Advertisement

A Comprehensive Approach to Stormwater Management Problems in the Next Generation Drainage Networks

  • Patrizia Piro
  • Michele Turco
  • Stefania Anna Palermo
  • Francesca Principato
  • Giuseppe Brunetti
Chapter
Part of the Internet of Things book series (ITTCC)

Abstract

In an urban environment, sewer flooding and combined sewer overflows (CSOs) are a potential risk to human life, economic assets and the environment. In this way, traditional urban drainage techniques seem to be inadequate for the purpose so to mitigate such phenomena, new techniques such as Real Time Control (RTC) of urban drainage systems and Low Impact Development (LID) techniques represent a valid and cost-effective solution. This chapter lists some of the recent experiences in the field of Urban Hydrology consisting in a series of facilities, fully equipped with sensors and other electronical component, to prevent flooding in urban areas. A series of innovative numerical analysis (in Urban Hydrology research) have been proposed to define properties of the hydrological/hydraulic models used to reproduce the natural processes involved.

References

  1. 1.
    S. Achleitner, M. Möderl, W. Rauch, CITY DRAIN ©—an open source approach for simulation of integrated urban drainage systems. Environ. Model. Softw. 22, 1184–1195 (2007).  https://doi.org/10.1016/j.envsoft.2006.06.013CrossRefGoogle Scholar
  2. 2.
    R.G. Allen, L.S. Pereira, D. Raes, M. Smith, FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration, FAO. Rome (1998)Google Scholar
  3. 3.
    G.E.B. Archer, A. Saltelli, I.M. Sobol, Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J. Stat. Comput. Simul. 58, 99–120 (1997).  https://doi.org/10.1080/00949659708811825CrossRefzbMATHGoogle Scholar
  4. 4.
    K. Astrom, PID controllers: theory, design and tuning. Instrum. Soc. Am. (1995). ISBN 1556175167Google Scholar
  5. 5.
    P.M. Bach, W. Rauch, P.S. Mikkelsen, D.T. McCarthy, A. Deletic, A critical review of integrated urban water modelling—urban drainage and beyond. Environ. Model. Softw. (2014).  https://doi.org/10.1016/j.envsoft.2013.12.018
  6. 6.
    G. Barenblatt, I. Zheltov, I. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 24, 1286–1303 (1960).  https://doi.org/10.1016/0021-8928(60)90107-6CrossRefzbMATHGoogle Scholar
  7. 7.
    T. Beeneken, V. Erbe, A. Messmer, C. Reder, R. Rohlfing, M. Scheer, M. Schuetze, B. Schumacher, M. Weilandt, M. Weyand, Real time control (RTC) of urban drainage systems—a discussion of the additional efforts compared to conventionally operated systems. Urban Water J. 10, 293–299 (2013).  https://doi.org/10.1080/1573062X.2013.790980CrossRefGoogle Scholar
  8. 8.
    G. Brunetti, J. Simunek, P. Piro, A comprehensive analysis of the variably-saturated hydraulic behavior of a green roof in a mediterranean climate. Vadose Zo. J. 15 (in press) (2016a).  https://doi.org/10.2136/vzj2016.04.0032
  9. 9.
    G. Brunetti, J. Šimůnek, P. Piro, A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement. J. Hydrol. 540, 1146–1161 (2016).  https://doi.org/10.1016/j.jhydrol.2016.07.030CrossRefGoogle Scholar
  10. 10.
    G. Brunetti, J. Šimůnek, M. Turco, P. Piro, On the use of surrogate-based modeling for the numerical analysis of low impact development techniques. J. Hydrol. 548, 263–277 (2017).  https://doi.org/10.1016/j.jhydrol.2017.03.013CrossRefGoogle Scholar
  11. 11.
