Advertisement

Neural Gas Based Classification of Globular Clusters

  • Giuseppe Angora
  • Massimo Brescia
  • Stefano Cavuoti
  • Giuseppe Riccio
  • Maurizio Paolillo
  • Thomas H. Puzia
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 822)

Abstract

Within scientific and real life problems, classification is a typical case of extremely complex tasks in data-driven scenarios, especially if approached with traditional techniques. Machine Learning supervised and unsupervised paradigms, providing self-adaptive and semi-automatic methods, are able to navigate into large volumes of data characterized by a multi-dimensional parameter space, thus representing an ideal method to disentangle classes of objects in a reliable and efficient way. In Astrophysics, the identification of candidate Globular Clusters through deep, wide-field, single band images, is one of such cases where self-adaptive methods demonstrated a high performance and reliability. Here we experimented some variants of the known Neural Gas model, exploring both supervised and unsupervised paradigms of Machine Learning for the classification of Globular Clusters. Main scope of this work was to verify the possibility to improve the computational efficiency of the methods to solve complex data-driven problems, by exploiting the parallel programming with GPU framework. By using the astrophysical playground, the goal was to scientifically validate such kind of models for further applications extended to other contexts.

Keywords

Data analytics Astroinformatics Globular Clusters Machine learning Neural Gas 

Notes

Acknowledgements

MB acknowledges the INAF PRIN-SKA 2017 program 1.05.01.88.04 and the funding from MIUR Premiale 2016: MITIC.

