Advertisement

Aggregation Techniques for the Internet of Things: An Overview

  • Barbara Guidi
  • Laura Ricci
Chapter
Part of the Internet of Things book series (ITTCC)

Abstract

Internet of Thing (IoT) can be generally defined as a network connecting millions of smart objects, most of them equipped with sensors. Since sensors are devices generating a huge amount of data, the transmission of raw data to the edge nodes and then to higher level cloud nodes may give rise to transmission delays and energy consumption. Furthermore, sensors are characterized by limited resources. For all these reasons, aggregation techniques are required to reduce the size of data to be transmitted and stored, while maintaining a reasonable level of approximation. In this paper, we propose an overview of a set of aggregation techniques which may be exploited in IoT. We present a set of techniques, ranging from Space Filling Curves, to Q-digest, Wavelets, Gossip aggregation, and Compressive Sensing. We also show how these techniques are exploited in IoT applications.

References

  1. 1.
    S. Abdollahzadeh, N.J. Navimipour, Deployment strategies in the wireless sensor network. Comput. Commun. 91(C), 1–16 (2016)Google Scholar
  2. 2.
    A. Alghamdi, M. Alshamrani, A. Alqahtani, S.S.A. Al Ghamdi, R. Harrathi, Secure data aggregation scheme in wireless sensor networks for IoT, in 2016 International Symposium on Networks, Computers and Communications (ISNCC) (IEEE, 2016), pp. 1–5Google Scholar
  3. 3.
    S.B. Baker, W. Xiang, I. Atkinson, Internet of things for smart healthcare: Technologies, challenges, and opportunities. IEEE Access 5, 26521–26544 (2017)CrossRefGoogle Scholar
  4. 4.
    W. Cai, M. Zhang, Data aggregation mechanism based on wavelet-entropy for wireless sensor networks, in 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008. WiCOM’08 (IEEE, 2008), pp. 1–4Google Scholar
  5. 5.
    E.J. Candès, M.B. Wakin, A sensing/sampling paradigm that goes against the common knowledge in data acquisition (2008)Google Scholar
  6. 6.
    E. Carlini, A. Lulli, L. Ricci, Dragon: multidimensional range queries on distributed aggregation trees. Future Gener. Comput. Syst. 55, 101–115 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Cattani, M. Zuniga, M. Woehrle, K. Langendoen, SOFA: communication in extreme wireless sensor networks, in European Conference on Wireless Sensor Networks (2014), pp. 100–115Google Scholar
  8. 8.
    J.Y. Chen, G. Pandurangan, D. Xu, Robust computation of aggregates in wireless sensor networks: distributed randomized algorithms and analysis. IEEE Trans. Parallel Distrib. Syst. 17(9), 987–1000 (2006)CrossRefGoogle Scholar
  9. 9.
    L. Cheng, S. Guo, Y. Wang, Y. Yang, Lifting wavelet compression based data aggregation in big data wireless sensor networks, in 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS) (2016), pp. 561–568Google Scholar
  10. 10.
    A. Ciancio, A. Ortega, A distributed wavelet compression algorithm for wireless multihop sensor networks using lifting, in IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP’05), vol. 4 (2005), pp. iv–825Google Scholar
  11. 11.
    A.G. Ciancio, Distributed wavelet compression algorithms for wireless sensor networks. Ph.D. thesis (2006)Google Scholar
  12. 12.
    M. Dagar, S. Mahajan, Data aggregation in wireless sensor network: a survey. Int. J. Inf. Comput. Technol. 3(3) (2013)Google Scholar
  13. 13.
    A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, D. Terry, Epidemic algorithms for replicated database maintenance, in Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC ’87 (1987), pp. 1–12Google Scholar
  14. 14.
    D.L. Donoho, A. Maleki, A. Montanari, Message-passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. 106(45), 18914–18919 (2009)CrossRefGoogle Scholar
  15. 15.
    W. Du, J. Gorce, T. Risset, M. Lauzier, A. Fraboulet, Compressive data aggregation on mobile wireless sensor networks for sensing in bike races, in 24th European Signal Processing Conference, EUSIPCO 2016, Budapest, Hungary, 29 Aug–2 Sept 2016 (2016), pp. 51–55Google Scholar
  16. 16.
    Y.J. Fan, Y.H. Yin, L.D. Xu, Y. Zeng, F. Wu, IoT-based smart rehabilitation system. IEEE Trans. Ind. Inf. 10(2), 1568–1577 (2014)CrossRefGoogle Scholar
  17. 17.
    B. Guidi, A.D. Salve, L. Ricci, A data aggregation strategy based on wavelet for the internet of things, in 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, At Timisoara (2017)Google Scholar
  18. 18.
    W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient communication protocol for wireless microsensor networks, in Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000 (2000), pp. 10Google Scholar
  19. 19.
    D. Hilbert, Über die stetige Abbildung einer Linie auf ein Flächenstück (Springer, Berlin, Heidelberg 1970), pp. 1–2Google Scholar
  20. 20.