    M. Carbone, F. Principato, G. Garofalo, P. Piro, Comparison of evapotranspiration computation by FAO-56 and Hargreaves methods. J. Irrig. Drain. Eng. 142(8), 06016007 (2016).  https://doi.org/10.1061/(ASCE)IR.1943-4774.0001032CrossRefGoogle Scholar
  12. 12.
    M. Carbone, G. Brunetti, P. Piro, Modelling the hydraulic behaviour of growing media with the explicit finite volume solution. Water (Switzerland) 7, 568–591 (2015).  https://doi.org/10.3390/w7020568CrossRefGoogle Scholar
  13. 13.
    M. Carbone, M. Turco, G. Brunetti, P. Piro, A cumulative rainfall function for subhourly design storm in mediterranean urban areas. Adv. Meteorol. 2015, 1–10 (2015).  https://doi.org/10.1155/2015/528564CrossRefGoogle Scholar
  14. 14.
    M. Carbone, M. Turco, G. Nigro, P. Piro, Modeling of hydraulic behaviour of green roof in catchment scale, in 14th SGEM GeoConference on Water Resources. Forest, Marine and Ocean Ecosystems (2014a), pp. 471–478.  https://doi.org/10.5593/sgem2014/b31/s12.061
  15. 15.
    M. Carbone, F. Principato, G. Nigro, P. Piro, Proposal of a conceptual model as tool for the hydraulic design of vegetated roof, in Applied Mechanics and Materials, vol. 641 (Trans Tech Publications, 2014b), pp. 326–331.  https://doi.org/10.4028/www.scientific.net/AMM.641-642.326
  16. 16.
    M. Carbone, G. Garofalo, P. Piro, Decentralized real time control in combined sewer system by using smart objects. Procedia Eng. 473–478 (2014c).  https://doi.org/10.1016/j.proeng.2014.11.237
  17. 17.
    M. Carini, M. Maiolo, D. Pantusa, F. Chiaravalloti, G. Capano, Modelling and optimization of least-cost water distribution networks with multiple supply sources and user. Ricerche Mat. 2017 (2017).  https://doi.org/10.1007/s11587-017-0343-y
  18. 18.
    B. Cheviron, Y. Coquet, Sensitivity analysis of transient-MIM HYDRUS-1D: case study related to pesticide fate in soils. Vadose Zo. J. 8, 1064 (2009).  https://doi.org/10.2136/vzj2009.0023CrossRefGoogle Scholar
  19. 19.
    G. Dirckx, M. Schütze, S. Kroll, C. Thoeye, G. De Gueldre, B. Van De Steene, Cost-efficiency of RTC for CSO impact mitigation. Urban Water J. 8, 367–377 (2011).  https://doi.org/10.1080/1573062X.2011.630092CrossRefGoogle Scholar
  20. 20.
    W. Durner, Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 30, 211–223 (1994).  https://doi.org/10.1029/93WR02676CrossRefGoogle Scholar
  21. 21.
    B. Efron, R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986)MathSciNetCrossRefGoogle Scholar
  22. 22.
    A.H. Elliott, S.A. Trowsdale, A review of models for low impact urban stormwater drainage. Environ. Model. & Softw. 22, 394–405 (2007).  https://doi.org/10.1016/j.envsoft.2005.12.005CrossRefGoogle Scholar
  23. 23.
    G. Fu, D. Butler, S.-T. Khu, Multiple objective optimal control of integrated urban wastewater systems. Environ. Model Softw. 23, 225–234 (2008).  https://doi.org/10.1016/j.envsoft.2007.06.003CrossRefGoogle Scholar
  24. 24.
    A. Giordano, G. Spezzano, A. Vinci, G. Garofalo, P. Piro, A cyber-physical system for distributed real-time control of urban drainage networks in smart cities, in International Conference on Internet and Distributed Computing Systems (Springer, Cham, 2014), pp. 87–98.  https://doi.org/10.1007/978-3-319-11692-1_8
  25. 25.
