Introduction to Photovoltaics

  • A. A. Ojo
  • W. M. Cranton
  • I. M. Dharmadasa


This chapter covers introductory topics providing a broad overview of the different aspects of energy and energy resources with a focus on solar energy and photovoltaic technology. A consideration of the energy distribution of the solar spectrum, photovoltaic solar energy conversion techniques and the operating configuration of photovoltaic solar cells is also provided.


Energy sources Renewable and non-renewable energy Photovoltaics Solar cells 


  1. 1.
    J.P. Holdren, Population and the energy problem. Popul. Environ. 12, 231–255 (1991). CrossRefGoogle Scholar
  2. 2.
    World population projected to reach 9.7 billion by 2050 | UN DESA | United Nations Department of Economic and Social Affairs. (n.d.). Accessed 9 Apr 2017
  3. 3.
    E.E. Michaelides, Alternative Energy Sources (Springer, Berlin, 2012). CrossRefGoogle Scholar
  4. 4.
    A.M. Omer, Energy use and environmental impacts: a general review. J. Renew. Sustain. Energy. 1, 53101 (2009). CrossRefGoogle Scholar
  5. 5.
  6. 6.
    M. Dale, Meta-analysis of non-renewable energy resource estimates. Energy Policy 43, 102–122 (2012). CrossRefGoogle Scholar
  7. 7.
    N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103, 15729–15735 (2006). CrossRefGoogle Scholar
  8. 8.
    NASA/Marshall Solar Physics. (n.d.), Accessed 11 Apr 2017
  9. 9.
    D. Chiras, Solar Electricity Basics: A Green Energy Guide. (New Society Publishers, 2010),
  10. 10.
    O. Morton, Solar energy: Silicon Valley sunrise. Nature 443, 19–22 (2006). CrossRefGoogle Scholar
  11. 11.
    Global Energy Budget | Precipitation Education. (n.d.), Accessed 25 Oct 2017
  12. 12.
    C.J. Riordan, Spectral solar irradiance models and data sets. Sol. Cells. 18, 223–232 (1986). CrossRefGoogle Scholar
  13. 13.
    The Greenhouse Effect and the Global Energy Budget | EARTH 103: Earth in the Future. (n.d.), Accessed 25 Oct 2017
  14. 14.
    I.M. Dharmadasa, Third generation multi-layer tandem solar cells for achieving high conversion efficiencies. Sol. Energy Mater. Sol. Cells 85, 293–300 (2005). CrossRefGoogle Scholar
  15. 15.
    I.M. Dharmadasa, A.P. Samantilleke, N.B. Chaure, J. Young, New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model. Semicond. Sci. Technol. 17, 1238–1248 (2002). CrossRefGoogle Scholar
  16. 16.
    I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Pan Stanford, Singapore, 2013)Google Scholar
  17. 17.
    K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto, Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovoltaics. 4, 1433–1435 (2014). CrossRefGoogle Scholar
  18. 18.
    First Solar raises bar for CdTe with 21.5% efficiency record: pv-magazine. (n.d.), Accessed 20 Nov 2015
  19. 19.
    K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog. Photovolt. Res. Appl. 11, 225–230 (2003). CrossRefGoogle Scholar
  20. 20.
    W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961). CrossRefGoogle Scholar
  21. 21.
    G. Conibeer, Third-generation photovoltaics. Mater. Today 10, 42–50 (2007). CrossRefGoogle Scholar
  22. 22.
    I.M. Dharmadasa, A.A. Ojo, H.I. Salim, R. Dharmadasa, Next generation solar cells based on graded bandgap device structures utilising rod-type nano-materials. Energies 8, 5440–5458 (2015). CrossRefGoogle Scholar
  23. 23.
    M.A. Green, Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovolt. Res. Appl. 9, 123–135 (2001). CrossRefGoogle Scholar
  24. 24.
    A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016). CrossRefGoogle Scholar
  25. 25.
    M.A. Green, Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25, 3–13 (2017). CrossRefGoogle Scholar
