Advertisement

The Endosomal Network: Mediators and Regulators of Endosome Maturation

  • Maria Podinovskaia
  • Anne Spang
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 57)

Abstract

Endocytosis is a means for the cell to sample its environment for nutrients and regulate plasma membrane (PM) composition and area. Whereas the majority of internalized cargo is recycled back to the cell surface, select material is sent to the lysosome for degradation. Endosomes further play major roles in central cell activities as diverse as establishment of cell polarity and signaling, lysosomal storage and immunity. The complexity of endosomal functions is reflected by the extensive changes to endosome properties as they mature. The identity of individual endosomes is influenced by the presence of specific Rab GTPases and phosphoinositides (PIPs), which coordinate membrane traffic and facilitate endosomal functions. Motors and tethers direct the endosomes to the required locations and moderate fusion with other organelles. The maintenance of the elaborate endosomal network is supported by the ER and the trans-Golgi network (TGN), which promote the exchange of membrane components, provide enzymes, and assist with signaling. Additionally, V-ATPase is emerging as an underappreciated coordinator of endosome maturation and cell signaling. The inputs of the various mediators of endosome maturation are tightly regulated and coordinated to ensure appropriate maintenance and functioning of endosomes at each stage of the maturation process. Perturbations in endosome maturation are implicated in devastating diseases, such as neurodegeneration and cancer, and the endosome maturation processes are manipulated and exploited by intracellular pathogens to meet their own needs. A greater understanding of coordination and fine-tuning of endosome maturation will help us address various pathologies more effectively.

