Deep Model Guided Data Analysis

  • Yannic Ole KroppEmail author
  • Bernhard Thalheim
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 822)


Data mining is currently a well-established technique and supported by many algorithms. It is dependent on the data on hand, on properties of the algorithms, on the technology developed so far, and on the expectations and limits to be applied. It must be thus matured, predictable, optimisable, evolving, adaptable and well-founded similar to mathematics and SPICE/CMM-based software engineering. Data mining must therefore be systematic if the results have to be fit to its purpose. One basis of this systematic approach is model management and model reasoning. We claim that systematic data mining is nothing else than systematic modelling. The main notion is the notion of the model in a variety of forms, abstraction and associations among models.


Data mining Modelling Models Framework Deep model Normal model Modelling matrix 



This research was supported by the CRC 1266 ‘Scales of Transformation - Human-Environmental Interaction in Prehistoric and Archaic Societies’ which is funded by the DFG. We thank both institutions for enabling this work. We are also very thankful for the fruitful discussions with the members of the CRC.


  1. 1.
    Bell, G.: The Mechanism of Evolution. Chapman and Hall, New York (1997)Google Scholar
  2. 2.
    Berghammer, R., Thalheim, B.: Methodenbasierte mathematische Modellierung mit Relationenalgebren. In: Wissenschaft und Kunst der Modellierung: Modelle, Modellieren, Modellierung, pp. 67–106. De Gryuter, Boston (2015)Google Scholar
  3. 3.
    Berthold, M.R., Borgelt, C., Höppner, F., Klawonn, F.: Guide to Intelligent Data Analysis. Springer, London (2010). Scholar
  4. 4.
    Bienemann, A., Schewe, K.-D., Thalheim, B.: Towards a theory of genericity based on government and binding. In: Embley, David W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 311–324. Springer, Heidelberg (2006). Scholar
  5. 5.
    Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algorithms. Artif. Intell. 40(1–3), 235–282 (1989)CrossRefGoogle Scholar
  6. 6.
    Brassard, G., Bratley, P.: Algorithmics - Theory and Practice. Prentice Hall, London (1988)zbMATHGoogle Scholar
  7. 7.
    Coleman, A.: Scientific models as works. Cat. Classif. Q. 33, 3–4 (2006). Special Issue: Works as Entities for Information RetrievalGoogle Scholar
  8. 8.
    Dahanayake, A., Thalheim, B.: Co-evolution of (information) system models. In: Bider, I., et al. (eds.) BPMDS/EMMSAD -2010. LNBIP, vol. 50, pp. 314–326. Springer, Heidelberg (2010). Scholar
  9. 9.
    Embley, D., Thalheim, B. (eds.): The Handbook of Conceptual Modeling: Its Usage and Its Challenges. Springer, Heidelberg (2011). Scholar
  10. 10.
    Gillett, N.P., Zwiers, F.W., Weaver, A.J., Hegerl, G.C., Allen, M.R., Stott, P.A.: Detecting anthropogenic influence with a multi-model ensemble. Geophys. Res. Lett. 29, 31–34 (2002)CrossRefGoogle Scholar
  11. 11.
    Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: Inter-modelling: From Theory to Practice. In: Petriu, Dorina C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 376–391. Springer, Heidelberg (2010). Scholar
  12. 12.
    Haken, H., Wunderlin, A., Yigitbasi, S.: An introduction to synergetics. Open. Syst. Inf. Dyn. 3(1), 1–34 (1994)zbMATHGoogle Scholar
  13. 13.
    Hunter, P.J., Li, W.W., McCulloch, A.D., Noble, D.: Multiscale modeling: physiome project standards, tools, and databases. IEEE Comput. 39(11), 48–54 (2006)CrossRefGoogle Scholar
  14. 14.
    ISO/IEC 25020: Software and system engineering - software product quality requirements and evaluation (square) - measurement reference model and guide. ISO/IEC JTC1/SC7 N3280 (2005)Google Scholar
  15. 15.