    G. Garofalo, A. Giordano, P. Piro, G. Spezzano, A. Vinci, A distributed real-time approach for mitigating CSO and flooding in urban drainage systems. J. Netw. Comput. Appl. 78, 30–42 (2017).  https://doi.org/10.1016/j.jnca.2016.11.004CrossRefGoogle Scholar
  26. 26.
    G. Garofalo, S. Palermo, F. Principato, T. Theodosiou, P. Piro, The influence of hydrologic parameters on the hydraulic efficiency of an extensive green roof in mediterranean area. Water 8(2), 44 (2016).  https://doi.org/10.3390/w8020044CrossRefGoogle Scholar
  27. 27.
    M.K. Gill, Y.H. Kaheil, A. Khalil, M. McKee, L. Bastidas, Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resour. Res. 42, n/a–n/a (2006).  https://doi.org/10.1029/2005wr004528
  28. 28.
    T. Houska, S. Multsch, P. Kraft, H.-G. Frede, L. Breuer, Monte Carlo based calibration and uncertainty analysis of a coupled plant growth and hydrological model. Biogeosci. Discuss. 10, 19509–19540 (2013).  https://doi.org/10.5194/bgd-10-19509-2013CrossRefGoogle Scholar
  29. 29.
    J. Huang, J. He, C. Valeo, A. Chu, Temporal evolution modeling of hydraulic and water quality performance of permeable pavements. J. Hydrol. 533, 15–27 (2016).  https://doi.org/10.1016/j.jhydrol.2015.11.042CrossRefGoogle Scholar
  30. 30.
    M. Jelasity, A. Montresor, O. Babaoglu, Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23, 219–252 (2005).  https://doi.org/10.1145/1082469.1082470CrossRefGoogle Scholar
  31. 31.
    Y. Jiang, C. Liu, C. Huang, X. Wu, Improved particle swarm algorithm for hydrological parameter optimization. Appl. Math. Comput. 217, 3207–3215 (2010).  https://doi.org/10.1016/j.amc.2010.08.053MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    M. Kamali, M. Delkash, M. Tajrishy, Evaluation of permeable pavement responses to urban surface runoff. J. Environ. Manag. 187, 43–53 (2017).  https://doi.org/10.1016/j.jenvman.2016.11.027CrossRefGoogle Scholar
  33. 33.
    J. Kennedy, R. Eberhart, Particle swarm optimization. Eng. Technol. 1942–1948 (1995)Google Scholar
  34. 34.
    Z.W. Kundzewicz, M. Radziejewski, I. Pińskwar, Precipitation extremes in the changing climate of Europe. Clim. Res. 31, 51–58 (2006).  https://doi.org/10.3354/cr031051CrossRefGoogle Scholar
  35. 35.
    R. Levinson, H. Akbari, Effects of composition and exposure on the solar reflectance of portland cement concrete. Cem. Concr. Res. 32, 1679–1698 (2002).  https://doi.org/10.1016/S0008-8846(02)00835-9CrossRefGoogle Scholar
  36. 36.
    Y. Li, R.W. Babcock, Green roof hydrologic performance and modeling: A review (Technol, Water Sci, 2014).  https://doi.org/10.2166/wst.2013.770CrossRefGoogle Scholar
  37. 37.
    M. Maiolo, D. Pantusa, An optimization procedure for the sustainable management of water resources. Water Sci. Technol.: Water Supply 16(1), 61–69 (2016).  https://doi.org/10.2166/ws.2015.114
  38. 38.
    S.K. Min, X. Zhang, F.W. Zwiers, G.C. Hegerl, Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).  https://doi.org/10.1038/nature09763CrossRefGoogle Scholar
  39. 39.
    D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Binger, R.D. Harmel, T.L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900 (2007).  https://doi.org/10.13031/2013.23153CrossRefGoogle Scholar
  40. 40.