Abbreviations

EE

Early endosome

CI-M6PR

Cation-independent mannose-6-phosphate receptor

ILV

Intra luminal vesicle

LE

Late endosome

MVB

Multivesicular body

PIP

Phosphoinositide phosphate

PM

Plasma membrane

TfR

Transferrin receptor

TGN

Trans-Golgi network

References

  1. Abenza JF, Galindo A, Pinar M, Pantazopoulou A, de los Rios V, Penalva MA (2012) Endosomal maturation by Rab conversion in Aspergillus nidulans is coupled to dynein-mediated basipetal movement. Mol Biol Cell 23(10):1889–1901.  https://doi.org/10.1091/mbc.E11-11-0925CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adell MA, Vogel GF, Pakdel M, Muller M, Lindner H, Hess MW, Teis D (2014) Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation. J Cell Biol 205(1):33–49.  https://doi.org/10.1083/jcb.201310114CrossRefPubMedPubMedCentralGoogle Scholar
  3. Akbar MA, Mandraju R, Tracy C, Hu W, Pasare C, Kramer H (2016) ARC syndrome-linked Vps33B protein is required for inflammatory endosomal maturation and signal termination. Immunity 45(2):267–279.  https://doi.org/10.1016/j.immuni.2016.07.010CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amaya C, Militello RD, Calligaris SD, Colombo MI (2016) Rab24 interacts with the Rab7/Rab interacting lysosomal protein complex to regulate endosomal degradation. Traffic 17(11):1181–1196.  https://doi.org/10.1111/tra.12431CrossRefPubMedGoogle Scholar
  5. Andrews NW, Corrotte M, Castro-Gomes T (2015) Above the fray: surface remodeling by secreted lysosomal enzymes leads to endocytosis-mediated plasma membrane repair. Semin Cell Dev Biol 45:10–17.  https://doi.org/10.1016/j.semcdb.2015.09.022CrossRefPubMedPubMedCentralGoogle Scholar
  6. Antonescu CN, Aguet F, Danuser G, Schmid SL (2011) Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol Biol Cell 22(14):2588–2600.  https://doi.org/10.1091/mbc.E11-04-0362CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ao X, Zou L, Wu Y (2014) Regulation of autophagy by the Rab GTPase network. Cell Death Differ 21(3):348–358.  https://doi.org/10.1038/cdd.2013.187CrossRefPubMedPubMedCentralGoogle Scholar
  8. Armstrong J (2010) Yeast vacuoles: more than a model lysosome. Trends Cell Biol 20(10):580–585.  https://doi.org/10.1016/j.tcb.2010.06.010CrossRefPubMedGoogle Scholar
  9. Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y (2008) Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3(5):316–322.  https://doi.org/10.1016/j.chom.2008.03.008CrossRefPubMedGoogle Scholar
  10. Balderhaar HJ, Ungermann C (2013) CORVET and HOPS tethering complexes—coordinators of endosome and lysosome fusion. J Cell Sci 126(Pt 6):1307–1316.  https://doi.org/10.1242/jcs.107805CrossRefPubMedGoogle Scholar
  11. Baravalle G, Schober D, Huber M, Bayer N, Murphy RF, Fuchs R (2005) Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature. Cell Tissue Res 320(1):99–113.  https://doi.org/10.1007/s00441-004-1060-xCrossRefPubMedGoogle Scholar
  12. Bean BD, Davey M, Conibear E (2017) Cargo selectivity of yeast sorting nexins. Traffic 18(2):110–122.  https://doi.org/10.1111/tra.12459CrossRefPubMedGoogle Scholar
  13. Ben-Sahra I, Manning BD (2017) mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol 45:72–82.  https://doi.org/10.1016/j.ceb.2017.02.012CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bissig C, Hurbain I, Raposo G, van Niel G (2017) PIKfyve activity regulates reformation of terminal storage lysosomes from endolysosomes. Traffic 18(11):747–757.  https://doi.org/10.1111/tra.12525CrossRefPubMedGoogle Scholar
  15. Boal F, Mansour R, Gayral M, Saland E, Chicanne G, Xuereb JM, Marcellin M, Burlet-Schiltz O, Sansonetti PJ, Payrastre B, Tronchere H (2015) TOM1 is a PI5P effector involved in the regulation of endosomal maturation. J Cell Sci 128(4):815–827.  https://doi.org/10.1242/jcs.166314CrossRefPubMedGoogle Scholar
  16. Boes M, Cuvillier A, Ploegh H (2004) Membrane specializations and endosome maturation in dendritic cells and B cells. Trends Cell Biol 14(4):175–183.  https://doi.org/10.1016/j.tcb.2004.02.004CrossRefPubMedGoogle Scholar
  17. Bohdanowicz M, Grinstein S (2013) Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol Rev 93(1):69–106.  https://doi.org/10.1152/physrev.00002.2012CrossRefPubMedGoogle Scholar
  18. Borland H, Vilhardt F (2017) Prelysosomal compartments in the unconventional secretion of amyloidogenic seeds. Int J Mol Sci 18(1).  https://doi.org/10.3390/ijms18010227
  19. Bouchez I, Pouteaux M, Canonge M, Genet M, Chardot T, Guillot A, Froissard M (2015) Regulation of lipid droplet dynamics in Saccharomyces cerevisiae depends on the Rab7-like Ypt7p, HOPS complex and V1-ATPase. Biol Open 4(7):764–775.  https://doi.org/10.1242/bio.20148615CrossRefPubMedPubMedCentralGoogle Scholar
  20. Broniarczyk J, Pim D, Massimi P, Bergant M, Gozdzicka-Jozefiak A, Crump C, Banks L (2017) The VPS4 component of the ESCRT machinery plays an essential role in HPV infectious entry and capsid disassembly. Sci Rep 7:45159.  https://doi.org/10.1038/srep45159CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11(2):467–480CrossRefPubMedCentralGoogle Scholar
  22. Buckley CM, King JS (2017) Drinking problems: mechanisms of macropinosome formation and maturation. FEBS J.  https://doi.org/10.1111/febs.14115CrossRefPubMedGoogle Scholar
  23. Candiello E, Kratzke M, Wenzel D, Cassel D, Schu P (2016) AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway. Sci Rep 6:29950.  https://doi.org/10.1038/srep29950CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cao Q, Zhong XZ, Zou Y, Murrell-Lagnado R, Zhu MX, Dong XP (2015) Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. J Cell Biol 209(6):879–894.  https://doi.org/10.1083/jcb.201409071CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cardoso CM, Jordao L, Vieira OV (2010) Rab10 regulates phagosome maturation and its overexpression rescues Mycobacterium-containing phagosomes maturation. Traffic 11(2):221–235.  https://doi.org/10.1111/j.1600-0854.2009.01013.xCrossRefPubMedGoogle Scholar
  26. Caviglia S, Brankatschk M, Fischer EJ, Eaton S, Luschnig S (2016) Staccato/Unc-13-4 controls secretory lysosome-mediated lumen fusion during epithelial tube anastomosis. Nat Cell Biol 18(7):727–739.  https://doi.org/10.1038/ncb3374CrossRefPubMedGoogle Scholar
  27. Chen PI, Kong C, Su X, Stahl PD (2009) Rab5 isoforms differentially regulate the trafficking and degradation of epidermal growth factor receptors. J Biol Chem 284(44):30328–30338.  https://doi.org/10.1074/jbc.M109.034546CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chen SH, Bubb MR, Yarmola EG, Zuo J, Jiang J, Lee BS, Lu M, Gluck SL, Hurst IR, Holliday LS (2004) Vacuolar H+-ATPase binding to microfilaments: regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B. J Biol Chem 279(9):7988–7998.  https://doi.org/10.1074/jbc.M305351200CrossRefPubMedGoogle Scholar
  29. Chirivino D, Del Maestro L, Formstecher E, Hupe P, Raposo G, Louvard D, Arpin M (2011) The ERM proteins interact with the HOPS complex to regulate the maturation of endosomes. Mol Biol Cell 22(3):375–385.  https://doi.org/10.1091/mbc.E10-09-0796CrossRefPubMedPubMedCentralGoogle Scholar
  30. Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, Zerial M (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1(4):249–252.  https://doi.org/10.1038/12075CrossRefPubMedGoogle Scholar
  31. Clague MJ, Hammond DE (2006) Membrane traffic: catching the lysosome express. Current Biol CB 16(11):R416–R418.  https://doi.org/10.1016/j.cub.2006.05.009CrossRefGoogle Scholar
  32. Clarke M, Maddera L, Engel U, Gerisch G (2010) Retrieval of the vacuolar H-ATPase from phagosomes revealed by live cell imaging. PLoS ONE 5(1):e8585.  https://doi.org/10.1371/journal.pone.0008585CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cogli L, Progida C, Bramato R, Bucci C (2013) Vimentin phosphorylation and assembly are regulated by the small GTPase Rab7a. Biochem Biophys Acta 1833(6):1283–1293.  https://doi.org/10.1016/j.bbamcr.2013.02.024CrossRefPubMedGoogle Scholar
  34. Colacurcio DJ, Nixon RA (2016) Disorders of lysosomal acidification—the emerging role of v-ATPase in aging and neurodegenerative disease. Age Res Rev 32:75–88.  https://doi.org/10.1016/j.arr.2016.05.004CrossRefGoogle Scholar
  35. Compagnon J, Gervais L, Roman MS, Chamot-Boeuf S, Guichet A (2009) Interplay between Rab5 and PtdIns(4,5)P2 controls early endocytosis in the Drosophila germline. J Cell Sci 122(Pt 1):25–35.  https://doi.org/10.1242/jcs.033027CrossRefPubMedGoogle Scholar
