Advertisement

Embedding Internet-of-Things in Large-Scale Socio-technical Systems: A Community-Oriented Design in Future Smart Grids

  • Yilin Huang
  • Giacomo Poderi
  • Sanja Šćepanović
  • Hanna Hasselqvist
  • Martijn Warnier
  • Frances Brazier
Chapter
Part of the Internet of Things book series (ITTCC)

Abstract

In traditional engineering, technologies are viewed as the core of the engineering design, in a physical world with a large number of diverse technological artefacts. The real world, however, also includes a huge number of social components—people, communities, institutions, regulations and everything that exists in the human mind—that have shaped and been shaped by the technological components. Smart urban ecosystems are examples of large-scale Socio-Technical Systems (STS) that rely on technologies, in particular on the Internet-of-Things (IoT), within a complex social context where the technologies are embedded. Designing applications that embed both social complexity and IoT in large-scale STS requires a Socio-Technical (ST) approach, which has not yet entered the mainstream of design practice. This chapter reviews the literature and presents our experience of adopting an ST approach to the design of a community-oriented smart grid application. It discusses the challenges, process and outcomes of this apporach, and provides a set of lessons learned derived from this experience that are also deemed relevant to the design of other smart urban ecosystems.

References

  1. 1.
    L. Atzori, A. Iera, G. Morabito, From “smart objects” to “social objects”: the next evolutionary step of the internet of things. IEEE Commun. Mag. 52(1), 97–105 (2014)Google Scholar
  2. 2.
    G. Baxter, I. Sommerville, Socio-technical systems: from design methods to systems engineering. Interact. Comput. 23(1), 4–17 (2011)CrossRefGoogle Scholar
  3. 3.
    K. Bødker, F. Kensing, J. Simonsen, Participatory IT Design: Designing for Business and Workplace Realities (MIT Press, Cambridge, MA, 2004)Google Scholar
  4. 4.
    P.W. Bots, Design in socio-technical system development: three angles in a common framework. J. Design Res. 5(3), 382–396 (2007)CrossRefGoogle Scholar
  5. 5.
    G.D. Brewer, The challenges of interdisciplinarity. Policy Sci. 32, 327–337 (1999)CrossRefGoogle Scholar
  6. 6.
    H. Brynjarsdottir, M. Håkansson, J. Pierce, E. Baumer, C. DiSalvo, P. Sengers, Sustainably unpersuaded: how persuasion narrows our vision of sustainability, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’12 (ACM, New York, NY, USA, 2012), pp. 947–956Google Scholar
  7. 7.
    H. Bulkeley, V.C. Broto, G. Edwards, Bringing climate change to the city: towards low carbon urbanism? Local Environ. 17(5), 545–551 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Capaccioli, G. Poderi, M. Bettega, V. D’Andrea, Exploring alternative participatory budgeting approaches as means for citizens engagement: the case of energy, in 2016 IEEE International Smart Cities Conference (ISC2), pp. 1–4, Sept. 2016Google Scholar
  9. 9.
    A. Capaccioli, G. Poderi, M. Bettega, V. D’Andrea, Participatory infrastructuring of community energy, in Proceedings of the 14th Participatory Design Conference: Short Papers, Interactive Exhibitions, Workshops (PDC’16), vol. 2 (ACM, New York, NY, USA, 2016), pp. 9–12Google Scholar
  10. 10.
    A. Capaccioli, G. Poderi, M. Bettega, V. D’Andrea, Exploring participatory energy budgeting as a policy instrument to foster energy justice. Energy Policy 107, 621–630 (2017)CrossRefGoogle Scholar
  11. 11.
    P. Checkland, Systems Thinking, Systems Practice (Wiley, 1981)Google Scholar
  12. 12.
    M. da Graa Carvalho, EU energy and climate change strategy. Energy 40(1), 19–22 (2012)Google Scholar
  13. 13.
