomre D, De Camilli P (2009) A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136(6):1110–1121.  https://doi.org/10.1016/j.cell.2009.01.032CrossRefPubMedPubMedCentralGoogle Scholar
  227. Zwick E, Bange J, Ullrich A (2001) Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer 8(3):161–173CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Giusi Caldieri
    • 1
    • 2
  • Maria Grazia Malabarba
    • 1
    • 2
  • Pier Paolo Di Fiore
    • 1
    • 2
  • Sara Sigismund
    • 1
    • 2
  1. 1.Dipartimento di Oncologia ed Emato-oncologiaUniversità degli Studi di MilanoMilanItaly
  2. 2.Istituto Europeo di OncologiaMilanItaly

Personalised recommendations