    Jaakkola, H., Thalheim, B., Kidawara, Y., Zettsu, K., Chen, Y., Heimbürger, A.: Information modelling and global risk management systems. In: Information Modeling and Knowledge Bases XX, pp. 429–446. IOS Press (2009)Google Scholar
  16. 16.
    Jannaschk, K.: Infrastruktur für ein Data Mining Design Framework. Ph.D. thesis, Christian-Albrechts University, Kiel (2017)Google Scholar
  17. 17.
    Kramer, F., Thalheim, B.: A metadata system for quality management. In: Information Modelling and Knowledge Bases, pp. 224–242. IOS Press (2014)Google Scholar
  18. 18.
    Nakoinz, O., Knitter, D.: Modelling Human Behaviour in Landscapes. Springer, Heidelberg (2016). Scholar
  19. 19.
    Pardillo, J.: A systematic review on the definition of UML profiles. In: Petriu, Dorina C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 407–422. Springer, Heidelberg (2010). Scholar
  20. 20.
    Petrelli, D., Levin, S., Beaulieu, M., Sanderson, M.: Which user interaction for cross-language information retrieval? Design issues and reflections. JASIST 57(5), 709–722 (2006)CrossRefGoogle Scholar
  21. 21.
    Pilkey, O.H., Pilkey-Jarvis, L.: Useless Arithmetic: Why Environmental Scientists Can’t Predict the Future. Columbia University Press, New York (2006)Google Scholar
  22. 22.
    Podkolsin, A.S.: Computer-based modelling of solution processes for mathematical tasks (in Russian). ZPI at Department of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow (2001)Google Scholar
  23. 23.
    Pottmann, M., Unbehauen, H., Seborg, D.E.: Application of a general multi-model approach for identification of highly nonlinear processes – a case study. Int. J. Control 57(1), 97–120 (1993)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rumpe, B.: Modellierung mit UML. Springer, Heidelberg (2012). Scholar
  25. 25.
    Samuel, A., Weir, J.: Introduction to Engineering: Modelling Synthesis and Problem Solving Strategies. Elsevier, Amsterdam (2000)Google Scholar
  26. 26.
    Simsion, G., Witt, G.C.: Data Modeling Essentials. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  27. 27.
    Skusa, M.: Semantische Kohärenz in der Softwareentwicklung. Ph.D. thesis, CAU, Kiel (2011)Google Scholar
  28. 28.
    Thalheim, B.: Towards a theory of conceptual modelling. J. Univ. Comput. Sci. 16(20), 3102–3137 (2010)zbMATHGoogle Scholar
  29. 29.
    Thalheim, B.: The conceptual model an adequate and dependable artifact enhanced by concepts. In: Information Modelling and Knowledge Bases XXV, pp. 241–254. IOS Press (2014)Google Scholar
  30. 30.
    Thalheim, B.: Conceptual modeling foundations: the notion of a model in conceptual modeling. In: Liu, L., Özsu, M. (eds.) Encyclopedia of Database Systems. Springer, New York (2017). Scholar
  31. 31.
    Thalheim, B., Tropmann-Frick, M.: Wherefore models are used and accepted? The model functions as a quality instrument in utilisation scenarios. In: Comyn-Wattiau, I., du Mouza, C., Prat, N. (eds), Ingenierie Management des Systemes D’Information (2016)Google Scholar
  32. 32.
    Thalheim, B., Wang, Q.: Towards a theory of refinement for data migration. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 318–331. Springer, Heidelberg (2011). Scholar
  33. 33.
    Jannaschk, K., Rathje, C.A., Thalheim, B., Förster, F.A.: generic database schema for CIDOC-CRM data management. In: ADBIS 2011, Research Communications, Proceedings II of the 15th East-European Conference on Advances in Databases and Information Systems, CEUR Workshop Proceedings, pp. 127–136 (2011)Google Scholar
  34. 34.
    Kropp, Y.O., Thalheim, B.: Data mining design and systematic modelling. In: Selected Papers of the XIX International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL), CEUR Workshop Proceedings 2022, pp: 273–280 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceChristian Albrechts University KielKielGermany

Personalised recommendations