  36. Compton LM, Ikonomov OC, Sbrissa D, Garg P, Shisheva A (2016) Active vacuolar H+ATPase and functional cycle of Rab5 are required for the vacuolation defect triggered by PtdIns(3,5)P2 loss under PIKfyve or Vps34 deficiency. Am J Physiol Cell Physiol 311(3):C366–C377.  https://doi.org/10.1152/ajpcell.00104.2016CrossRefPubMedPubMedCentralGoogle Scholar
  37. Cotter K, Stransky L, McGuire C, Forgac M (2015) Recent Insights into the structure, regulation, and function of the V-ATPases. Trends Biochem Sci 40(10):611–622.  https://doi.org/10.1016/j.tibs.2015.08.005CrossRefPubMedPubMedCentralGoogle Scholar
  38. Currinn H, Wassmer T (2016) The amyloid precursor protein (APP) binds the PIKfyve complex and modulates its function. Biochem Soc Trans 44(1):185–190.  https://doi.org/10.1042/BST20150179CrossRefPubMedGoogle Scholar
  39. D’Costa VM, Braun V, Landekic M, Shi R, Proteau A, McDonald L, Cygler M, Grinstein S, Brumell JH (2015) Salmonella disrupts host endocytic trafficking by SopD2-mediated inhibition of Rab7. Cell Rep 12(9):1508–1518.  https://doi.org/10.1016/j.celrep.2015.07.063CrossRefPubMedGoogle Scholar
  40. D’Souza RS, Semus R, Billings EA, Meyer CB, Conger K, Casanova JE (2014) Rab4 orchestrates a small GTPase cascade for recruitment of adaptor proteins to early endosomes. Current Biol CB 24(11):1187–1198.  https://doi.org/10.1016/j.cub.2014.04.003CrossRefGoogle Scholar
  41. Danson C, Brown E, Hemmings OJ, McGough IJ, Yarwood S, Heesom KJ, Carlton JG, Martin-Serrano J, May MT, Verkade P, Cullen PJ (2013) SNX15 links clathrin endocytosis to the PtdIns3P early endosome independently of the APPL1 endosome. J Cell Sci 126(Pt 21):4885–4899.  https://doi.org/10.1242/jcs.125732CrossRefPubMedPubMedCentralGoogle Scholar
  42. Dayam RM, Saric A, Shilliday RE, Botelho RJ (2015) The Phosphoinositide-gated lysosomal Ca(2+) channel, TRPML1, is required for phagosome maturation. Traffic 16(9):1010–1026.  https://doi.org/10.1111/tra.12303CrossRefPubMedGoogle Scholar
  43. de Armas-Rillo L, Valera MS, Marrero-Hernandez S, Valenzuela-Fernandez A (2016) Membrane dynamics associated with viral infection. Rev Med Virol 26(3):146–160.  https://doi.org/10.1002/rmv.1872CrossRefPubMedPubMedCentralGoogle Scholar
  44. De Luca M, Bucci C (2014) A new V-ATPase regulatory mechanism mediated by the Rab interacting lysosomal protein (RILP). Commun Integr Biol 7(5).  https://doi.org/10.4161/cib.29616
  45. De Luca M, Cogli L, Progida C, Nisi V, Pascolutti R, Sigismund S, Di Fiore PP, Bucci C (2014) RILP regulates vacuolar ATPase through interaction with the V1G1 subunit. J Cell Sci 127(Pt 12):2697–2708.  https://doi.org/10.1242/jcs.142604CrossRefPubMedGoogle Scholar
  46. Del Conte-Zerial P, Brusch L, Rink JC, Collinet C, Kalaidzidis Y, Zerial M, Deutsch A (2008) Membrane identity and GTPase cascades regulated by toggle and cut-out switches. Mol Syst Biol 4:206.  https://doi.org/10.1038/msb.2008.45CrossRefPubMedPubMedCentralGoogle Scholar
  47. Desfougeres Y, Vavassori S, Rompf M, Gerasimaite R, Mayer A (2016) Organelle acidification negatively regulates vacuole membrane fusion in vivo. Sci Rep 6:29045.  https://doi.org/10.1038/srep29045CrossRefPubMedPubMedCentralGoogle Scholar
  48. Dieckmann R, Gueho A, Monroy R, Ruppert T, Bloomfield G, Soldati T (2012) The balance in the delivery of ER components and the vacuolar proton pump to the phagosome depends on myosin IK in Dictyostelium. Mol Cell Proteomics MCP 11(10):886–900.  https://doi.org/10.1074/mcp.M112.017608CrossRefPubMedGoogle Scholar
  49. Dill BD, Gierlinski M, Hartlova A, Arandilla AG, Guo M, Clarke RG, Trost M (2015) Quantitative proteome analysis of temporally resolved phagosomes following uptake via key phagocytic receptors. Mol Cell Proteomics MCP 14(5):1334–1349.  https://doi.org/10.1074/mcp.M114.044594CrossRefPubMedGoogle Scholar
  50. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902.  https://doi.org/10.1146/annurev.biochem.78.081307.110540CrossRefPubMedGoogle Scholar
  51. Dolat L, Spiliotis ET (2016) Septins promote macropinosome maturation and traffic to the lysosome by facilitating membrane fusion. J Cell Biol 214(5):517–527.  https://doi.org/10.1083/jcb.201603030CrossRefPubMedPubMedCentralGoogle Scholar
  52. Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 1:38.  https://doi.org/10.1038/ncomms1037CrossRefPubMedPubMedCentralGoogle Scholar
  53. Dove SK, Dong K, Kobayashi T, Williams FK, Michell RH (2009) Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419(1):1–13.  https://doi.org/10.1042/BJ20081950CrossRefPubMedGoogle Scholar
  54. Driskell OJ, Mironov A, Allan VJ, Woodman PG (2007) Dynein is required for receptor sorting and the morphogenesis of early endosomes. Nat Cell Biol 9(1):113–120.  https://doi.org/10.1038/ncb1525CrossRefPubMedGoogle Scholar
  55. Duleh SN, Welch MD (2010) WASH and the Arp2/3 complex regulate endosome shape and trafficking. Cytoskeleton 67(3):193–206.  https://doi.org/10.1002/cm.20437CrossRefPubMedGoogle Scholar
  56. Elbaz-Alon Y, Rosenfeld-Gur E, Shinder V, Futerman AH, Geiger T, Schuldiner M (2014) A dynamic interface between vacuoles and mitochondria in yeast. Dev Cell 30(1):95–102.  https://doi.org/10.1016/j.devcel.2014.06.007CrossRefPubMedGoogle Scholar
  57. Endo Y, Furuta A, Nishino I (2015) Danon disease: a phenotypic expression of LAMP-2 deficiency. Acta Neuropathol 129(3):391–398.  https://doi.org/10.1007/s00401-015-1385-4CrossRefPubMedGoogle Scholar
  58. Fairn GD, Grinstein S (2012) How nascent phagosomes mature to become phagolysosomes. Trends Immunol 33(8):397–405.  https://doi.org/10.1016/j.it.2012.03.003CrossRefPubMedGoogle Scholar
  59. Fili N, Calleja V, Woscholski R, Parker PJ, Larijani B (2006) Compartmental signal modulation: endosomal phosphatidylinositol 3-phosphate controls endosome morphology and selective cargo sorting. Proc Natl Acad Sci USA 103(42):15473–15478.  https://doi.org/10.1073/pnas.0607040103CrossRefPubMedGoogle Scholar
  60. Freeman SA, Grinstein S (2014) Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 262(1):193–215.  https://doi.org/10.1111/imr.12212CrossRefPubMedGoogle Scholar
  61. Friedman JR, Dibenedetto JR, West M, Rowland AA, Voeltz GK (2013) Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol Biol Cell 24(7):1030–1040.  https://doi.org/10.1091/mbc.E12-10-0733CrossRefPubMedPubMedCentralGoogle Scholar
  62. Gao N, Kaestner KH (2010) Cdx2 regulates endo-lysosomal function and epithelial cell polarity. Genes Dev 24(12):1295–1305.  https://doi.org/10.1101/gad.1921510CrossRefPubMedPubMedCentralGoogle Scholar
  63. Garg S, Sharma M, Ung C, Tuli A, Barral DC, Hava DL, Veerapen N, Besra GS, Hacohen N, Brenner MB (2011) Lysosomal trafficking, antigen presentation, and microbial killing are controlled by the Arf-like GTPase Arl8b. Immunity 35(2):182–193.  https://doi.org/10.1016/j.immuni.2011.06.009CrossRefPubMedPubMedCentralGoogle Scholar
  64. Garrity AG, Wang W, Collier CM, Levey SA, Gao Q, Xu H (2016) The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. eLife 5.  https://doi.org/10.7554/elife.15887
  65. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11(9):1143–1149.  https://doi.org/10.1038/ncb1929CrossRefPubMedGoogle Scholar
  66. Gopaldass N, Patel D, Kratzke R, Dieckmann R, Hausherr S, Hagedorn M, Monroy R, Kruger J, Neuhaus EM, Hoffmann E, Hille K, Kuznetsov SA, Soldati T (2012) Dynamin A, Myosin IB and Abp1 couple phagosome maturation to F-actin binding. Traffic 13(1):120–130.  https://doi.org/10.1111/j.1600-0854.2011.01296.xCrossRefPubMedGoogle Scholar
  67. Granger E, McNee G, Allan V, Woodman P (2014) The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol 31:20–29.  https://doi.org/10.1016/j.semcdb.2014.04.011CrossRefPubMedPubMedCentralGoogle Scholar
  68. Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10(9):597–608.  https://doi.org/10.1038/nrm2755CrossRefPubMedPubMedCentralGoogle Scholar
  69. Griffiths GM (2016) Secretion from myeloid cells: secretory lysosomes. Microbiol Spectr 4(4).  https://doi.org/10.1128/microbiolspec.mchd-0030-2016
  70. Grimm C, Butz E, Chen CC, Wahl-Schott C, Biel M (2017) From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease. Cell Calcium.  https://doi.org/10.1016/j.ceca.2017.04.003CrossRefPubMedGoogle Scholar
  71. Gschweitl M, Ulbricht A, Barnes CA, Enchev RI, Stoffel-Studer I, Meyer-Schaller N, Huotari J, Yamauchi Y, Greber UF, Helenius A, Peter M (2016) A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. eLife 5:e13841.  https://doi.org/10.7554/elife.13841CrossRefPubMedPubMedCentralGoogle Scholar
  72. Guerra F, Bucci C (2016) Multiple roles of the small GTPase Rab7. Cells 5(3).  https://doi.org/10.3390/cells5030034
  73. Gutierrez MG (2013) Functional role(s) of phagosomal Rab GTPases. Small GTPases 4(3):148–158.  https://doi.org/10.4161/sgtp.25604CrossRefPubMedPubMedCentralGoogle Scholar
  74. Hammerling BC, Najor RH, Cortez MQ, Shires SE, Leon LJ, Gonzalez ER, Boassa D, Phan S, Thor A, Jimenez RE, Li H, Kitsis RN, Dorn Ii GW, Sadoshima J, Ellisman MH, Gustafsson AB (2017) A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat Commun 8:14050.  https://doi.org/10.1038/ncomms14050CrossRefPubMedPubMedCentralGoogle Scholar
  75. Harrison RE, Bucci C, Vieira OV, Schroer TA, Grinstein S (2003) Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol Cell Biol 23(18):6494–6506CrossRefPubMedCentralGoogle Scholar
  76. Hay JC (2007) Calcium: a fundamental regulator of intracellular membrane fusion? EMBO Rep 8(3):236–240.  https://doi.org/10.1038/sj.embor.7400921CrossRefPubMedPubMedCentralGoogle Scholar
  77. He J, Johnson JL, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, Zhang J, Catz SD (2016) Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell 27(3):572–587.  https://doi.org/10.1091/mbc.E15-05-0283CrossRefPubMedPubMedCentralGoogle Scholar
  78. Hegedus K, Takats S, Boda A, Jipa A, Nagy P, Varga K, Kovacs AL, Juhasz G (2016) The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy. Mol Biol Cell 27(20):3132–3142.  https://doi.org/10.1091/mbc.E16-03-0205CrossRefPubMedPubMedCentralGoogle Scholar
  79. Hirano T, Munnik T, Sato MH (2015) Phosphatidylinositol 3-phosphate 5-kinase, FAB1/PIKfyve Kinase mediates endosome maturation to establish endosome-cortical microtubule interaction in Arabidopsis. Plant Physiol 169(3):1961–1974.  https://doi.org/10.1104/pp.15.01368CrossRefPubMedPubMedCentralGoogle Scholar
  80. Honscher C, Mari M, Auffarth K, Bohnert M, Griffith J, Geerts W, van der Laan M, Cabrera M, Reggiori F, Ungermann C (2014) Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev Cell 30(1):86–94.  https://doi.org/10.1016/j.devcel.2014.06.006CrossRefPubMedGoogle Scholar
  81. Hsu F, Hu F, Mao Y (2015) Spatiotemporal control of phosphatidylinositol 4-phosphate by Sac2 regulates endocytic recycling. J Cell Biol 209(1):97–110.  https://doi.org/10.1083/jcb.201408027CrossRefPubMedPubMedCentralGoogle Scholar
  82. Hu YB, Dammer EB, Ren RJ, Wang G (2015) The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegeneration 4:18.  https://doi.org/10.1186/s40035-015-0041-1CrossRefGoogle Scholar
  83. Huang C, Chang A (2011) pH-dependent cargo sorting from the Golgi. J Biol Chem 286(12):10058–10065.  https://doi.org/10.1074/jbc.M110.197889CrossRefPubMedPubMedCentralGoogle Scholar
  84. Hubner M, Peter M (2012) Cullin-3 and the endocytic system: new functions of ubiquitination for endosome maturation. Cell Logistics 2(3):166–168.  https://doi.org/10.4161/cl.20372CrossRefGoogle Scholar
  85. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30(17):3481–3500.  https://doi.org/10.1038/emboj.2011.286CrossRefPubMedPubMedCentralGoogle Scholar
  86. Hurtado-Lorenzo A, Skinner M, El Annan J, Futai M, Sun-Wada GH, Bourgoin S, Casanova J, Wildeman A, Bechoua S, Ausiello DA, Brown D, Marshansky V (2006) V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 8(2):124–136.  https://doi.org/10.1038/ncb1348CrossRefPubMedGoogle Scholar
  87. Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S (2007) LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J 26(2):313–324.  https://doi.org/10.1038/sj.emboj.7601511CrossRefPubMedPubMedCentralGoogle Scholar
  88. Issman-Zecharya N, Schuldiner O (2014) The PI3K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation. Dev Cell 31(4):461–473.  https://doi.org/10.1016/j.devcel.2014.10.013CrossRefPubMedGoogle Scholar
  89. Jaber N, Mohd-Naim N, Wang Z, DeLeon JL, Kim S, Zhong H, Sheshadri N, Dou Z, Edinger AL, Du G, Braga VM, Zong WX (2016) Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase-activating protein Armus. J Cell Sci 129(23):4424–4435.  https://doi.org/10.1242/jcs.192260CrossRefPubMedPubMedCentralGoogle Scholar
  90. Jacomin AC, Fauvarque MO, Taillebourg E (2016) A functional endosomal pathway is necessary for lysosome biogenesis in Drosophila. BMC cell biology 17(1):36.  https://doi.org/10.1186/s12860-016-0115-7CrossRefPubMedPubMedCentralGoogle Scholar
  91. Jean S, Kiger AA (2012) Coordination between RAB GTPase and phosphoinositide regulation and functions. Nat Rev Mol Cell Biol 13(7):463–470.  https://doi.org/10.1038/nrm3379CrossRefPubMedGoogle Scholar
  92. Jefferies KC, Cipriano DJ, Forgac M (2008) Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 476(1):33–42.  https://doi.org/10.1016/j.abb.2008.03.025CrossRefPubMedPubMedCentralGoogle Scholar
  93. Jeschke A, Zehethofer N, Lindner B, Krupp J, Schwudke D, Haneburger I, Jovic M, Backer JM, Balla T, Hilbi H, Haas A (2015) Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis. Proc Natl Acad Sci USA 112(15):4636–4641.  https://doi.org/10.1073/pnas.1423456112CrossRefPubMedGoogle Scholar
  94. Jiang P, Mizushima N (2014) Autophagy and human diseases. Cell Res 24(1):69–79.  https://doi.org/10.1038/cr.2013.161CrossRefPubMedGoogle Scholar
  95. Jimenez-Orgaz A, Kvainickas A, Nagele H, Denner J, Eimer S, Dengjel J, Steinberg F (2017) Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J.  https://doi.org/10.15252/embj.201797128CrossRefPubMedPubMedCentralGoogle Scholar
  96. Jin N, Lang MJ, Weisman LS (2016) Phosphatidylinositol 3,5-bisphosphate: regulation of cellular events in space and time. Biochem Soc Trans 44(1):177–184.  https://doi.org/10.1042/BST20150174CrossRefPubMedPubMedCentralGoogle Scholar
  97. John Peter AT, Lachmann J, Rana M, Bunge M, Cabrera M, Ungermann C (2013) The BLOC-1 complex promotes endosomal maturation by recruiting the Rab5 GTPase-activating protein Msb3. J Cell Biol 201(1):97–111.  https://doi.org/10.1083/jcb.201210038CrossRefPubMedPubMedCentralGoogle Scholar
  98. Johnson DE, Ostrowski P, Jaumouille V, Grinstein S (2016) The position of lysosomes within the cell determines their luminal pH. J Cell Biol 212(6):677–692.  https://doi.org/10.1083/jcb.201507112CrossRefPubMedPubMedCentralGoogle Scholar
  99. Jongsma ML, Berlin I, Wijdeven RH, Janssen L, Janssen GM, Garstka MA, Janssen H, Mensink M, van Veelen PA, Spaapen RM, Neefjes J (2016) An ER-associated pathway defines endosomal architecture for controlled cargo transport. Cell 166(1):152–166.  https://doi.org/10.1016/j.cell.2016.05.078CrossRefPubMedPubMedCentralGoogle Scholar
  100. Kalaidzidis I, Miaczynska M, Brewinska-Olchowik M, Hupalowska A, Ferguson C, Parton RG, Kalaidzidis Y, Zerial M (2015) APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. J Cell Biol 211(1):123–144.  https://doi.org/10.1083/jcb.201311117CrossRefPubMedPubMedCentralGoogle Scholar
  101. Kalin S, Hirschmann DT, Buser DP, Spiess M (2015) Rabaptin5 is recruited to endosomes by Rab4 and Rabex5 to regulate endosome maturation. J Cell Sci 128(22):4126–4137.  https://doi.org/10.1242/jcs.174664CrossRefPubMedGoogle Scholar
  102. Kamalesh K, Trivedi D, Toscano S, Sharma S, Kolay S, Raghu P (2017) Phosphatidylinositol 5-phosphate 4-kinase regulates early endosomal dynamics during clathrin-mediated endocytosis. J Cell Sci 130(13):2119–2133.  https://doi.org/10.1242/jcs.202259CrossRefPubMedPubMedCentralGoogle Scholar
  103. Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev MMBR 70(1):177–191.  https://doi.org/10.1128/MMBR.70.1.177-191.2006CrossRefPubMedGoogle Scholar
  104. Karim MA, Brett CL (2017) The Na(+)(K(+))/H(+) exchanger Nhx1 controls multivesicular body-vacuolar lysosome fusion. Mol Biol Cell.  https://doi.org/10.1091/mbc.E17-08-0496CrossRefPubMedPubMedCentralGoogle Scholar
  105. Kasmapour B, Gronow A, Bleck CK, Hong W, Gutierrez MG (2012) Size-dependent mechanism of cargo sorting during lysosome-phagosome fusion is controlled by Rab34. Proc Natl Acad Sci USA 109(50):20485–20490.  https://doi.org/10.1073/pnas.1206811109CrossRefPubMedGoogle Scholar
  106. Katzmann DJ, Stefan CJ, Babst M, Emr SD (2003) Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J Cell Biol 162(3):413–423.  https://doi.org/10.1083/jcb.200302136CrossRefPubMedPubMedCentralGoogle Scholar
  107. Ketel K, Krauss M, Nicot AS, Puchkov D, Wieffer M, Muller R, Subramanian D, Schultz C, Laporte J, Haucke V (2016) A phosphoinositide conversion mechanism for exit from endosomes. Nature 529(7586):408–412.  https://doi.org/10.1038/nature16516CrossRefPubMedGoogle Scholar
  108. Kharitidi D, Apaja PM, Manteghi S, Suzuki K, Malitskaya E, Roldan A, Gingras MC, Takagi J, Lukacs GL, Pause A (2015) Interplay of endosomal pH and ligand occupancy in integrin α5β1 ubiquitination, endocytic sorting, and cell migration. Cell Rep 13(3):599–609.  https://doi.org/10.1016/j.celrep.2015.09.024CrossRefPubMedGoogle Scholar