    J.E. Nash, J.V. Sutcliffe, River flow forecasting through conceptual models Part I—A discussion of principles. J. Hydrol. 10, 282–290 (1970).  https://doi.org/10.1016/0022-1694(70)90255-6CrossRefGoogle Scholar
  41. 41.
    T. Pertassek, A. Peters, W. Durner, HYPROP-FIT Software User’s Manual, V.3.0 (2015)Google Scholar
  42. 42.
    P. Piro, M. Carbone, A modelling approach to assessing variations of total suspended solids (TSS) mass fluxes during storm events. Hydrol. Process. 28, 2419–2426 (2014).  https://doi.org/10.1002/hyp.9809CrossRefGoogle Scholar
  43. 43.
    P. Piro, M. Carbone, G. Garofalo, Distributed vs. concentrated storage options for controlling CSO volumes and pollutant loads. Water Pract. Technol. 5, wpt2010071–wpt2010071 (2010a).  https://doi.org/10.2166/wpt.2010.071
  44. 44.
    P. Piro, M. Carbone, G. Garofalo, J. Sansalone, Size distribution of wet weather and dry weather particulate matter entrained in combined flows from an urbanizing sewershed. Water Air Soil Pollut. 206, 83–94 (2010).  https://doi.org/10.1007/s11270-009-0088-7CrossRefGoogle Scholar
  45. 45.
    M. Pleau, H. Colas, P. Lavallée, G. Pelletier, R. Bonin, Global optimal real-time control of the Quebec urban drainage system. Environ. Model. Softw. (2005).  https://doi.org/10.1016/j.envsoft.2004.02.009
  46. 46.
    F. Principato, S.A. Palermo, G. Nigro, G. Garofalo, Sustainable strategies and RTC to mitigate CSO’s impact: different scenarios in the highly urbanized catchment of Cosenza, Italy, in Proceedings of the 14th IWA/IAHR International Conference on Urban Drainage, ICUD2017, Prague, CZ, 10–15 Sept 2017, Oral Presentation, pp. 587–589Google Scholar
  47. 47.
    A. Raimondi, G. Becciu, On pre-filling probability of flood control detention facilities. Urban Water J. 12, 344–351 (2015).  https://doi.org/10.1080/1573062X.2014.901398CrossRefGoogle Scholar
  48. 48.
    A. Raimondi, G. Becciu, Probabilistic modeling of rainwater tanks. Procedia Eng. 89, 1493–1499 (2014).  https://doi.org/10.1016/j.proeng.2014.11.437CrossRefGoogle Scholar
  49. 49.
    M. Rezaei, P. Seuntjens, I. Joris, W. Boënne, S. Van Hoey, P. Campling, W.M. Cornelis, Sensitivity of water stress in a two-layered sandy grassland soil to variations in groundwater depth and soil hydraulic parameters. Hydrol. Earth Syst. Sci. Discuss. 12, 6881–6920 (2015).  https://doi.org/10.5194/hessd-12-6881-2015CrossRefGoogle Scholar
  50. 50.
    L.A. Rossman, Storm water management model quality assurance report: dynamic wave flow routing. Storm Water Manag. Model Qual. Assur. Rep. 1–115 (2006)Google Scholar
  51. 51.
    A. Saltelli,, S. Tarantola, M. Saisana, M. Nardo, What is sensitivity analysis?, in II Convegno Della Rete Dei Nuclei Di Valutazione E Verifica, Napoli 26, 27 Gennaio 2005, Centro Congressi Universitá Federico II, Via Partenope 36 (2005)Google Scholar
  52. 52.
    M. Schütze, A. Campisano, H. Colas, W. Schilling, P.A. Vanrolleghem, Real time control of urban wastewater systems—where do we stand today? J. Hydrol. 299, 335–348 (2004).  https://doi.org/10.1016/j.jhydrol.2004.08.010CrossRefGoogle Scholar
  53. 53.
    N. She, J. Pang, Physically based green roof model. J. Hydrol. Eng. 15, 458–464 (2010).  https://doi.org/10.1061/(ASCE)HE.1943-5584.0000138CrossRefGoogle Scholar
  54. 54.