    H. Dick, H. Eden, G. Fischer, J. Zietz, Empowering users to become designers: using meta-design environments to enable and motivate sustainable energy decisions, in Proceedings of the 12th Participatory Design Conference: Exploratory Papers, Workshop Descriptions, Industry Cases (PDC’12), vol. 2 (ACM, New York, NY, USA, 2012), pp. 49–52Google Scholar
  14. 14.
    L. Fleischhacker, E. Agazzi, Chapter commentaries: the non-linearity of the development of technology and the techno-scientific system, in Right, Wrong and Science The Ethical Dimensions of the Techno-Scientific Enterprise. Monographs-in-Debate (Brill, 2004), pp. 301–310Google Scholar
  15. 15.
    G. Fortino, P. Trunfio (eds.), Internet of Things Based on Smart Objects: Technology, Middleware and Applications (Springer International Publishing, 2014)Google Scholar
  16. 16.
    E. Ganuza, G. Baiocchi, The power of ambiguity: how participatory budgeting travels the globe. J. Public Delib. 8(2) (2012)Google Scholar
  17. 17.
    A. Glasmeier, S. Christopherson, Thinking about smart cities. Camb. J. Reg. Econ. Soc. 8, 3–12 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Greenbaum, K. Halskov, PD a personal statement. Commun. ACM 36(6), 47 (1993)CrossRefGoogle Scholar
  19. 19.
    J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (iot): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  20. 20.
    B. Guo, Z. Yu, X. Zhou, D. Zhang, Opportunistic iot: exploring the social side of the internet of things, in 2012 IEEE 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 925–929 (IEEE, 2012)Google Scholar
  21. 21.
    B. Guo, D. Zhang, Z. Wang, Z. Yu, X. Zhou, Opportunistic iot: exploring the harmonious interaction between human and the Internet of Things. J. Netw. Comput. Appl. 36(6), 1531–1539 (2013)CrossRefGoogle Scholar
  22. 22.
    Y.N. Harari, Sapiens: A Brief History of Humankind (Harvill Secker, 2014)Google Scholar
  23. 23.
    H. Hasselqvist, C. Bogdan, F. Kis, Linking data to action: designing for amateur energy management, in Proceedings of the 2016 ACM Conference on Designing Interactive Systems, pp. 473–483 (2016)Google Scholar
  24. 24.
    H. Hasselqvist, C. Bogdan, M. Romero, O. Shafqat, Supporting energy management as a cooperative amateur activity. CHI 2015, 1483–1488 (2015)Google Scholar
  25. 25.
    Y. Huang, H. Hasselqvist, G. Poderi, S. Sćepanović, F. Kis, C. Bogdan, M. Warnier, F. Brazier, Youpower: an open source platform for community-oriented smart grid user engagement, in 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), pp. 1–6, May 2017Google Scholar
  26. 26.
    Y. Huang, D. Miorandi, D3.1 simulation model of integrated energy system. Technical report, EU FP7 CIVIS Project, 2014. Deliverable 3.1Google Scholar
  27. 27.
    Y. Huang, D. Miorandi, H. Hasselqvist, M. Warnier, S. Scepanoic, R. Eskola, D3.2 intergrated energy system. Technical report, EU FP7 CIVIS Project, 2015. Deliverable 3.2Google Scholar
  28. 28.
    Y. Huang, G. Poderi, L. Yishagerew, H. Hasselqvist, A. Massaro, S. Scepanovic, H. Ensing, F. Cuscito, D3.3 final field tested integrated energy system. Technical report, EU FP7 CIVIS Project, 2016. Deliverable 3.3Google Scholar
  29. 29.
    Y. Huang, M. Warnier, F. Brazier, D. Miorandi, Social networking for smart grid users—a preliminary modeling and simulation study, in Proceedings of 2015 IEEE 12th International Conference on Networking, Sensing and Control, pp. 438–443 (2015)Google Scholar
  30. 30.