References

  1. 1.
    Al-Rfou, R., Alain, G., Almahairi, A., et al.: Theano: A Python framework for fast computation of mathematical expressions. ArXiv e-prints, May 2016Google Scholar
  2. 2.
    Angora, G., Brescia, M., Riccio, G., Cavuoti, S., Paolillo, M., Puzia, T.H.: Astrophysical data analytics based on neural gas models, using the classification of globular clusters as playground. In: CEUR Workshop Proceedings, vol. 2022, pp. 381–388 (2017)Google Scholar
  3. 3.
    Annunziatella, M., Mercurio, A., Brescia, M., Cavuoti, S., Longo, G.: Inside catalogs: a comparison of source extraction software. Publ. Astron. Soc. Pac. 125(923), 68–82 (2013).  https://doi.org/10.1086/669333CrossRefGoogle Scholar
  4. 4.
    Bertin, E., Arnouts, S.: SExtractor: software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996).  https://doi.org/10.1051/aas:1996164CrossRefGoogle Scholar
  5. 5.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).  https://doi.org/10.1023/A:1010933404324CrossRefzbMATHGoogle Scholar
  6. 6.
    Brescia, M., Cavuoti, S., Longo, G., et al.: Dameware: a web cyberinfrastructure for astrophysical data mining. Publ. Astron. Soc. Pac. 126(942), 783–797 (2014)Google Scholar
  7. 7.
    Brescia, M., Cavuoti, S., Paolillo, M., Longo, G., Puzia, T.: The detection of globular clusters in galaxies as a data mining problem. Mon. Not. R. Astron. Soc. 421(2), 1155–1165 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20375.xCrossRefGoogle Scholar
  8. 8.
    Brescia, M., Longo, G.: Astroinformatics, data mining and the future of astronomical research. Nuclear Instrum. Methods Phys. Res. A 720, 92–94 (2013).  https://doi.org/10.1016/j.nima.2012.12.027CrossRefGoogle Scholar
  9. 9.
    Broomhead, D., Lowe, D.: Radial basis functions, multi-variable functional interpolation and adaptive networks RSRE-MEMO-4148, March 1988Google Scholar
  10. 10.
    Carlson, M., Holtzman, J.: Measuring sizes of marginally resolved young globular clusters with the hubble space telescope. Publ. Astron. Soc. Pac. 113(790), 1522–1540 (2001).  https://doi.org/10.1086/324417CrossRefGoogle Scholar
  11. 11.
    Cavuoti, S., Garofalo, M., Brescia, M., Paolillo, M., Pescape’, A., Longo, G., Ventre, G.: Astrophysical data mining with gpu. a case study: genetic classification of globular clusters. New Astron. 26, 12–22 (2014).  https://doi.org/10.1016/j.newast.2013.04.004CrossRefGoogle Scholar
  12. 12.
    Cavuoti, S., Garofalo, M., Brescia, M., Pescape, A., Longo, G., Ventre, G.: Genetic algorithm modeling with GPU parallel computing technology. Smart Innov. Syst. Technol. 19, 29–39 (2013).  https://doi.org/10.1007/978-3-642-35467-0_4CrossRefGoogle Scholar
  13. 13.
    D’Isanto, A., Cavuoti, S., Brescia, M., Donalek, C., Longo, G., Riccio, G., Djorgovski, S.: An analysis of feature relevance in the classification of astronomical transients with machine learning methods. Mon. Not. R. Astron. Soc. 457(3), 3119–3132 (2016).  https://doi.org/10.1093/mnras/stw157CrossRefGoogle Scholar
  14. 14.
    Dunn, L., Jerjen, H.: First results from sapac: toward a three-dimensional picture of the fornax cluster core. Astron. J. 132(3), 1384–1395 (2006).  https://doi.org/10.1086/506562CrossRefGoogle Scholar
  15. 15.
    Fritzke, B.: Supervised learning with growing cell structures. In: Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS 1993, pp. 255–262. Morgan Kaufmann Publishers Inc., San Francisco (1993). http://dl.acm.org/citation.cfm?id=2987189.2987222
  16. 16.
    Fritzke, B.: A growing neural gas network learns topologies. In: Proceedings of the 7th International Conference on Neural Information Processing Systems, NIPS 1994, pp. 625–632. MIT Press, Cambridge (1994). http://dl.acm.org/citation.cfm?id=2998687.2998765
  17. 17.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003). http://dl.acm.org/citation.cfm?id=944919.944968
  18. 18.
    Harrell Jr., F.E.: Regression Modeling Strategies. Springer-Verlag New York Inc., Secaucus (2006)Google Scholar
  19. 19.
    Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theor. 14(1), 55–63 (2006).  https://doi.org/10.1109/TIT.1968.1054102CrossRefGoogle Scholar
  20. 20.
    Jirayusakul, A., Auwatanamongkol, S.: A supervised growing neural gas algorithm for cluster analysis. Int. J. Hybrid Intell. Syst. 4(2), 129–141 (2007). http://dl.acm.org/citation.cfm?id=1367006.1367011CrossRefGoogle Scholar
  21. 21.
    Martinetz, T., Schulten, K.: A “neural-gas” network learns topologies. Artif. Neural Networks 1, 397–402 (1991)Google Scholar
  22. 22.
    Martinetz, T., Berkovich, S., Schulten, K.: “neural-gas” network for vector quantization and its application to time-series prediction. IEEE Trans. Neural Networks 4(4), 558–569 (1993).  https://doi.org/10.1109/72.238311CrossRefGoogle Scholar
  23. 23.
    McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943).  https://doi.org/10.1007/BF02478259MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Montoro, J.C.G., Abascal, J.L.F.: The voronoi polyhedra as tools for structure determination in simple disordered systems. J. Phys. Chem. 97(16), 4211–4215 (1993).  https://doi.org/10.1021/j100118a044CrossRefGoogle Scholar
  25. 25.
    Paolillo, M., Puzia, T.H., Goudfrooij, P., et al.: Probing the GC-LMXB Connection in NGC 1399: a wide-field study with the hubble space telescope and Chandra. Astrophys. J. 736, 90 (2011).  https://doi.org/10.1088/0004-637X/736/2/90CrossRefGoogle Scholar
  26. 26.
    Pedregosa, F., Varoquaux, G., Gramfort, et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)Google Scholar
  27. 27.
    Puzia, T.H., Paolillo, M., Goudfrooij, P., et al.: Wide-field hubble space telescope observations of the globular cluster system in NGC 1399, ApJ 786, 78 (2014).  https://doi.org/10.1088/0004-637X/786/2/78CrossRefGoogle Scholar
  28. 28.
    Stehman, S.V.: Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 62(1), 77–89 (1997). http://www.sciencedirect.com/science/article/pii/S0034425797000837CrossRefGoogle Scholar
  29. 29.
    van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011).  https://doi.org/10.1109/MCSE.2011.37CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Naples Federico II - Dept. of Physics “E. Pancini”NapoliItaly
  2. 2.INAF - Astronomical Observatory of CapodimonteNapoliItaly
  3. 3.INFN - Napoli UnitNapoliItaly
  4. 4.Institute of AstrophysicsPontificia Universidad Catolica de ChileMaculChile

Personalised recommendations