  26. 26.
    A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, A.N. Tiwari, Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Prog. Photovolt. Res. Appl. 12, 93–111 (2004). CrossRefGoogle Scholar
  27. 27.
    B.E. McCandless, J.R. Sites, in Handb. Photovolt. Sci. Eng. Cadmium telluride solar cells (Wiley, Chichester, 2011), pp. 600–641. CrossRefGoogle Scholar
  28. 28.
    T.L. Chu, S.S. Chu, Thin film II–VI photovoltaics. Solid State Electron. 38, 533–549 (1995). CrossRefGoogle Scholar
  29. 29.
    B.L. Williams, J.D. Major, L. Bowen, L. Phillips, G. Zoppi, I. Forbes, K. Durose, Challenges and prospects for developing CdS/CdTe substrate solar cells on Mo foils. Sol. Energy Mater. Sol. Cells 124, 31–38 (2014). CrossRefGoogle Scholar
  30. 30.
    A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Polycrystalline CdTe thin films for photovoltaic applications. Prog. Cryst. Growth Charact. Mater. 52, 247–279 (2006). CrossRefGoogle Scholar
  31. 31.
    X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells. Sol. Energy 77, 803–814 (2004). CrossRefGoogle Scholar
  32. 32.
    L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C.M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A.R. Uhl, S. Buecheler, A.N. Tiwari, Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nat. Commun. 4, 2306 (2013). CrossRefGoogle Scholar
  33. 33.
    F. Shuman, Power from sunshine. Sci. Am. 105, 291–292 (1911). CrossRefGoogle Scholar
  34. 34.
    M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.H. Ho-Baillie, Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25, 668–676 (2017). CrossRefGoogle Scholar
  35. 35.
    I. Dharmadasa, J. Roberts, G. Hill, Third generation multi-layer graded band gap solar cells for achieving high conversion efficiencies—II: experimental results. Sol. Energy Mater. Sol. Cells 88, 413–422 (2005). CrossRefGoogle Scholar
  36. 36.
    A.A. Ojo, I.M. Dharmadasa, Investigation of electronic quality of electrodeposited cadmium sulphide layers from thiourea precursor for use in large area electronics. Mater. Chem. Phys. 180, 14–28 (2016). CrossRefGoogle Scholar
  37. 37.
    H.I. Salim, O.I. Olusola, A.A. Ojo, K.A. Urasov, M.B. Dergacheva, I.M. Dharmadasa, Electrodeposition and characterisation of CdS thin films using thiourea precursor for application in solar cells. J. Mater. Sci. Mater. Electron. 27, 6786–6799 (2016). CrossRefGoogle Scholar
  38. 38.
    A.A. Ojo, H.I. Salim, O.I. Olusola, M.L. Madugu, I.M. Dharmadasa, Effect of thickness: a case study of electrodeposited CdS in CdS/CdTe based photovoltaic devices. J. Mater. Sci. Mater. Electron. 28, 3254–3263 (2017). CrossRefGoogle Scholar
  39. 39.
    A.A. Ojo, I.M. Dharmadasa, The effect of fluorine doping on the characteristic behaviour of CdTe. J. Electron. Mater. 45, 5728–5738 (2016). CrossRefGoogle Scholar
  40. 40.
    A.A. Ojo, I.M. Dharmadasa, Electrodeposition of fluorine-doped cadmium telluride for application in photovoltaic device fabrication. Mater. Res. Innov. 19, 470–476 (2015). CrossRefGoogle Scholar
  41. 41.
    A.A. Ojo, I.M. Dharmadasa, in 31st Eur. Photovolt. Sol. Energy Conf. Effect of in-situ fluorine doping on electroplated cadmium telluride thin films for photovoltaic device application (2015), pp. 1249–1255. CrossRefGoogle Scholar
  42. 42.
    H.I. Salim, V. Patel, A. Abbas, J.M. Walls, I.M. Dharmadasa, Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells. J. Mater. Sci. Mater. Electron. 26, 3119–3128 (2015). CrossRefGoogle Scholar
  43. 43.
    N.A. Abdul-Manaf, H.I. Salim, M.L. Madugu, O.I. Olusola, I.M. Dharmadasa, Electro-plating and characterisation of CdTe thin films using CdCl2 as the cadmium source. Energies 8, 10883–10903 (2015). CrossRefGoogle Scholar