  109. Kharkwal H, Smith CG, Wilson DW (2016) Herpes simplex virus capsid localization to ESCRT-VPS4 complexes in the presence and absence of the large tegument protein UL36p. J Virol 90(16):7257–7267.  https://doi.org/10.1128/JVI.00857-16CrossRefPubMedPubMedCentralGoogle Scholar
  110. Kilpatrick BS, Eden ER, Schapira AH, Futter CE, Patel S (2013) Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals. J Cell Sci 126(Pt 1):60–66.  https://doi.org/10.1242/jcs.118836CrossRefPubMedGoogle Scholar
  111. Kim GH, Dayam RM, Prashar A, Terebiznik M, Botelho RJ (2014) PIKfyve inhibition interferes with phagosome and endosome maturation in macrophages. Traffic 15(10):1143–1163.  https://doi.org/10.1111/tra.12199CrossRefPubMedGoogle Scholar
  112. Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Soyombo AA, Muallem S (2008) A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO J 27(8):1197–1205.  https://doi.org/10.1038/emboj.2008.56CrossRefPubMedPubMedCentralGoogle Scholar
  113. Kim YM, Jung CH, Seo M, Kim EK, Park JM, Bae SS, Kim DH (2015) mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol Cell 57(2):207–218.  https://doi.org/10.1016/j.molcel.2014.11.013CrossRefPubMedGoogle Scholar
  114. King JS, Gueho A, Hagedorn M, Gopaldass N, Leuba F, Soldati T, Insall RH (2013) WASH is required for lysosomal recycling and efficient autophagic and phagocytic digestion. Mol Biol Cell 24(17):2714–2726.  https://doi.org/10.1091/mbc.E13-02-0092CrossRefPubMedPubMedCentralGoogle Scholar
  115. Kirkbride KC, Hong NH, French CL, Clark ES, Jerome WG, Weaver AM (2012) Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology. Cytoskeleton 69(9):625–643.  https://doi.org/10.1002/cm.21051CrossRefPubMedGoogle Scholar
  116. Kissing S, Hermsen C, Repnik U, Nesset CK, von Bargen K, Griffiths G, Ichihara A, Lee BS, Schwake M, De Brabander J, Haas A, Saftig P (2015) Vacuolar ATPase in phagosome-lysosome fusion. J Biol Chem 290(22):14166–14180.  https://doi.org/10.1074/jbc.M114.628891CrossRefPubMedPubMedCentralGoogle Scholar
  117. Kojima A, Toshima JY, Kanno C, Kawata C, Toshima J (2012) Localization and functional requirement of yeast Na+/H+ exchanger, Nhx1p, in the endocytic and protein recycling pathway. Biochem Biophys Acta 1823(2):534–543.  https://doi.org/10.1016/j.bbamcr.2011.12.004CrossRefPubMedGoogle Scholar
  118. Kriegel A, Andres Z, Medzihradszky A, Kruger F, Scholl S, Delang S, Patir-Nebioglu MG, Gute G, Yang H, Murphy AS, Peer WA, Pfeiffer A, Krebs M, Lohmann JU, Schumacher K (2015) Job sharing in the endomembrane system: vacuolar acidification requires the combined activity of V-ATPase and V-PPase. Plant Cell 27(12):3383–3396.  https://doi.org/10.1105/tpc.15.00733CrossRefPubMedPubMedCentralGoogle Scholar
  119. Kummel D, Ungermann C (2014) Principles of membrane tethering and fusion in endosome and lysosome biogenesis. Curr Opin Cell Biol 29:61–66.  https://doi.org/10.1016/j.ceb.2014.04.007CrossRefPubMedGoogle Scholar
  120. Kvainickas A, Jimenez-Orgaz A, Nagele H, Hu Z, Dengjel J, Steinberg F (2017) Cargo-selective SNX-BAR proteins mediate retromer trimer independent retrograde transport. J Cell Biol 216(11):3677–3693.  https://doi.org/10.1083/jcb.201702137CrossRefPubMedPubMedCentralGoogle Scholar
  121. Lakadamyali M, Rust MJ, Zhuang X (2006) Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124(5):997–1009.  https://doi.org/10.1016/j.cell.2005.12.038CrossRefPubMedPubMedCentralGoogle Scholar
  122. Law F, Seo JH, Wang Z, DeLeon JL, Bolis Y, Brown A, Zong WX, Du G, Rocheleau CE (2017) The VPS-34 PI3 kinase negatively regulates RAB-5 during endosome maturation. J Cell Sci.  https://doi.org/10.1242/jcs.194746CrossRefPubMedPubMedCentralGoogle Scholar
  123. Lawrence G, Brown CC, Flood BA, Karunakaran S, Cabrera M, Nordmann M, Ungermann C, Fratti RA (2014) Dynamic association of the PI3P-interacting Mon1-Ccz1 GEF with vacuoles is controlled through its phosphorylation by the type 1 casein kinase Yck3. Mol Biol Cell 25(10):1608–1619.  https://doi.org/10.1091/mbc.E13-08-0460CrossRefPubMedPubMedCentralGoogle Scholar
  124. Lelouvier B, Puertollano R (2011) Mucolipin-3 regulates luminal calcium, acidification, and membrane fusion in the endosomal pathway. J Biol Chem 286(11):9826–9832.  https://doi.org/10.1074/jbc.M110.169185CrossRefPubMedPubMedCentralGoogle Scholar
  125. Levin R, Grinstein S, Schlam D (2015) Phosphoinositides in phagocytosis and macropinocytosis. Biochem Biophys Acta 1851(6):805–823.  https://doi.org/10.1016/j.bbalip.2014.09.005CrossRefPubMedGoogle Scholar
  126. Liegeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M (2006) The V0-ATPase mediates apical secretion of exosomes containing hedgehog-related proteins in Caenorhabditis elegans. Journal Cell Biol 173(6):949–961.  https://doi.org/10.1083/jcb.200511072CrossRefGoogle Scholar
  127. Lin X, Zhang J, Chen L, Chen Y, Xu X, Hong W, Wang T (2017) Tyrosine phosphorylation of Rab7 by Src kinase. Cell Signal 35:84–94.  https://doi.org/10.1016/j.cellsig.2017.03.006CrossRefPubMedGoogle Scholar
  128. Liu P, Bartz R, Zehmer JK, Ying YS, Zhu M, Serrero G, Anderson RG (2007) Rab-regulated interaction of early endosomes with lipid droplets. Biochem Biophys Acta 1773(6):784–793.  https://doi.org/10.1016/j.bbamcr.2007.02.004CrossRefPubMedGoogle Scholar
  129. Liu TT, Gomez TS, Sackey BK, Billadeau DD, Burd CG (2012) Rab GTPase regulation of retromer-mediated cargo export during endosome maturation. Mol Biol Cell 23(13):2505–2515.  https://doi.org/10.1091/mbc.E11-11-0915CrossRefPubMedPubMedCentralGoogle Scholar
  130. Liu G, Sanghavi P, Bollinger KE, Perry L, Marshall B, Roon P, Tanaka T, Nakamura A, Gonsalvez GB (2015) Efficient endocytic uptake and maturation in Drosophila oocytes requires dynamitin/p50. Genetics 201(2):631–649.  https://doi.org/10.1534/genetics.115.180018CrossRefPubMedPubMedCentralGoogle Scholar
  131. Liu J, Ji Y, Zhou J, Xing D (2016) Phosphatidylinositol 3-Kinase promotes activation and vacuolar acidification and delays methyl jasmonate-induced leaf senescence. Plant Physiol 170(3):1714–1731.  https://doi.org/10.1104/pp.15.00744CrossRefPubMedPubMedCentralGoogle Scholar
  132. Liu K, Xing R, Jian Y, Gao Z, Ma X, Sun X, Li Y, Xu M, Wang X, Jing Y, Guo W, Yang C (2017) WDR91 is a Rab7 effector required for neuronal development. J Cell Biol 216(10):3307–3321.  https://doi.org/10.1083/jcb.201705151CrossRefPubMedPubMedCentralGoogle Scholar
  133. Lloyd-Evans E, Platt FM (2011) Lysosomal Ca(2+) homeostasis: role in pathogenesis of lysosomal storage diseases. Cell Calcium 50(2):200–205.  https://doi.org/10.1016/j.ceca.2011.03.010CrossRefPubMedGoogle Scholar
  134. Lodge R, Descoteaux A (2005) Modulation of phagolysosome biogenesis by the lipophosphoglycan of Leishmania. Clin Immunol 114(3):256–265.  https://doi.org/10.1016/j.clim.2004.07.018CrossRefPubMedGoogle Scholar
  135. Luzio JP, Bright NA, Pryor PR (2007) The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans 35(Pt 5):1088–1091.  https://doi.org/10.1042/BST0351088CrossRefPubMedGoogle Scholar
  136. Luzio JP, Gray SR, Bright NA (2010) Endosome-lysosome fusion. Biochem Soc Trans 38(6):1413–1416.  https://doi.org/10.1042/BST0381413CrossRefPubMedGoogle Scholar
  137. MacDonald C, Piper RC (2016) Cell surface recycling in yeast: mechanisms and machineries. Biochem Soc Trans 44(2):474–478.  https://doi.org/10.1042/BST20150263CrossRefPubMedPubMedCentralGoogle Scholar
  138. Mani M, Lee UH, Yoon NA, Kim HJ, Ko MS, Seol W, Joe Y, Chung HT, Lee BJ, Moon CH, Cho WJ, Park JW (2016) Developmentally regulated GTP-binding protein 2 coordinates Rab5 activity and transferrin recycling. Mol Biol Cell 27(2):334–348.  https://doi.org/10.1091/mbc.E15-08-0558CrossRefPubMedPubMedCentralGoogle Scholar
  139. Marchant JS, Patel S (2015) Two-pore channels at the intersection of endolysosomal membrane traffic. Biochem Soc Trans 43(3):434–441.  https://doi.org/10.1042/BST20140303CrossRefPubMedPubMedCentralGoogle Scholar
  140. Marion S, Hoffmann E, Holzer D, Le Clainche C, Martin M, Sachse M, Ganeva I, Mangeat P, Griffiths G (2011) Ezrin promotes actin assembly at the phagosome membrane and regulates phago-lysosomal fusion. Traffic 12(4):421–437.  https://doi.org/10.1111/j.1600-0854.2011.01158.xCrossRefPubMedGoogle Scholar
  141. Marwaha R, Arya SB, Jagga D, Kaur H, Tuli A, Sharma M (2017) The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J Cell Biol 216(4):1051–1070.  https://doi.org/10.1083/jcb.201607085CrossRefPubMedPubMedCentralGoogle Scholar