    A. Kankainen, K. Vaajakallio, V. Kantola, T. Mattelmki, Storytelling Groupa co-design method for service design. Behav. Inf. Technol. 31(3), 221–230 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Karnouskos, The cooperative internet of things enabled smart grid, in Proceedings of the 14th IEEE International Symposium on Consumer Electronics (ISCE2010), June, pp. 07–10 (2010)Google Scholar
  32. 32.
    A. Kollmuss, J. Agyeman, Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 8(3), 239–260 (2002)Google Scholar
  33. 33.
    P. Kroes, P.E. Vermaas, A. Light, S.A. Moore, Chapter design in engineering and architecture: towards an integrated philosophical understanding, in Philosophy and Design: From Engineering to Architecture (Springer, Dordrecht, 2008), pp. 1–17Google Scholar
  34. 34.
    A.S. Lee, Mis quarterlys editorial policies and practices. MIS Q. iii–vii (2001)Google Scholar
  35. 35.
    C.C. Mody, Chapter 5 Small, but determined: technological determinism in nanoscience, in Nanotechnology Challenges: Implications for Philosophy, Ethics, and Society (World Scientific, 2006), pp. 95–130Google Scholar
  36. 36.
    I. Nikolić, Co-evolutionary method for modelling large-scale socio-technical systems evolution. PhD thesis, Delft University of Technology, 2009Google Scholar
  37. 37.
    H. Ning, Z. Wang, Future internet of things architecture: like mankind neural system or social organization framework? IEEE Commun. Lett. 15(4), 461–463 (2011)Google Scholar
  38. 38.
    D.A. Norman, P.J. Stappers, DesignX: complex sociotechnical systems. She Ji: J. Design Econ. Innov. 1(2), 83–106 (2015)Google Scholar
  39. 39.
    J. Padget, H. Riat, M. Warnier, F. Brazier, S. Natarajan, An agent-based infrastructure for energy profile capture and management, in 1st International Workshop on Agent Technologies for Energy Systems, 9th International Conference on Autonomous Agents and Multiagent Systems, Toronto, Canada, 2010Google Scholar
  40. 40.
    J. Pierce, E. Paulos, Beyond energy monitors: interaction, energy, and emerging energy systems, in CHI’12 (ACM, 2012), pp. 665–674Google Scholar
  41. 41.
    G. Poderi, M. Bettega, A. Capaccioli, V. DAndrea, Disentangling participation through time and interaction spacesthe case of IT design for energy demand management. CoDesign, 0(0), 1–15 (2017)Google Scholar
  42. 42.
    G.A. Putrus, E. Bentley, R. Binns, T. Jiang, D. Johnston, Smart grids: energising the future. Int. J. Environ. Stud. 70(5), 691–701 (2013)CrossRefGoogle Scholar
  43. 43.
    J. Rifkin, The Third Industrial Revolution: How Lateral Power is Transforming Energy, the Economy, and the World (Palgrave Macmillan, New York, NY, USA, 2011)Google Scholar
  44. 44.
    R.M. Ryan, E.L. Deci, Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp. Educ. Psychol. 25(1), 54–67 (2000)Google Scholar
  45. 45.
    S. Sawyer, M.H. Jarrahi, Chapter 5 Sociotechnical approaches to the study of information systems, in Computing Handbook: Information systems and information technology, (Taylor & Francis, 3rd edn., 2014)Google Scholar
  46. 46.
    M. Schatten, Smart residential buildings as learning agent organizations in the internet of things. Bus. Syst. Res. J. 5(1), 34–46 (2014)Google Scholar
  47. 47.
    L. Schick, B.R. Winthereik, Innovating relations—or why smart grid is not too complex for the public. Sci. Technol. Stud. 26(3), 82–102 (2013)Google Scholar
  48. 48.
    P. Schultz, Chapter Knowledge, information, and household recycling: examining the knowledge-deficit model of behavior change, in New Tools for Environmental Protection: Education, Information, and Voluntary Measures (National Academy Press, Washington DC, 2002), pp. 67–82Google Scholar
  49. 49.
