Advertisement

Forest Complexity in the Green Tonality of Satellite Images

  • Juan Antonio López-Rivera
  • Ana Leonor Rivera
  • Alejandro Frank
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Forest complexity is associated with biodiversity and tells us information about the ecosystem health. A healthy forest must be in a scale-invariant state of balance between robustness and adaptability, reflected in the tonalities present on its vegetation. Remote imaging can be used to determine forest complexity based on the scale-invariance of green tones in the images. Here is proposed a simple technique to monitor changes on the forest using statistical moments and spectral analysis of the green tones on the satellite images.

Keywords

Forest complexity Ecosystem health Scale invariance 

Notes

Acknowledgments

Partial Financial support for this work was provided by UNAM through grants DGAPA-PAPIIT IN106215, IV100116, and by CONACyT Frontera grants FC-2016-1/2277.

References

  1. 1.
    Laurance, W.F., Camargo, J.L., Fearnside, P.M., Lovejoy, T.E., Williamson, G.B., Mesquita, R.C., et al.: An Amazonian rainforest and its fragments as a laboratory of global change. Biol. Rev. 93(1), 223–247 (2018).  https://doi.org/10.1111/brv.12343CrossRefGoogle Scholar
  2. 2.
    Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., et al.: Forest disturbances under climate change. Nat. Clim. Change 7(6), 395 (2017).  https://doi.org/10.1038/nclimate3303ADSCrossRefGoogle Scholar
  3. 3.
    Reyer, C.P., Brouwers, N., Rammig, A., Brook, B.W., Epila, J., Grant, R.F., et al.: Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103(1), 5–15 (2015).  https://doi.org/10.1111/1365-2745.12337CrossRefGoogle Scholar
  4. 4.
    Lausch, A., Erasmi, S., King, D.J., Magdon, P., Heurich, M.: Understanding forest health with remote sensing-Part II—A review of approaches and data models. Remote Sens. 9, 129 (2017).  https://doi.org/10.3390/rs9020129ADSCrossRefGoogle Scholar
  5. 5.
    Banskota, A., Kayastha, N., Falkowski, M.J., Wulder, M.A., Froese, R.E., White, J.C.: Forest monitoring using landsat time series data: a review. Can. J. Remote Sens. 40, 362–384 (2014).  https://doi.org/10.1080/07038992.2014.987376ADSCrossRefGoogle Scholar
  6. 6.
    Singh, A.: Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10, 989–1003 (1989).  https://doi.org/10.1080/01431168908903939ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., Lambin, E.: Digital change detection methods in ecosystem monitoring: a review. Int. J. Remote Sens. 25, 1565–1596 (2004).  https://doi.org/10.1080/0143116031000101675ADSCrossRefGoogle Scholar
  8. 8.
    Kennedy, R.E., Andrefouet, S., Cohen, W.B., Gomez, C., Griffiths, P., Hais, M., et al.: Bringing an ecological view of change to Landsat-based remote sensing. Front. Ecol. Environ. 12, 339–346 (2014).  https://doi.org/10.1890/130066CrossRefGoogle Scholar
  9. 9.
    Zhu, Z.: Change detection using Landsat time series: a review of frequencies, pre-processing, algorithms, and applications. ISPRS J. Photogram. Remote Sens. 130, 370–384 (2017).  https://doi.org/10.1016/j.isprsjprs.2017.06.013ADSCrossRefGoogle Scholar
  10. 10.
    Woodcock, C.: Free access to Landsat imagery teach by the book science education. Science 320, 1011–1012 (2008).  https://doi.org/10.1126/science.320.5879.1011aCrossRefGoogle Scholar
  11. 11.
    Wulder, M.A., White, J.C., Loveland, T.R., Woodcock, C.E., Belward, A.S., Cohen, W.B., et al.: The global Landsat archive: status, consolidation, and direction. Remote Sens. Environ. 185, 271–283 (2016).  https://doi.org/10.1016/j.rse.2015.11.032ADSCrossRefGoogle Scholar
  12. 12.
    White, J.C., Wulder, M.A., Vastaranta, M., Coops, N.C., Pitt, D., Woods, M.: The utility of image-based point clouds for forest inventory: a comparison with airborne laser scanning. Forests 4, 518–536 (2013).  https://doi.org/10.3390/f4030518CrossRefGoogle Scholar
  13. 13.
    Hartig, T., Mitchell, R., De Vries, S., Frumkin, H.: Nature and health. Ann. Rev. Public Health 35, 207–228 (2014).  https://doi.org/10.1146/annurev-publhealth-032013-182443CrossRefGoogle Scholar
  14. 14.
    Rivera, A.L., Estañol, B., Toledo, J.C., Fossion, R., Frank, A.: Looking for biomarkers in physiological time series. In: Quiroz, L.O., Antonio, O.R. (eds.) Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues. Springer, Cham (2018)Google Scholar
  15. 15.
    Rivera, A.L., Estañol, B., Fossion, R., Toledo-Roy, J.C., Callejas-Rojas, R.C., Gien, J.A., et al.: Loss of breathing modulation of heart rate variability in patients with recent and long-standing Diabetes Mellitus Type II. PLoS ONE 11(11), e0165904 (2016).  https://doi.org/10.1371/journal.pone.0165904CrossRefGoogle Scholar
  16. 16.
    Rivera, A.L., Estañol, B., Sentíes-Madrid, H., Fossion, R., Toledo-Roy, J.C., Mendoza-Temis, J., et al.: Heart rate and systolic blood pressure variability in the time domain in patients with recent and long-standing Diabetes Mellitus. PLoS ONE 11(2), e0148378 (2016).  https://doi.org/10.1371/journal.pone.0148378CrossRefGoogle Scholar
  17. 17.
    Hughes, M.J., Hayes, D.J.: Automated detection of cloud and cloud shadow in single-date Landsat imagery using neural networks and spatial post-processing. Remote Sens. 6, 4907–4926 (2014).  https://doi.org/10.3390/rs6064907ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Juan Antonio López-Rivera
    • 1
    • 2
  • Ana Leonor Rivera
    • 1
    • 3
  • Alejandro Frank
    • 1
    • 3
    • 4
  1. 1.Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  4. 4.El Colegio NacionalMexico CityMexico

Personalised recommendations