  142. Matsumoto R, Suzuki K, Ohya Y (2013) Organelle acidification is important for localisation of vacuolar proteins in Saccharomyces cerevisiae. Protoplasma 250(6):1283–1293.  https://doi.org/10.1007/s00709-013-0510-2CrossRefPubMedGoogle Scholar
  143. Matsuo H, Chevallier J, Mayran N, Le Blanc I, Ferguson C, Faure J, Blanc NS, Matile S, Dubochet J, Sadoul R, Parton RG, Vilbois F, Gruenberg J (2004) Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303(5657):531–534.  https://doi.org/10.1126/science.1092425CrossRefPubMedGoogle Scholar
  144. Mauvezin C, Nagy P, Juhasz G, Neufeld TP (2015) Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat Commun 6:7007.  https://doi.org/10.1038/ncomms8007CrossRefPubMedPubMedCentralGoogle Scholar
  145. Maxson ME, Grinstein S (2014) The vacuolar-type H(+)-ATPase at a glance—more than a proton pump. J Cell Sci 127(Pt 23):4987–4993.  https://doi.org/10.1242/jcs.158550CrossRefPubMedGoogle Scholar
  146. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8(8):603–612.  https://doi.org/10.1038/nrm2216CrossRefPubMedGoogle Scholar
  147. McDermott H, Kim K (2015) Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. Eur J Cell Biol 94(6):235–248.  https://doi.org/10.1016/j.ejcb.2015.04.003CrossRefPubMedGoogle Scholar
  148. McKnight NC, Zhong Y, Wold MS, Gong S, Phillips GR, Dou Z, Zhao Y, Heintz N, Zong WX, Yue Z (2014) Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet 10(10):e1004626.  https://doi.org/10.1371/journal.pgen.1004626CrossRefPubMedPubMedCentralGoogle Scholar
  149. McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, Langton P, Pearson N, Danson CM, Nagele H, Morris LL, Singla A, Overlee BL, Heesom KJ, Sessions R, Banks L, Collins BM, Berger I, Billadeau DD, Burstein E, Cullen PJ (2017) Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol 19(10):1214–1225.  https://doi.org/10.1038/ncb3610CrossRefPubMedPubMedCentralGoogle Scholar
  150. Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, Settembre C, Wang W, Gao Q, Xu H, Sandri M, Rizzuto R, De Matteis MA, Ballabio A (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17(3):288–299.  https://doi.org/10.1038/ncb3114CrossRefPubMedPubMedCentralGoogle Scholar
  151. Menard L, Parker PJ, Kermorgant S (2014) Receptor tyrosine kinase c-Met controls the cytoskeleton from different endosomes via different pathways. Nat Commun 5:3907.  https://doi.org/10.1038/ncomms4907CrossRefPubMedGoogle Scholar
  152. Merz AJ (2015) What are the roles of V-ATPases in membrane fusion? Proc Natl Acad Sci USA 112(1):8–9.  https://doi.org/10.1073/pnas.1422280112CrossRefPubMedGoogle Scholar
  153. Min SH, Suzuki A, Stalker TJ, Zhao L, Wang Y, McKennan C, Riese MJ, Guzman JF, Zhang S, Lian L, Joshi R, Meng R, Seeholzer SH, Choi JK, Koretzky G, Marks MS, Abrams CS (2014) Loss of PIKfyve in platelets causes a lysosomal disease leading to inflammation and thrombosis in mice. Nat Commun 5:4691.  https://doi.org/10.1038/ncomms5691CrossRefPubMedPubMedCentralGoogle Scholar
  154. Miura E, Hasegawa T, Konno M, Suzuki M, Sugeno N, Fujikake N, Geisler S, Tabuchi M, Oshima R, Kikuchi A, Baba T, Wada K, Nagai Y, Takeda A, Aoki M (2014) VPS35 dysfunction impairs lysosomal degradation of α-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson’s disease. Neurobiol Dis 71:1–13.  https://doi.org/10.1016/j.nbd.2014.07.014CrossRefPubMedGoogle Scholar
  155. Modica G, Lefrancois S (2017) Post-translational modifications: how to modulate Rab7 functions. Small GTPases:0.  https://doi.org/10.1080/21541248.2017.1387686
  156. Modica G, Skorobogata O, Sauvageau E, Vissa A, Yip CM, Kim PK, Wurtele H, Lefrancois S (2017) Rab7 palmitoylation is required for efficient endosome-to-TGN trafficking. J Cell Sci 130(15):2579–2590.  https://doi.org/10.1242/jcs.199729CrossRefPubMedGoogle Scholar
  157. Muriel O, Tomas A, Scott CC, Gruenberg J (2016) Moesin and cortactin control actin-dependent multivesicular endosome biogenesis. Mol Biol Cell 27(21):3305–3316.  https://doi.org/10.1091/mbc.E15-12-0853CrossRefPubMedPubMedCentralGoogle Scholar
  158. Nagel BM, Bechtold M, Rodriguez LG, Bogdan S (2017) Drosophila WASH is required for integrin-mediated cell adhesion, cell motility and lysosomal neutralization. J Cell Sci 130(2):344–359.  https://doi.org/10.1242/jcs.193086CrossRefPubMedGoogle Scholar
  159. Nannapaneni S, Wang D, Jain S, Schroeder B, Highfill C, Reustle L, Pittsley D, Maysent A, Moulder S, McDowell R, Kim K (2010) The yeast dynamin-like protein Vps1: vps1 mutations perturb the internalization and the motility of endocytic vesicles and endosomes via disorganization of the actin cytoskeleton. Eur J Cell Biol 89(7):499–508.  https://doi.org/10.1016/j.ejcb.2010.02.002CrossRefPubMedGoogle Scholar
  160. Naufer A, Hipolito VEB, Ganesan S, Prashar A, Zaremberg V, Botelho RJ, Terebiznik MR (2017) pH of endophagosomes controls association of their membranes with Vps34 and PtdIns(3)P levels. J Cell Biol.  https://doi.org/10.1083/jcb.201702179CrossRefPubMedGoogle Scholar
  161. Nicot AS, Fares H, Payrastre B, Chisholm AD, Labouesse M, Laporte J (2006) The phosphoinositide kinase PIKfyve/Fab1p regulates terminal lysosome maturation in Caenorhabditis elegans. Mol Biol Cell 17(7):3062–3074.  https://doi.org/10.1091/mbc.E06-12-1120CrossRefPubMedPubMedCentralGoogle Scholar
  162. Nicot AS, Laporte J (2008) Endosomal phosphoinositides and human diseases. Traffic 9(8):1240–1249.  https://doi.org/10.1111/j.1600-0854.2008.00754.xCrossRefPubMedPubMedCentralGoogle Scholar
  163. Nielsen E, Severin F, Backer JM, Hyman AA, Zerial M (1999) Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1(6):376–382.  https://doi.org/10.1038/14075CrossRefPubMedGoogle Scholar
  164. Nordmann M, Cabrera M, Perz A, Brocker C, Ostrowicz C, Engelbrecht-Vandre S, Ungermann C (2010) The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr Biol CB 20(18):1654–1659.  https://doi.org/10.1016/j.cub.2010.08.002CrossRefPubMedGoogle Scholar
  165. Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, Overvatn A, Bjorkoy G, Johansen T (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188(2):253–269.  https://doi.org/10.1083/jcb.200907015CrossRefPubMedPubMedCentralGoogle Scholar
  166. Pei G, Repnik U, Griffiths G, Gutierrez MG (2014) Identification of an immune-regulated phagosomal Rab cascade in macrophages. J Cell Sci 127(Pt 9):2071–2082.  https://doi.org/10.1242/jcs.144923CrossRefPubMedPubMedCentralGoogle Scholar
  167. Pena-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, Wolff NC, Tran TA, Zou L, Xie XJ, Corey DR, Brugarolas J (2011) Regulation of TFEB and V-ATPases by mTORC1. EMBO J 30(16):3242–3258.  https://doi.org/10.1038/emboj.2011.257CrossRefPubMedPubMedCentralGoogle Scholar
  168. Peters LZ, Hazan R, Breker M, Schuldiner M, Ben-Aroya S (2013) Formation and dissociation of proteasome storage granules are regulated by cytosolic pH. J Cell Biol 201(5):663–671.  https://doi.org/10.1083/jcb.201211146CrossRefPubMedPubMedCentralGoogle Scholar
  169. Piccinotti S, Kirchhausen T, Whelan SP (2013) Uptake of rabies virus into epithelial cells by clathrin-mediated endocytosis depends upon actin. J Virol 87(21):11637–11647.  https://doi.org/10.1128/JVI.01648-13CrossRefPubMedPubMedCentralGoogle Scholar
  170. Pizarro-Cerda J, Kuhbacher A, Cossart P (2015) Phosphoinositides and host-pathogen interactions. Biochem Biophys Acta 1851(6):911–918.  https://doi.org/10.1016/j.bbalip.2014.09.011CrossRefPubMedGoogle Scholar
  171. Posor Y, Eichhorn-Gruenig M, Puchkov D, Schoneberg J, Ullrich A, Lampe A, Muller R, Zarbakhsh S, Gulluni F, Hirsch E, Krauss M, Schultz C, Schmoranzer J, Noe F, Haucke V (2013) Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499(7457):233–237.  https://doi.org/10.1038/nature12360CrossRefPubMedGoogle Scholar
  172. Posor Y, Eichhorn-Grunig M, Haucke M (2015) Phosphoinositides in endocytosis. Biochem Biophys Acta 1851(6):794–804.  https://doi.org/10.1016/j.bbalip.2014.09.014CrossRefPubMedGoogle Scholar
  173. Poteryaev D, Datta S, Ackema K, Zerial M, Spang A (2010) Identification of the switch in early-to-late endosome transition. Cell 141(3):497–508.  https://doi.org/10.1016/j.cell.2010.03.011CrossRefPubMedGoogle Scholar
  174. Prasad H, Rao R (2015) The Na +/H + exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease. J Biol Chem 290(9):5311–5327.  https://doi.org/10.1074/jbc.M114.602219CrossRefPubMedPubMedCentralGoogle Scholar
  175. Progida C, Bakke O (2016) Bidirectional traffic between the Golgi and the endosomes—machineries and regulation. J Cell Sci 129(21):3971–3982.  https://doi.org/10.1242/jcs.185702CrossRefPubMedGoogle Scholar