    J. Šimůnek, M.T. van Genuchten, M. Šejna, Recent developments and applications of the HYDRUS Computer Software Pac. Vadose Zo. J. 15, 25 (2016).  https://doi.org/10.2136/vzj2016.04.0033CrossRefGoogle Scholar
  55. 55.
    J. Simunek, N.J. Jarvis, M.T. van Genuchten, A. Gardenas, Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol. 272, 14–35 (2003).  https://doi.org/10.1016/S0022-1694(02)00252-4CrossRefGoogle Scholar
  56. 56.
    J. Šimůnek, M.T. van Genuchten, Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zo. J. 7, 782 (2008).  https://doi.org/10.2136/vzj2007.0074CrossRefGoogle Scholar
  57. 57.
    J. Šimůnek, M.T. van Genuchten, M. Šejna, Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zo. J. 7, 587 (2008).  https://doi.org/10.2136/vzj2007.0077CrossRefGoogle Scholar
  58. 58.
    I. Sobol’, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001).  https://doi.org/10.1016/S0378-4754(00)00270-6MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    M. Turco, R. Kodešová, G. Brunetti, A. Nikodem, M. Fér, P. Piro, Unsaturated hydraulic behaviour of a permeable pavement: laboratory investigation and numerical analysis by using the HYDRUS-2D model. J. Hydrol. 554, 780–791 (2017).  https://doi.org/10.1016/j.jhydrol.2017.10.005CrossRefGoogle Scholar
  60. 60.
    UMS GmbH, UMS (2015): Manual HYPROP, Version 2015-01 (2015)Google Scholar
  61. 61.
    W. Usher, Xantares, D. Hadka, bernardoct, Fernando, J. Herman, C. Mutel, SALib: New documentation, doc strings and installation requirements (2015).  https://doi.org/10.5281/zenodo.31316
  62. 62.
    M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892 (1980).  https://doi.org/10.2136/sssaj1980.03615995004400050002xCrossRefGoogle Scholar
  63. 63.
    M.T. Van Genuchten, P.J. Wierenga, Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Sci. Soc. Am. J. 40, 473–480 (1976).  https://doi.org/10.2136/sssaj1976.03615995004000040011xCrossRefGoogle Scholar
  64. 64.
    J.E. Warren, P.J. Root, The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3, 245–255 (1963).  https://doi.org/10.2118/426-PACrossRefGoogle Scholar
  65. 65.
    T.H.F. Wong, T.D. Fletcher, H.P. Duncan, G.A. Jenkins, Modelling urban stormwater treatment—a unified approach. Ecol. Eng. 27, 58–70 (2006).  https://doi.org/10.1016/j.ecoleng.2005.10.014CrossRefGoogle Scholar
  66. 66.
    M. Wooldridge, An Introduction to MultiAgent Systems, 2nd edn. (Wiley, 2009), ISBN-10 0470519460, ISBN-13 978-0470519462Google Scholar
  67. 67.
    M. Zambrano-Bigiarini, R. Rojas, A model-independent Particle Swarm Optimisation software for model calibration. Environ. Model Softw. 43, 5–25 (2013).  https://doi.org/10.1016/j.envsoft.2013.01.004CrossRefGoogle Scholar
  68. 68.
    S. Zhang, Y. Guo, Analytical probabilistic model for evaluating the hydrologic performance of green roofs. J. Hydrol. Eng. 18, 19–28 (2013).  https://doi.org/10.1061/(ASCE)HE.1943-5584.0000593CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Patrizia Piro
    • 1
  • Michele Turco
    • 1
  • Stefania Anna Palermo
    • 1
  • Francesca Principato
    • 1
  • Giuseppe Brunetti
    • 1
  1. 1.Department of Civil EngineeringUniversity of CalabriaRendeItaly

Personalised recommendations