    Z. Huang, L. Wang, K. Yi, Y. Liu, Sampling based algorithms for quantile computation in sensor networks, in Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD ’11 (2011), pp. 745–756Google Scholar
  21. 21.
    S.M.R. Islam, D. Kwak, H. Kabir, M. Hossain, K.S. Kwak, The internet of things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Jelasity, A. Montresor, Epidemic-style proactive aggregation in large overlay networks, in Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04) (2004), pp. 102–109Google Scholar
  23. 23.
    M. Jelasity, S. Voulgaris, R. Guerraoui, A.M. Kermarrec, M. van Steen, Gossip-based peer sampling. ACM Trans. Comput. Syst. 25(3) (2007)Google Scholar
  24. 24.
    P. Jesus, C. Baquero, P.S. Almeida, A survey of distributed data aggregation algorithms. CoRR arXiv:1110.0725 (2011)
  25. 25.
    D. Kempe, A. Dobra, J. Gehrke, Gossip-based computation of aggregate information, in 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings (IEEE, 2003), pp. 482–491Google Scholar
  26. 26.
    A.M. Kermarrec, M. van Steen, Gossiping in distributed systems. SIGOPS Oper. Syst. Rev. 41(5), 2–7 (2007)CrossRefGoogle Scholar
  27. 27.
    J. Lawder, The application of space-filling curves to the storage and retrieval of multi-dimensional data (2000)Google Scholar
  28. 28.
    A.B. Lee, B. Nadler, L. Wasserman, Treeletsan adaptive multi-scale basis for sparse unordered data. Ann. Appl. Stat. 2(2), 435–471 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, Tag: a tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36(SI), 131–146 (2002)Google Scholar
  30. 30.
    Y. Matias, J.S. Vitter, M. Wang, Dynamic maintenance of wavelet-based histograms, in Proceedings of the 26th International Conference on Very Large Data Bases, VLDB ’00 (2000), pp. 101–110Google Scholar
  31. 31.
    G.M. Morton, A computer oriented geodetic data base and a new technique in file sequencing. Technical report (1966)Google Scholar
  32. 32.
    D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Commun. ACM 53(12), 93–100 (2010)CrossRefGoogle Scholar
  33. 33.
    S. Patil, S.R. Das, A. Nasipuri, Serial data fusion using space-filling curves in wireless sensor networks, in 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004 (IEEE, 2004), pp. 182–190Google Scholar
  34. 34.
    G. Peano, Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen 36(1), 157–160 (1890)MathSciNetCrossRefGoogle Scholar
  35. 35.
    F. Piccialli, A. Chianese, J.J. Jung, Cultural heritage on internet of things (IoT) systems: trends and challenges. Concurr. Comput.: Pract. Exp. 29(11), e4155–n/a (2017)Google Scholar
  36. 36.
    B. Pourghebleh, N.J. Navimipour, Data aggregation mechanisms in the internet of things: a systematic review of the literature and recommendations for future research. J. Netw. Comput. Appl. 97(Supplement C), 23–34 (2017)Google Scholar
  37. 37.
    E. Pournaras, M. Warnier, F.M. Brazier, A generic and adaptive aggregation service for large-scale decentralized networks. Complex Adapt. Syst. Model. 1(1), 19 (2013)CrossRefGoogle Scholar
  38. 38.
    R. Rajagopalan, P.K. Varshney, Data-aggregation techniques in sensor networks: a survey. Commun. Surv. Tutor. 8(4), 48–63 (2006)CrossRefGoogle Scholar
  39. 39.
    H. Sagan, A three-dimensional Hilbert curve. Int. J. Math. Educ. Sci. Technol. 24(4), 541–545 (1993)MathSciNetCrossRefGoogle Scholar
  40. 40.
    N. Shrivastava, C. Buragohain, D. Agrawal, S. Suri, Medians and beyond: new aggregation techniques for sensor networks, in SenSys ’04 (2004), pp. 239–249Google Scholar
  41. 41.
    D. Singh, G. Tripathi, A.J. Jara, A survey of internet-of-things: future vision, architecture, challenges and services, in 2014 IEEE World Forum on Internet of things (WF-IoT) (IEEE, 2014), pp. 287–292Google Scholar
  42. 42.
    J.S. Vitter, M. Wang, Approximate computation of multidimensional aggregates of sparse data using wavelets, in Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, SIGMOD ’99 (1999), pp. 193–204Google Scholar
  43. 43.
    J.S. Walker, A Primer on Wavelets and Their Scientific Applications (CRC press, 2008)Google Scholar
  44. 44.
    F. Wuhib, M. Dam, R. Stadler, A. Clem, Robust monitoring of network-wide aggregates through gossiping. IEEE Trans. Netw. Serv. Manag. 6(2), 95–109 (2009)CrossRefGoogle Scholar
  45. 45.
    X. Xu, R. Ansari, A. Khokhar, A.V. Vasilakos, Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Trans. Sens. Netw. (TOSN) 11(3), 45 (2015)Google Scholar
  46. 46.
    G. Yang, M. Xiao, S. Zhang, Data aggregation scheme based on compressed sensing in wireless sensor network. Inf. Comput. Appl. 556–561 (2012)Google Scholar
  47. 47.
    C. Zhao, W. Zhang, X. Yang, Y. Yang, Y.Q. Song, A novel compressive sensing based data aggregation scheme for wireless sensor networks, in 2014 IEEE International Conference on Communications (ICC) (2014), pp. 18–23Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of PisaPisaItaly

Personalised recommendations