    P.W. Schultz, Strategies for promoting proenvironmental behavior—lots of tools but few instructions. Eur. Psychol. 19(2), 107–117 (2014)Google Scholar
  50. 50.
    D. Shin, A socio-technical framework for internet-of-things design: a human-centered design for the internet of things. Telemat. Inform. 31(4), 519–531 (2014)Google Scholar
  51. 51.
    Y. Sintomer, C. Herzberg, A. RCke, Participatory budgeting in Europe: potentials and challenges: participatory budgeting in Europe. Int. J. Urban Reg. Res. 32(1), 164–178 (2008)Google Scholar
  52. 52.
    M.R. Smith, L. Marx (eds.), Does Technology Drive History? The Dilemma of Technological Determinism (MIT Press, 1994)Google Scholar
  53. 53.
    B.K. Sovacool, How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res. Soc. Sci. 13, 202–215 (2016)Google Scholar
  54. 54.
    M. Tomasini, B. Mahmood, F. Zambonelli, A. Brayner, R. Menezes, On the effect of human mobility to the design of metropolitan mobile opportunistic networks of sensors. Pervasive Mob. Comput. 38, 215–232 (2017)Google Scholar
  55. 55.
    F. Umbach, Global energy security and the implications for the EU. Energy Policy 38(3), 1229–1240 (2010)CrossRefGoogle Scholar
  56. 56.
    K.H. van Dam, I. Nikolic, Z. Lukszo (eds.), Agent-Based Modelling of Socio-technical Systems (Springer Science & Business Media, 2012)Google Scholar
  57. 57.
    E. Viardot, T. Wierenga, B. Friedrich, The role of cooperatives in overcoming the barriers to adoption of renewable energy. Energy Policy 63, 756–764 (2013)CrossRefGoogle Scholar
  58. 58.
    P.E. Waterson, M.T.O. Gray, C.W. Clegg, A sociotechnical method for designing work systems. Hum. Factors 44, 376–391 (2002)Google Scholar
  59. 59.
    B. Whitworth, Chapter 66 A brief introduction to sociotechnical systems, in Encyclopedia of Information Science and Technology (IGI Global, 2nd edn., 2009), pp. 394–400Google Scholar
  60. 60.
    B. Whitworth. The Social Design of Technical Systems: Building Technologies for Communities (The Interaction Design Foundation, 2014)Google Scholar
  61. 61.
    B. Whitworth, A. Ahmad, The Encyclopedia of Human-Computer Interaction, chapter 24. Socio-Technical System Design (The Interaction Design Foundation, 2nd edn., 2013)Google Scholar
  62. 62.
    B. Whitworth, A. De Moor (eds.), Handbook of Research on Socio-technical Design and Social Networking Systems (IGI, 2009)Google Scholar
  63. 63.
    M. Yun, B. Yuxin, Research on the architecture and key technology of internet of things (iot) applied on smart grid, in 2010 International Conference on Advances in Energy Engineering (ICAEE), pp. 69–72 (IEEE, 2010)Google Scholar
  64. 64.
    A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities. IEEE Internet of Things J. 1(1), 22–32 (2014)Google Scholar
  65. 65.
    S. Zygiaris, Smart city reference model: assisting planners to conceptualize the building of smart city innovation ecosystems. J. Knowl. Econ. 4(2), 217–231 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Yilin Huang
    • 1
  • Giacomo Poderi
    • 2
  • Sanja Šćepanović
    • 3
  • Hanna Hasselqvist
    • 4
  • Martijn Warnier
    • 1
  • Frances Brazier
    • 1
  1. 1.Section Systems Engineering and Simulation, Faculty of Technology, Policy and ManagementDelft University of TechnologyDelftThe Netherlands
  2. 2.Department of Computer ScienceIT University of CopenhagenCopenhagenDenmark
  3. 3.Department of Computer ScienceAalto UniversityHelsinkiFinland
  4. 4.Department of Media Technology and Interaction DesignKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations