CdS Deposition and Characterisation

  • A. A. Ojo
  • W. M. Cranton
  • I. M. Dharmadasa


This chapter provides an insight to the electrodeposition of CdS layers from electrolytic bath without precipitation. CdS layers used in thin-film solar cells as window layers and other electronic devices are usually grown by wet chemical methods using CdCl2 as the cadmium source and either Na2S2O3, NH4S2O3 or NH2CSNH2 as sulphur sources. Obviously, one of the sulphur precursors should produce more suitable CdS layers required to yield the highest performing devices. This can only be achieved by comprehensive experimental work on growth and characterisation of CdS layers from the above-mentioned sulphur sources. This chapter presents the results observed on CdS layers grown by electrodepositing using two-electrode configuration and thiourea as the sulphur precursor. X-ray diffraction (XRD), Raman spectroscopy, optical absorption, scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX) and photoelectrochemical (PEC) cell methods have been used to characterise the material properties. In order to test and study the electronic device quality of the layers, ohmic and rectifying contacts were fabricated on the electroplated layers. Schottky barriers formed on the layers were also compared with previously reported work on chemical bath deposited CBD-CdS layers and bulk single crystals of CdS. Comparatively, Schottky diodes fabricated on electroplated CdS layers using two-electrode system and thiourea precursor exhibit excellent electronic properties suitable for electronic devices such as thin-film solar panels and large area display devices.


CdS Semiconductor Thin films Electrical properties Electrochemical technique 


  1. 1.
    K.R. Murali, S. Kumaresan, J. Joseph Prince, Characteristics of CdS films brush electrodeposited on low-temperature substrates. Mater. Sci. Semicond. Process. 10, 56–60 (2007). CrossRefGoogle Scholar
  2. 2.
    I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Pan Stanford, Singapore, 2013)Google Scholar
  3. 3.
    N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, Electro-plating and characterisation of cadmium sulphide thin films using ammonium thiosulphate as the sulphur source. J. Mater. Sci. Mater. Electron. 26, 2418–2429 (2015). CrossRefGoogle Scholar
  4. 4.
    K. Yamaguchi, P. Mukherjee, T. Yoshida, H. Minoura, Multiple fabrications of crystalline CdS thin films from a single bath by EICD in acidic aqueous solution of Cd2+ and thiourea complex. Chem. Lett. 30, 864–865 (2001). CrossRefGoogle Scholar
  5. 5.
    M.P.R. Panicker, M. Knaster, F.A. Kroger, Cathodic deposition of CdTe from aqueous electrolytes. J. Electrochem. Soc. 125, 566 (1978). CrossRefGoogle Scholar
  6. 6.
    M. Rami, E. Benamar, M. Fahoume, A. Ennaoui, Growth analysis of electrodeposited CdS on ITO coated glass using atomic force microscopy. Phys. Status Solidi A Appl. Res. 172, 137–147 (1999).<137::AID-PSSA137>3.0.CO;2-V CrossRefGoogle Scholar
  7. 7.
    A. Izgorodin, O. Winther-Jensen, B. Winther-Jensen, D.R. MacFarlane, CdS thin-film electrodeposition from a phosphonium ionic liquid. Phys. Chem. Chem. Phys. 11, 8532 (2009). CrossRefGoogle Scholar
  8. 8.
    N.A. Abdul-Manaf, H.I. Salim, M.L. Madugu, O.I. Olusola, I.M. Dharmadasa, Electro-plating and characterisation of CdTe thin films using CdCl2 as the cadmium source. Energies 8, 10883–10903 (2015). CrossRefGoogle Scholar
  9. 9.
    A. Chandran, K.C. George, Phase instability and defect induced evolution of optical properties in Cd rich-CdS nanoparticles. J. Appl. Phys. 115, 164309 (2014). CrossRefGoogle Scholar
  10. 10.
    A. Abdolahzadeh Ziabari, F.E. Ghodsi, Growth, characterization and studying of sol–gel derived CdS nanocrystalline thin films incorporated in polyethyleneglycol: effects of post-heat treatment. Sol. Energy Mater. Sol. Cells 105, 249–262 (2012). CrossRefGoogle Scholar
  11. 11.
    H. Köhler, Optical properties and energy-band structure of CdO. Solid State Commun. 11, 1687–1690 (1972). CrossRefGoogle Scholar
  12. 12.
    A. Tanaka, S. Onari, T. Arai, One phonon Raman scattering of CdS microcrystals embedded in a germanium dioxide glass matrix. J. Phys. Soc. Japan 61, 4222–4228 (1992). CrossRefGoogle Scholar
  13. 13.
    J. Sun, D.K. Zhong, D.R. Gamelin, Composite photoanodes for photoelectrochemical solar water splitting. Energy Environ. Sci. 3, 1252 (2010). CrossRefGoogle Scholar
  14. 14.
    I.M. Dharmadasa, Review of the CdCl2 treatment used in CdS/CdTe thin film solar cell development and new evidence towards improved understanding. Coatings 4, 282–307 (2014). CrossRefGoogle Scholar
  15. 15.
    A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Polycrystalline CdTe thin films for photovoltaic applications. Prog. Cryst. Growth Charact. Mater. 52, 247–279 (2006). CrossRefGoogle Scholar
  16. 16.
    S.D. Sathaye, A.P.B. Sinha, Studies on thin films of cadmium sulphide prepared by a chemical deposition method. Thin Solid Films 37, 15–23 (1976). CrossRefGoogle Scholar
  17. 17.
    C. Wu, J. Jie, L. Wang, Y. Yu, Q. Peng, X. Zhang, J. Cai, H. Guo, D. Wu, Y. Jiang, Chlorine-doped n-type CdS nanowires with enhanced photoconductivity. Nanotechnology 21, 505203 (2010). CrossRefGoogle Scholar
  18. 18.
    A.A. Ojo, I.M. Dharmadasa, Investigation of electronic quality of electrodeposited cadmium sulphide layers from thiourea precursor for use in large area electronics. Mater. Chem. Phys. 180, 14–28 (2016). CrossRefGoogle Scholar
  19. 19.
    N.S. Das, P.K. Ghosh, M.K. Mitra, K.K. Chattopadhyay, Effect of film thickness on the energy band gap of nanocrystalline CdS thin films analyzed by spectroscopic ellipsometry. Phys. E Low Dimension. Syst. Nanostruct. 42, 2097–2102 (2010). CrossRefGoogle Scholar
  20. 20.
    M.A. Redwan, E.H. Aly, L.I. Soliman, A.A. El-Shazely, H.A. Zayed, Characteristics of n-Cd0.9 Zn0.1S/p-CdTe heterojunctions. Vacuum 69, 545–555 (2003). CrossRefGoogle Scholar
  21. 21.
    A.K. Mohsin, N. Bidin, Effect of CdS thickness on the optical and structural properties of TiO2/CdS nanocomposite film. Adv. Mater. Res. 1107, 547–552 (2015). CrossRefGoogle Scholar
  22. 22.
    J. Han, C. Spanheimer, G. Haindl, G. Fu, V. Krishnakumar, J. Schaffner, C. Fan, K. Zhao, A. Klein, W. Jaegermann, Optimized chemical bath deposited CdS layers for the improvement of CdTe solar cells. Sol. Energy Mater. Sol. Cells 95, 816–820 (2011). CrossRefGoogle Scholar
  23. 23.
    M.A. Tashkandi, W.S. Sampath, Eliminating pinholes in CSS deposited CdS films, in 2012 I.E. 38th Photovoltaic Specialist Conference (PVSC 2012), pp. 143–146.
  24. 24.
    I.M. Dharmadasa, P. Bingham, O.K. Echendu, H.I. Salim, T. Druffel, R. Dharmadasa, G. Sumanasekera, R. Dharmasena, M.B. Dergacheva, K. Mit, K. Urazov, L. Bowen, M. Walls, A. Abbas, Fabrication of CdS/CdTe-based thin film solar cells using an electrochemical technique. Coatings 4, 380–415 (2014). CrossRefGoogle Scholar
  25. 25.
    A. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154–160 (2012). CrossRefGoogle Scholar
  26. 26.
    G. Mustafa, M.R.I. Chowdhury, D.K. Saha, S. Hussain, O. Islam, Annealing effects on the properties of chemically deposited CdS thin films at ambient condition. Dhaka Univ. J. Sci. 60, 283–288 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Taleb, F. Mesguich, T. Onfroy, X. Yanpeng, Design of TiO2/Au nanoparticle films with controlled crack formation and different architectures using a centrifugal strategy, RSC Adv. 5, 7007–7017 (2015).
  28. 28.
    N.B. Chaure, S. Bordas, A.P. Samantilleke, S.N. Chaure, J. Haigh, I.M. Dharmadasa, Investigation of electronic quality of chemical bath deposited cadmium sulphide layers used in thin film photovoltaic solar cells. Thin Solid Films 437, 10–17 (2003). CrossRefGoogle Scholar
  29. 29.
    N.M. Forsyth, I.M. Dharmadasa, Z. Sobiesierski, R.H. Williams, Schottky barriers to CdS and their importance in Schottky barrier theories. Semicond. Sci. Technol. 4, 57–59 (1989). CrossRefGoogle Scholar
  30. 30.
    N. Forsyth, I. Dharmadasa, Z. Sobiesierski, R. Williams, An investigation of metal contacts to II–VI compounds: CdTe and CdS. Vacuum 38, 369–371 (1988). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Ojo
    • 1
  • W. M. Cranton
    • 1
  • I. M. Dharmadasa
    • 1
  1. 1.Sheffield Hallam UniversitySheffieldUK

Personalised recommendations