Advertisement

Transitivity vs Preferential Attachment: Determining the Driving Force Behind the Evolution of Scientific Co-Authorship Networks

  • Masaaki Inoue
  • Thong Pham
  • Hidetoshi Shimodaira
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

We propose a method for the non-parametric joint estimation of preferential attachment and transitivity in complex networks, as opposite to conventional methods that either estimate one mechanism in isolation or jointly estimate both assuming some functional forms. We apply our method to three scientific co-authorship networks between scholars in the complex network field, physicists in high-energy physics, and authors in the Strategic Management Journal. The non-parametric method revealed complex trends of preferential attachment and transitivity that would be unavailable under conventional parametric approaches. In all networks, having one common collaborator with another scientist increases at least five times the chance that one will collaborate with that scientist. Finally, by quantifying the contribution of each mechanism, we found that while transitivity dominates preferential attachment in the high-energy physics network, preferential attachment is the main driving force behind the evolutions of the remaining two networks.

Keywords

Preferential attachment Clustering coefficient Rich-get-richer Transitivity Scientific co-authorship networks Collaboration networks 

References

  1. 1.
    Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006). http://science.sciencemag.org/content/314/5805/1560ADSCrossRefGoogle Scholar
  2. 2.
    Dugatkin, L.A.: Cooperation Among Animals: An Evolutionary Perspective. Oxford University Press, Oxford (1997)Google Scholar
  3. 3.
    Watson, A.: Diplomacy. Routledge, London (1984)Google Scholar
  4. 4.
    Hamel, G., Doz, Y.L., Prahalad, C.K.: Collaborate with your competitors-and win. Harv. Bus. Rev. 67(1), 133–139 (1989). https://hbr.org/1989/01/collaborate-with-your-competitors-and-winGoogle Scholar
  5. 5.
    Johnson, D.W., Johnson, R.T., Smith, K.A.: Active Learning: Cooperation in the College Classroom. Interaction Book Company, Edina (1991)Google Scholar
  6. 6.
    Larivière, V., Gingras, Y., Sugimoto, C.R., Tsou, A.: Team size matters: collaboration and scientific impact since 1900. J. Assoc. Inf. Sci. Technol. 66(7), 1323–1332. https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.23266
  7. 7.
    Bornmann, L.: Is collaboration among scientists related to the citation impact of papers because their quality increases with collaboration? An analysis based on data from F1000Prime and normalized citation scores. J. Assoc. Inf. Sci. Technol. 68(4), 1036–1047 (2017). https://doi.org/10.1002/asi.23728CrossRefGoogle Scholar
  8. 8.
    Tahai, A., Meyer, M.J.: A revealed preference study of management journals’ direct influences. Strateg. Manag. J. 20(3), 279–296 (1999). https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0266%28199903%2920%3A3%3C279%3A%3AAID-SMJ33%3E3.0.CO%3B2-2CrossRefGoogle Scholar
  9. 9.
    Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65, 026107 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Newman, M.E.J.: Coauthorship networks and patterns of scientific collaboration. In: Proceedings of the National Academy of Sciences, vol. 101(suppl 1), pp. 5200–5205 (2004). http://www.pnas.org/content/101/suppl_1/5200
  11. 11.
    Newman, M.E.J.: Scientific collaboration networks. I. network construction and fundamental results. Phys. Rev. E 64, 016131 (2001). https://link.aps.org/doi/10.1103/PhysRevE.64.016131ADSCrossRefGoogle Scholar
  12. 12.
    Krapivsky, P., Rodgers, G., Redner, S.: Degree distributions of growing networks. Phys. Rev. Lett. 86(23), 5401–5404 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Pham, T., Sheridan, P., Shimodaira, H.: PAFit: a statistical method for measuring preferential attachment in temporal complex networks. PLoS ONE 10(9), e0137796 (2015)CrossRefGoogle Scholar
  14. 14.
    Newman, M.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Jeong, H., Néda, Z., Barabási, A.: Measuring preferential attachment in evolving networks. Europhys. Lett. 61(61), 567–572 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Ripley, R., Boitmanis, K., Snijders, T.A.: RSiena: Siena - Simulation Investigation for Empirical Network Analysis, R package version 1.1-232 (2013). https://CRAN.R-project.org/package=RSiena
  17. 17.
    Krivitsky, P.N., Handcock, M.S.: tergm: Fit, Simulate and Diagnose Models for Network Evolution Based on Exponential-Family Random Graph Models. The Statnet Project. R package version 3.4.0 (2016). http://www.statnet.org, http://CRAN.R-project.org/package=tergm
  18. 18.
    Kong, J., Sarshar, N., Roychowdhury, V.: Experience versus talent shapes the structure of the web. Proc. Nat. Acad. Sci. U.S.A. 37, 105 (2008)Google Scholar
  19. 19.
    Hunter, D., Lange, K.: Quantile regression via an MM algorithm. J. Comput. Graph. Stat. 9, 60–77 (2000)MathSciNetGoogle Scholar
  20. 20.
    Pham, T., Sheridan, P., Shimodaira, H.: PAFit: an R Package for the Non-parametric Estimation of Preferential Attachment and Node Fitness in Temporal Complex Networks. ArXiv e-prints, April 2017Google Scholar
  21. 21.
    KONECT: arxiv hep-th network dataset. http://konect.uni-koblenz.de/networks/ca-cit-HepTh. Accessed 03 May 2018
  22. 22.
    Ronda-Pupo, G.A., Pham, T.: The evolutions of the rich get richer and the fit get richer phenomena in scholarly networks: the case of the strategic management journal. Scientometrics, May 2018.  https://doi.org/10.1007/s11192-018-2761-3
  23. 23.
    Zimmermann, F.: High-energy physics strategies and futurelarge-scale projects. Nucl. Instr. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms 355, 4–10 (2015). http://www.sciencedirect.com/science/article/pii/S0168583X1500350X. Proceedings of the 6th International Conference Channeling 2014: Charged & Neutral Particles Channeling Phenomena, 5–10 October 2014, Capri, ItalyADSCrossRefGoogle Scholar
  24. 24.
    Birnholtz, J.P.: What does it mean to be an author? The intersection of credit, contribution, and collaboration in science. J. Am. Soc. Inf. Sci. Technol. 57(13), 1758–1770. https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.20380
  25. 25.
    Pham, T., Sheridan, P., Shimodaira, H.: Joint estimation of preferential attachment and node fitness in growing complex networks. Sci. Rep. 6 (2016).  https://doi.org/10.1038/srep32558

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Masaaki Inoue
    • 1
    • 2
  • Thong Pham
    • 2
  • Hidetoshi Shimodaira
    • 1
    • 2
  1. 1.Kyoto UniversityKyotoJapan
  2. 2.RIKEN AIPTokyoJapan

Personalised recommendations