  44. 44.
    I.M. Dharmadasa, N.B. Chaure, G.J. Tolan, A.P. Samantilleke, Development of p(+), p, i, n, and n(+)-type CuInGaSe2 layers for applications in graded bandgap multilayer thin-film solar. Cell 154, 466–471 (2007). CrossRefGoogle Scholar
  45. 45.
    I.M. Dharmadasa, R.P. Burton, M. Simmonds, Electrodeposition of CuInSe2 layers using a two-electrode system for applications in multi-layer graded bandgap solar cells. Sol. Energy Mater. Sol. Cells 90, 2191–2200 (2006). CrossRefGoogle Scholar
  46. 46.
    O.I. Olusola, O.K. Echendu, I.M. Dharmadasa, Development of CdSe thin films for application in electronic devices. J. Mater. Sci. Mater. Electron. 26, 1066–1076 (2015). CrossRefGoogle Scholar
  47. 47.
    M.L. Madugu, L. Bowen, O.K. Echendu, I.M. Dharmadasa, Preparation of indium selenide thin film by electrochemical technique. J. Mater. Sci. Mater. Electron. 25, 3977–3983 (2014). CrossRefGoogle Scholar
  48. 48.
    O.I. Olusola, M.L. Madugu, N.A. Abdul-Manaf, I.M. Dharmadasa, Growth and characterisation of n- and p-type ZnTe thin films for applications in electronic devices. Curr. Appl. Phys. 16, 120–130 (2016). CrossRefGoogle Scholar
  49. 49.
    D.G. Diso, G.E.A. Muftah, V. Patel, I.M. Dharmadasa, Growth of CdS layers to develop all-electrodeposited CdS/CdTe thin-film solar cells. J. Electrochem. Soc. 157, H647 (2010). CrossRefGoogle Scholar
  50. 50.
    A.P. Samantilleke, M.H. Boyle, J. Young, I.M. Dharmadasa, Electrodeposition of n-type and p-type ZnSe thin films for applications in large area optoelectronic devices. J. Mater. Sci. Mater. Electron. 9, 231–235 (1998). CrossRefGoogle Scholar
  51. 51.
    J.S. Wellings, N.B. Chaure, S.N. Heavens, I.M. Dharmadasa, Growth and characterisation of electrodeposited ZnO thin films. Thin Solid Films 516, 3893–3898 (2008). CrossRefGoogle Scholar
  52. 52.
    M.L. Madugu, O.I.-O. Olusola, O.K. Echendu, B. Kadem, I.M. Dharmadasa, Intrinsic doping in electrodeposited ZnS thin films for application in large-area optoelectronic devices. J. Electron. Mater. 45, 2710–2717 (2016). CrossRefGoogle Scholar
  53. 53.
    N.A. Abdul-Manaf, O.K. Echendu, F. Fauzi, L. Bowen, I.M. Dharmadasa, Development of polyaniline using electrochemical technique for plugging pinholes in cadmium sulfide/cadmium telluride solar cells. J. Electron. Mater. 43, 4003–4010 (2014). CrossRefGoogle Scholar
  54. 54.
    N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, Electro-plating and characterisation of cadmium sulphide thin films using ammonium thiosulphate as the sulphur source. J. Mater. Sci. Mater. Electron. 26, 2418–2429 (2015). CrossRefGoogle Scholar
  55. 55.
    A.A. Ojo, I.M. Dharmadasa, Optimisation of pH of cadmium chloride post-growth-treatment in processing CdS/CdTe based thin film solar cells. J. Mater. Sci. Mater. Electron. 28, 7231–7242 (2017). CrossRefGoogle Scholar
  56. 56.
    O.I. Olusola, M.L. Madugu, A.A. Ojo, I.M. Dharmadasa, Investigating the effect of GaCl3 incorporation into the usual CdCl2 treatment on CdTe-based solar cell device structures. Curr. Appl. Phys. 17, 279–289 (2017). CrossRefGoogle Scholar
  57. 57.
    I.M. Dharmadasa, O.K. Echendu, F. Fauzi, N.A. Abdul-Manaf, O.I. Olusola, H.I. Salim, M.L. Madugu, A.A. Ojo, Improvement of composition of CdTe thin films during heat treatment in the presence of CdCl2. J. Mater. Sci. Mater. Electron. 28, 2343–2352 (2017). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Ojo
    • 1
  • W. M. Cranton
    • 1
  • I. M. Dharmadasa
    • 1
  1. 1.Sheffield Hallam UniversitySheffieldUK

Personalised recommendations