  176. Progida C, Cogli L, Piro F, De Luca A, Bakke O, Bucci C (2010) Rab7b controls trafficking from endosomes to the TGN. J Cell Sci 123(Pt 9):1480–1491.  https://doi.org/10.1242/jcs.051474CrossRefPubMedGoogle Scholar
  177. Purushothaman LK, Arlt H, Kuhlee A, Raunser S, Ungermann C (2017) Retromer-driven membrane tubulation separates endosomal recycling from Rab7/Ypt7-dependent fusion. Mol Biol Cell 28(6):783–791.  https://doi.org/10.1091/mbc.E16-08-0582CrossRefPubMedPubMedCentralGoogle Scholar
  178. Raiborg C, Wenzel EM, Pedersen NM, Olsvik H, Schink KO, Schultz SW, Vietri M, Nisi V, Bucci C, Brech A, Johansen T, Stenmark H (2015) Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature 520(7546):234–238.  https://doi.org/10.1038/nature14359CrossRefPubMedGoogle Scholar
  179. Ramanathan HN, Zhang G, Ye Y (2013) Monoubiquitination of EEA1 regulates endosome fusion and trafficking. Cell Biosci 3(1):24.  https://doi.org/10.1186/2045-3701-3-24CrossRefPubMedPubMedCentralGoogle Scholar
  180. Rana M, Lachmann J, Ungermann C (2015) Identification of a Rab GTPase-activating protein cascade that controls recycling of the Rab5 GTPase Vps21 from the vacuole. Mol Biol Cell 26(13):2535–2549.  https://doi.org/10.1091/mbc.E15-02-0062CrossRefPubMedPubMedCentralGoogle Scholar
  181. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5):735–749.  https://doi.org/10.1016/j.cell.2005.06.043CrossRefPubMedGoogle Scholar
  182. Rowland AA, Chitwood PJ, Phillips MJ, Voeltz GK (2014) ER contact sites define the position and timing of endosome fission. Cell 159(5):1027–1041.  https://doi.org/10.1016/j.cell.2014.10.023CrossRefPubMedPubMedCentralGoogle Scholar
  183. Sandhoff K (2016) Neuronal sphingolipidoses: membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism. Biochimie 130:146–151.  https://doi.org/10.1016/j.biochi.2016.05.004CrossRefPubMedGoogle Scholar
  184. Sandri C, Caccavari F, Valdembri D, Camillo C, Veltel S, Santambrogio M, Lanzetti L, Bussolino F, Ivaska J, Serini G (2012) The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res 22(10):1479–1501.  https://doi.org/10.1038/cr.2012.110CrossRefPubMedPubMedCentralGoogle Scholar
  185. Santiago-Tirado FH, Bretscher A (2011) Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi network. Trends Cell Biol 21(9):515–525.  https://doi.org/10.1016/j.tcb.2011.05.005CrossRefPubMedPubMedCentralGoogle Scholar
  186. Sarantis H, Grinstein S (2012) Subversion of phagocytosis for pathogen survival. Cell Host Microbe 12(4):419–431.  https://doi.org/10.1016/j.chom.2012.09.001CrossRefPubMedGoogle Scholar
  187. Satoh N, Yamada H, Yamazaki O, Suzuki M, Nakamura M, Suzuki A, Ashida A, Yamamoto D, Kaku Y, Sekine T, Seki G, Horita S (2016) A pure chloride channel mutant of CLC-5 causes Dent’s disease via insufficient V-ATPase activation. Pflugers Arch 468(7):1183–1196.  https://doi.org/10.1007/s00424-016-1808-7CrossRefPubMedGoogle Scholar
  188. Sautin YY, Lu M, Gaugler A, Zhang L, Gluck SL (2005) Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 25(2):575–589.  https://doi.org/10.1128/MCB.25.2.575-589.2005CrossRefPubMedPubMedCentralGoogle Scholar
  189. Scheuring D, Viotti C, Kruger F, Kunzl F, Sturm S, Bubeck J, Hillmer S, Frigerio L, Robinson DG, Pimpl P, Schumacher K (2011) Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. Plant Cell 23(9):3463–3481.  https://doi.org/10.1105/tpc.111.086918CrossRefPubMedPubMedCentralGoogle Scholar
  190. Schindler C, Chen Y, Pu J, Guo X, Bonifacino JS (2015) EARP is a multisubunit tethering complex involved in endocytic recycling. Nat Cell Biol 17(5):639–650.  https://doi.org/10.1038/ncb3129CrossRefPubMedPubMedCentralGoogle Scholar
  191. Schink KO, Raiborg C, Stenmark H (2013) Phosphatidylinositol 3-phosphate, a lipid that regulates membrane dynamics, protein sorting and cell signalling. BioEssays News Rev Mol Cell Dev Biol 35(10):900–912.  https://doi.org/10.1002/bies.201300064CrossRefGoogle Scholar
  192. Schlam D, Bagshaw RD, Freeman SA, Collins RF, Pawson T, Fairn GD, Grinstein S (2015) Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins. Nat Commun 6:8623.  https://doi.org/10.1038/ncomms9623CrossRefPubMedPubMedCentralGoogle Scholar
  193. Schmidt O, Teis D (2012) The ESCRT machinery. Current Biol CB 22(4):R116–R120.  https://doi.org/10.1016/j.cub.2012.01.028CrossRefGoogle Scholar
  194. Schmitz G, Robenek H, Lohmann U, Assmann G (1985) Interaction of high density lipoproteins with cholesteryl ester-laden macrophages: biochemical and morphological characterization of cell surface receptor binding, endocytosis and resecretion of high density lipoproteins by macrophages. EMBO J 4(3):613–622PubMedPubMedCentralGoogle Scholar
  195. Schreij AM, Fon EA, McPherson PS (2016) Endocytic membrane trafficking and neurodegenerative disease. Cell Mol Life Sci CMLS 73(8):1529–1545.  https://doi.org/10.1007/s00018-015-2105-xCrossRefPubMedGoogle Scholar
  196. Seaman MN, Harbour ME, Tattersall D, Read E, Bright N (2009) Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J Cell Sci 122(Pt 14):2371–2382.  https://doi.org/10.1242/jcs.048686CrossRefPubMedPubMedCentralGoogle Scholar
  197. Shaw JD, Hama H, Sohrabi F, DeWald DB, Wendland B (2003) PtdIns(3,5)P2 is required for delivery of endocytic cargo into the multivesicular body. Traffic 4(7):479–490CrossRefGoogle Scholar
  198. Sherr GL, LaMassa N, Li E, Phillips G, Shen CH (2017) Pah1p negatively regulates the expression of V-ATPase genes as well as vacuolar acidification. Biochem Biophys Res Commun 491(3):693–700.  https://doi.org/10.1016/j.bbrc.2017.07.127CrossRefPubMedGoogle Scholar
  199. Shin HW, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S, Wenk MR, Modregger J, Uttenweiler-Joseph S, Wilm M, Nystuen A, Frankel WN, Solimena M, De Camilli P, Zerial M (2005) An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 170(4):607–618.  https://doi.org/10.1083/jcb.200505128CrossRefPubMedPubMedCentralGoogle Scholar
  200. Shin D, Na W, Lee JH, Kim G, Baek J, Park SH, Choi CY, Lee S (2017) Site-specific monoubiquitination downregulates Rab5 by disrupting effector binding and guanine nucleotide conversion. eLife 6.  https://doi.org/10.7554/elife.29154
  201. Shinde SR, Maddika S (2016) PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7. Nat Commun 7:10689.  https://doi.org/10.1038/ncomms10689CrossRefPubMedPubMedCentralGoogle Scholar
  202. Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15(2):209–219.  https://doi.org/10.1016/j.devcel.2008.06.012CrossRefPubMedGoogle Scholar
  203. Simonetti B, Danson CM, Heesom KJ, Cullen PJ (2017) Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J Cell Biol 216(11):3695–3712.  https://doi.org/10.1083/jcb.201703015CrossRefPubMedPubMedCentralGoogle Scholar
  204. Smardon AM, Diab HI, Tarsio M, Diakov TT, Nasab ND, West RW, Kane PM (2014) The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast. Mol Biol Cell 25(3):356–367.  https://doi.org/10.1091/mbc.E13-05-0231CrossRefPubMedPubMedCentralGoogle Scholar
  205. Smith GA, Howell GJ, Phillips C, Muench SP, Ponnambalam S, Harrison MA (2016) Extracellular and luminal pH regulation by vacuolar H+-ATPase isoform expression and targeting to the plasma membrane and endosomes. J Biol Chem 291(16):8500–8515.  https://doi.org/10.1074/jbc.M116.723395CrossRefPubMedPubMedCentralGoogle Scholar
  206. Sobota JA, Back N, Eipper BA, Mains RE (2009) Inhibitors of the V0 subunit of the vacuolar H+-ATPase prevent segregation of lysosomal- and secretory-pathway proteins. J Cell Sci 122(Pt 19):3542–3553.  https://doi.org/10.1242/jcs.034298CrossRefPubMedPubMedCentralGoogle Scholar
  207. Solinger JA, Spang A (2013) Tethering complexes in the endocytic pathway: CORVET and HOPS. FEBS J 280(12):2743–2757.  https://doi.org/10.1111/febs.12151CrossRefPubMedGoogle Scholar
  208. Solinger JA, Spang A (2014) Loss of the Sec1/Munc18-family proteins VPS-33.2 and VPS-33.1 bypasses a block in endosome maturation in Caenorhabditis elegans. Mol Biol Cell 25(24):3909–3925.  https://doi.org/10.1091/mbc.E13-12-0710CrossRefPubMedPubMedCentralGoogle Scholar
  209. Soria FN, Pampliega O, Bourdenx M, Meissner WG, Bezard E, Dehay B (2017) Exosomes, an unmasked culprit in neurodegenerative diseases. Front Neurosci 11:26.  https://doi.org/10.3389/fnins.2017.00026CrossRefPubMedPubMedCentralGoogle Scholar
  210. Spang A (2015) The road not taken: less traveled roads from the TGN to the plasma membrane. Membranes 5(1):84–98.  https://doi.org/10.3390/membranes5010084CrossRefPubMedPubMedCentralGoogle Scholar
  211. Spang A (2016) Membrane tethering complexes in the endosomal system. Front Cell Dev Biol 4:35.  https://doi.org/10.3389/fcell.2016.00035CrossRefPubMedPubMedCentralGoogle Scholar
  212. Sreelatha A, Bennett TL, Carpinone EM, O’Brien KM, Jordan KD, Burdette DL, Orth K, Starai VJ (2015) Vibrio effector protein VopQ inhibits fusion of V-ATPase-containing membranes. Proc Natl Acad Sci USA 112(1):100–105.  https://doi.org/10.1073/pnas.1413764111CrossRefPubMedGoogle Scholar
  213. Stasyk T, Huber LA (2016) Spatio-temporal parameters of endosomal signaling in cancer: implications for new treatment options. J Cell Biochem 117(4):836–843.  https://doi.org/10.1002/jcb.25418CrossRefPubMedGoogle Scholar
  214. Stransky LA, Forgac M (2015) Amino acid availability modulates vacuolar H+-ATPase assembly. J Biol Chem 290(45):27360–27369.  https://doi.org/10.1074/jbc.M115.659128CrossRefPubMedPubMedCentralGoogle Scholar
  215. Sun-Wada GH, Tabata H, Kawamura N, Aoyama M, Wada Y (2009) Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification. J Cell Sci 122(Pt 14):2504–2513.  https://doi.org/10.1242/jcs.050443CrossRefPubMedGoogle Scholar
  216. Sun Q, Westphal W, Wong KN, Tan I, Zhong Q (2010) Rubicon controls endosome maturation as a Rab7 effector. Proc Natl Acad Sci USA 107(45):19338–19343.  https://doi.org/10.1073/pnas.1010554107CrossRefPubMedGoogle Scholar
  217. Szatmari Z, Kis V, Lippai M, Hegedus K, Farago T, Lorincz P, Tanaka T, Juhasz G, Sass M (2014) Rab11 facilitates cross-talk between autophagy and endosomal pathway through regulation of Hook localization. Mol Biol Cell 25(4):522–531.  https://doi.org/10.1091/mbc.E13-10-0574CrossRefPubMedPubMedCentralGoogle Scholar
  218. Takatori S, Tatematsu T, Cheng J, Matsumoto J, Akano T, Fujimoto T (2016) Phosphatidylinositol 3,5-bisphosphate-rich membrane domains in endosomes and lysosomes. Traffic 17(2):154–167.  https://doi.org/10.1111/tra.12346CrossRefPubMedGoogle Scholar
  219. Tan X, Thapa N, Choi S, Anderson RA (2015) Emerging roles of PtdIns(4,5)P2–beyond the plasma membrane. J Cell Sci 128(22):4047–4056.  https://doi.org/10.1242/jcs.175208CrossRefPubMedPubMedCentralGoogle Scholar
  220. Tang BL (2016) Rab, Arf, and Arl-regulated membrane traffic in cortical neuron migration. J Cell Physiol 231(7):1417–1423.  https://doi.org/10.1002/jcp.25261CrossRefPubMedGoogle Scholar
  221. Teixeira V, Medeiros TC, Vilaca R, Ferreira J, Moradas-Ferreira P, Costa V (2016) Ceramide signaling targets the PP2A-like protein phosphatase Sit4p to impair vacuolar function, vesicular trafficking and autophagy in Isc1p deficient cells. Biochem Biophys Acta 1861(1):21–33.  https://doi.org/10.1016/j.bbalip.2015.10.004CrossRefPubMedGoogle Scholar
  222. Tornieri K, Zlatic SA, Mullin AP, Werner E, Harrison R, L’Hernault SW, Faundez V (2013) Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes. Hum Mol Genet 22(25):5215–5228.  https://doi.org/10.1093/hmg/ddt378CrossRefPubMedPubMedCentralGoogle Scholar
  223. Urbanska A, Sadowski L, Kalaidzidis Y, Miaczynska M (2011) Biochemical characterization of APPL endosomes: the role of annexin A2 in APPL membrane recruitment. Traffic 12(9):1227–1241.  https://doi.org/10.1111/j.1600-0854.2011.01226.xCrossRefPubMedPubMedCentralGoogle Scholar
  224. Vale-Costa S, Amorim MJ (2016) Recycling endosomes and viral infection. Viruses 8(3):64.  https://doi.org/10.3390/v8030064CrossRefPubMedPubMedCentralGoogle Scholar
  225. van der Kant R, Neefjes J (2014) Small regulators, major consequences—Ca(2)(+) and cholesterol at the endosome-ER interface. J Cell Sci 127(Pt 5):929–938.  https://doi.org/10.1242/jcs.137539CrossRefPubMedGoogle Scholar
  226. van der Kant R, Jonker CT, Wijdeven RH, Bakker J, Janssen L, Klumperman J, Neefjes J (2015) Characterization of the mammalian CORVET and HOPS Complexes and their modular restructuring for endosome specificity. J Biol Chem 290(51):30280–30290.  https://doi.org/10.1074/jbc.M115.688440CrossRefPubMedPubMedCentralGoogle Scholar
  227. van Deurs B, Holm PK, Sandvig K (1996) Inhibition of the vacuolar H(+)-ATPase with bafilomycin reduces delivery of internalized molecules from mature multivesicular endosomes to lysosomes in HEp-2 cells. Eur J Cell Biol 69(4):343–350PubMedGoogle Scholar
  228. van Weering JR, Verkade P, Cullen PJ (2012) SNX-BAR-mediated endosome tubulation is co-ordinated with endosome maturation. Traffic 13(1):94–107.  https://doi.org/10.1111/j.1600-0854.2011.01297.xCrossRefPubMedGoogle Scholar
  229. Vieira OV, Bucci C, Harrison RE, Trimble WS, Lanzetti L, Gruenberg J, Schreiber AD, Stahl PD, Grinstein S (2003) Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol 23(7):2501–2514CrossRefPubMedCentralGoogle Scholar
  230. Villasenor R, Kalaidzidis Y, Zerial M (2016) Signal processing by the endosomal system. Curr Opin Cell Biol 39:53–60.  https://doi.org/10.1016/j.ceb.2016.02.002CrossRefPubMedGoogle Scholar
  231. Wang C, Wang Y, Li Y, Bodemann B, Zhao T, Ma X, Huang G, Hu Z, DeBerardinis RJ, White MA, Gao J (2015) A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nat Commun 6:8524.  https://doi.org/10.1038/ncomms9524CrossRefPubMedPubMedCentralGoogle Scholar
  232. Waugh MG (2015) PIPs in neurological diseases. Biochem Biophys Acta 1851(8):1066–1082.  https://doi.org/10.1016/j.bbalip.2015.02.002CrossRefPubMedGoogle Scholar
  233. Williamson WR, Hiesinger PR (2010) On the role of v-ATPase V0a1-dependent degradation in Alzheimer disease. Communicative Integr Biol 3(6):604–607.  https://doi.org/10.4161/cib.3.6.13364CrossRefGoogle Scholar
  234. Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y (2011) Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci USA 108(48):19371–19376.  https://doi.org/10.1073/pnas.1109201108CrossRefPubMedGoogle Scholar
  235. Xinhan L, Matsushita M, Numaza M, Taguchi A, Mitsui K, Kanazawa H (2011) Na+/H+ exchanger isoform 6 (NHE6/SLC9A6) is involved in clathrin-dependent endocytosis of transferrin. Am J Physiol Cell Physiol 301(6):C1431–C1444.  https://doi.org/10.1152/ajpcell.00154.2011CrossRefPubMedGoogle Scholar
  236. Xu T, Forgac M (2001) Microtubules are involved in glucose-dependent dissociation of the yeast vacuolar [H+]-ATPase in vivo. J Biol Chem 276(27):24855–24861.  https://doi.org/10.1074/jbc.M100637200CrossRefPubMedGoogle Scholar
  237. Xu L, Shen X, Bryan A, Banga S, Swanson MS, Luo ZQ (2010) Inhibition of host vacuolar H+ -ATPase activity by a Legionella pneumophila effector. PLoS Pathog 6(3):e1000822.  https://doi.org/10.1371/journal.ppat.1000822CrossRefPubMedPubMedCentralGoogle Scholar
  238. Yasuda S, Morishita S, Fujita A, Nanao T, Wada N, Waguri S, Schiavo G, Fukuda M, Nakamura T (2016) Mon1-Ccz1 activates Rab7 only on late endosomes and dissociates from the lysosome in mammalian cells. J Cell Sci 129(2):329–340.  https://doi.org/10.1242/jcs.178095CrossRefPubMedGoogle Scholar
  239. Yousefian J, Troost T, Grawe F, Sasamura T, Fortini M, Klein T (2013) Dmon1 controls recruitment of Rab7 to maturing endosomes in Drosophila. J Cell Sci 126(Pt 7):1583–1594.  https://doi.org/10.1242/jcs.114934CrossRefPubMedPubMedCentralGoogle Scholar
  240. Zajac AL, Goldman YE, Holzbaur EL, Ostap EM (2013) Local cytoskeletal and organelle interactions impact molecular-motor- driven early endosomal trafficking. Current Biol CB 23(13):1173–1180.  https://doi.org/10.1016/j.cub.2013.05.015CrossRefGoogle Scholar
  241. Zeigerer A, Gilleron J, Bogorad RL, Marsico G, Nonaka H, Seifert S, Epstein-Barash H, Kuchimanchi S, Peng CG, Ruda VM, Del Conte-Zerial P, Hengstler JG, Kalaidzidis Y, Koteliansky V, Zerial M (2012) Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485(7399):465–470.  https://doi.org/10.1038/nature11133CrossRefPubMedGoogle Scholar
  242. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117.  https://doi.org/10.1038/35052055CrossRefPubMedGoogle Scholar
  243. Zhou A, Bu Y, Takano T, Zhang X, Liu S (2016) Conserved V-ATPase c subunit plays a role in plant growth by influencing V-ATPase-dependent endosomal trafficking. Plant Biotechnol J 14(1):271–283.  https://doi.org/10.1111/pbi.12381CrossRefPubMedGoogle Scholar
  244. Zhu H, Liang Z, Li G (2009) Rabex-5 is a Rab22 effector and mediates a Rab22-Rab5 signaling cascade in endocytosis. Mol Biol Cell 20(22):4720–4729.  https://doi.org/10.1091/mbc.E09-06-0453CrossRefPubMedPubMedCentralGoogle Scholar
  245. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334(6056):678–683.  https://doi.org/10.1126/science.1207056CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biozentrum, University of BaselBaselSwitzerland

Personalised recommendations