Network Modularity and Hierarchical Structure in Breast Cancer Molecular Subtypes

  • Sergio Antonio Alcalá-CoronaEmail author
  • Guillermo de Anda-Jáuregui
  • Jesús Espinal-Enriquez
  • Hugo Tovar
  • Enrique Hernández-Lemus
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


Breast Cancer is the malignant neoplasm with the highest incidence and mortality among women worldwide. It is a heterogeneous and complex disease, its classification in different molecular subtypes is a clear manifestation of this. The recent abundance of genomic data on cancer, make possible to propose theoretical approaches to model the process of genetic regulation. One of these approaches is gene transcriptional networks which represent the regulation and co-expression of genes as well-defined mathematical objects. These complex networks have global topological and dynamic properties. One of these properties is modular structure, which may be related to known or annotated biological processes. In this way, different modular structures in transcription networks can be seen as manifestations of regulatory structures that closely control some biological processes. In this work, we identify modular structures on gene transcriptional networks previously inferred from microarray data of molecular subtypes of breast cancer: luminal A, luminal B, basal, and HER2-enriched. Using a methodology based on the identification of functional modules in transcriptional networks, we analyzed the modules (communities) found in each network to identify particular biological functions (described in the Gene Ontology database) associated to them. We also explored the hierarchical structure of these modules and their functions to identify unique and common characteristics that could allow a better level of description of such molecular subtypes of breast cancer. This approach and its findings are leading us to a better understanding of the molecular cancer subtypes and even contribute to direct experiments and design strategies for their treatment.


Breast cancer subtypes Modular structure Gene regulatory networks 


  1. 1.
    Alcalá-Corona, S.A., Velázquez-Caldelas, T.E., Espinal-Enríquez, J., Hernández-Lemus, E.: Community structure reveals biologically functional modules in MEF2C transcriptional regulatory network. Front. Physiol. 7, 184 (2016)CrossRefGoogle Scholar
  2. 2.
    Alcalá-Corona, S.A., De Anda Jáuregui, G., Espinal-Enríquez, J., Hernández-Lemus, E.: Network modularity in breast cancer molecular subtypes. Front. Physiol. 8, 915 (2017)CrossRefGoogle Scholar
  3. 3.
    Alcalá-Corona, S.A., De Anda Jáuregui, G., Espinal-Enríquez, J., Hernández-Lemus, E.: The hierarchical network structure of HER2+ breast cancer. Submitted to Front. Physiol. Sect. Syst. Biol. (2018). (in Press)Google Scholar
  4. 4.
    Gene Ontology Consortium. Gene ontology consortium: going forward. Nucleic Acids Res. 43, D1049–D1056 (2015)Google Scholar
  5. 5.
    de Anda-Jáuregui, G., Mejía-Pedroza, R.A., Espinal-Enríquez, J., Hernández-Lemus, E.: Crosstalk events in the estrogen signaling pathway may affect tamoxifen efficacy in breast cancer molecular subtypes. Comput. Biol. Chem. 59, 42–54 (2015)CrossRefGoogle Scholar
  6. 6.
    de Anda-Jáuregui, G., Velázquez-Caldelas, T.E., Espinal-Enríquez, J., Hernández-Lemus, E.: Transcriptional network architecture of breast cancer molecular subtypes. Front. Physiol. 7, 568 (2016)Google Scholar
  7. 7.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Margolin, A.A., Wang, K., Lim, W.K., Kustagi, M., Nemenman, I., Califano, A.: Reverse engineering cellular networks. Nat. Protoc. 1, 662–671 (2006)CrossRefGoogle Scholar
  10. 10.
    Parker, J.S., Mullins, M., Cheang, M.C.U., Leung, S., Voduc, D., Vickery, T., Davies, S., Fauron, C., He, X., Hu, Z., et al.: Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27(8), 1160 (2009)CrossRefGoogle Scholar
  11. 11.
    Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science (New York, N.Y.) 297, 1551–1555 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Rosvall, M., Bergstrom, C.T.: Mapping change in large networks. PLoS ONE 5(1), e8694 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Sole, R.V., Valverde, S.: Spontaneous emergence of modularity in cellular networks. J. R. Soc. Interface 5, 129–133 (2008)CrossRefGoogle Scholar
  15. 15.
    Solé, R.V., Valverde, S., Rodriguez-Caso, C.: Modularity in biological networks. In: Biological Networks (2006)Google Scholar
  16. 16.
    Tripathi, S., Moutari, S., Dehmer, M., Emmert-Streib, F.: Comparison of module detection algorithms in protein networks and investigation of the biological meaning of predicted modules. BMC Bioinform. 17, 129 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sergio Antonio Alcalá-Corona
    • 1
    • 2
    • 3
    Email author
  • Guillermo de Anda-Jáuregui
    • 1
  • Jesús Espinal-Enriquez
    • 1
    • 2
  • Hugo Tovar
    • 1
  • Enrique Hernández-Lemus
    • 1
    • 2
  1. 1.National Insitute of Genomic MedicineMexico CityMexico
  2. 2.Centro de Ciencias de la Complejidad (C3)Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  3. 3.Department of Ecology & EvolutionThe University of Chicago, Erman Biology CenterChicagoUSA

Personalised recommendations