Bioelectricity Generation

  • Basanta Kumara Behera
  • Ajit Varma


Bioelectricity refers to electrical potentials and currents occurring within or produced by living organisms. It results from the conversion of chemical energy into electrical energy. Bioelectric potentials are generated by a number of different biological processes and are used by cells to govern metabolism, to conduct impulses along nerve fibres and to regulate muscular contraction. In most organisms bioelectric potentials vary in strength from one to several hundred millivolts from the activity of such electric fishes as the Nile catfish and the electric eel. Bioelectric effects were known in ancient times. There are numerous species of electric ray; most inhabit shallow water, but some (Benthobatis) live at depths of 1000 m (3300 ft) and more. Slow-moving bottom dwellers, electric rays feed on fishes and invertebrates. The shock from these organs is used in defence, sensory location and capturing prey. Electric shocks emitted reach 220 volts and are strong enough to fell a human adult. In ancient Greece and Rome, the shocks of the species Torpedo nobiliana were used as a treatment for gout, headache and other malady.


  1. 1.
    Antonopoulou, KG et al (2010). Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem. Eng. J., 50: 10-15.CrossRefGoogle Scholar
  2. 2.
    Rahimnejad, GM and Najafpour, AA (2011). Ghoreyshi Effect of mass transfer on performance of microbial fuel cell. Intech, 5: 233-250.Google Scholar
  3. 3.
    Sharma, Y and Li, B (2010). The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresource Technol., 101: 1844-1850.CrossRefGoogle Scholar
  4. 4.
    Logan, BE et al (2006). Microbial fuel cells: Methodology and technology. Environ. Sci. Technol., 40: 5181-5192.CrossRefGoogle Scholar
  5. 5.
    Najafpour, G et al (2011). The enhancement of a microbial fuel cell for electrical output using mediators and oxidizing agents. Energy Sourc., 33: 2239-2248.CrossRefGoogle Scholar
  6. 6.
    Rabaey, K et al (2005). Microbial fuel cells: Performances and perspectives. In: Lens, PN, Westermann, P, Haberbauer, M and Moreno, A (eds), Biofuels for fuel cells. London: IWA.Google Scholar
  7. 7.
    Logan, BE and Regan, JM (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol., 14(12): 512-518.CrossRefGoogle Scholar
  8. 8.
    Pham, TH et al (2006). Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci., 6: 285-292.CrossRefGoogle Scholar
  9. 9.
    Ghangrekar, MM and Shinde, VB (2007). Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour Technol., 98(15): 2879-2885.CrossRefGoogle Scholar
  10. 10.
    Lovely, DR (2006). Microbial Energizers: Fuel Cells that Keep on Going. Microbe., 1: 324-329.Google Scholar
  11. 11.
    Logan, BE (2113) Exoelectrogenic bacteria that power microbial fuel cells. Nature 2009, DOI: 10.1038/nrmicroGoogle Scholar
  12. 12.
    Kim, GT et al (2006). Bacterial community structure, compartmentalization and activity in a microbial fuel cell. Journal of Applied Microbiology, DOI: CrossRefGoogle Scholar
  13. 13.
    Gottenbos, B et al (1999). Models for studying initial adhesion and surface growth in biofilm formation on surfaces. Methods in Enzymology, 310: 523-533.CrossRefGoogle Scholar
  14. 14.
    Kim, IS et al (2008). Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation. Environmental Engineering Research, 13(2): 51-65.CrossRefGoogle Scholar
  15. 15.
    Ringeisen, BR et al (2007). A miniature microbial fuel cell operating with an aerobic anode chamber. Journal of power sources, DOI: CrossRefGoogle Scholar
  16. 16.
    Kim, HJ et al (2002). A mediatorless microbial fuel cell using a metal reducing bacterium, Shewanella, putrefaciens. Enzyme. Microb. Tech., 30: 145-152.CrossRefGoogle Scholar
  17. 17.
    Bond, DR and Lovley, DR (2003). Electricity production by Geobacter sulphur reducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548-1555.CrossRefGoogle Scholar
  18. 18.
    Min, B et al (2005). Electricity generation using membrane and salt bridge microbial fuel cells. Water Res., 39: 1675-1686.CrossRefGoogle Scholar
  19. 19.
    Chaudhuri, SK and Lovley, DR (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol., 21: 1229-1232.CrossRefGoogle Scholar
  20. 20.
    Rabaey, K and Verstraete, W (2003). Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol, 23: 291-298.CrossRefGoogle Scholar
  21. 21.
    Leropoulos, I et al (2003). Imitation metabolism: Energy autonomy in biologically inspired robots. In: Proceedings of 2nd International Symposium on Imitation of Animals and Artifacts.Google Scholar
  22. 22.
    Watanabe, K et al (2009). Electron shuttles in biotechnology. Curr. Opin. Biotechnol., 20: 633-641.CrossRefGoogle Scholar
  23. 23.
    Cheng, S et al (2006). Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology, 40: 2426-2432.CrossRefGoogle Scholar
  24. 24.
    He, Z et al (2007). Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens. Bioelectron, 22: 3252-3255.CrossRefGoogle Scholar
  25. 25.
    He, Z et al (2005). Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol, 39: 5262-5267.CrossRefGoogle Scholar
  26. 26.
    Scafer, H and Muyzer, G (2001). Denaturing gradient gelelectrophoresis in marine microbial ecology. In: Methods in Microbiology. Paul, J (Ed.). Academic Press London.Google Scholar
  27. 27.
    Liu, H et al (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol, 39: 5488-5493.CrossRefGoogle Scholar
  28. 28.
    Davis, F and Higson, S (2005). Biofuel cells—Recent advances and applications. Biosens. Bioelectron, 22: 1224-1235.CrossRefGoogle Scholar
  29. 29.
    Ieropoulos, I et al (2006). Comparative study of three types of microbial fuel cell. Enzyme Microb Tech, 37: 238-245.CrossRefGoogle Scholar
  30. 30.
    Moon, H et al (2006). Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour. Technol., 97: 621-627.CrossRefGoogle Scholar
  31. 31.
    Oh, S and Logan, BE (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol., 70: 162-169.CrossRefGoogle Scholar
  32. 32.
    Rabaey, K et al (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett, 25: 1531-1535.CrossRefGoogle Scholar
  33. 33.
    Rabaery, K et al (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci.Technol., 39: 3401-3408.CrossRefGoogle Scholar
  34. 34.
    Rozendal, RA et al (2006). Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol, 40: 5206-5211.CrossRefGoogle Scholar
  35. 35.
    Min, B et al (2005). Electricity generation from swine wastewater using microbial fuel cells. Water Research, 39: 4961-4968.CrossRefGoogle Scholar
  36. 36.
    Kim, JR et al (2008). Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol. Bioeng, 99: 1120-1127.CrossRefGoogle Scholar
  37. 37.
    Henslee, BE et al (2004). Biological Fuel Cell: Modeling, Design, and Testing. Final Report for ASAE’s G.B. Gunlogs on Student Environmental Design Competition. Ohio State University, Columbus, Ohio.Google Scholar
  38. 38.
    Bennetto, HP (1990). Electricity generation by microorganisms. Bio-technology Education, 4: 163-168.Google Scholar
  39. 39.
    Delaney, GM (2008). Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations. Journal of Chemical Technology and Biotechnology, 34: 13-27 doi: . CrossRefGoogle Scholar
  40. 40.
    Lithgow, AM et al (1986). Interception of electron-transport chain in bacteria with hydrophilic redox mediators. J. Chem. Research, (S): 178–179.Google Scholar
  41. 41.
    Kim, BH et al (1999). Direct electrode reaction of Fe (III) reducing bacterium, Shewanella putrefaciencs (PDF). J Microbiol. Biotechnol., 9: 127-131.Google Scholar
  42. 42.
    Pham, CA et al (2003). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiology Letters, 223(1): 129-134.CrossRefGoogle Scholar
  43. 43. (2012). Plant-Microbial Fuel Cell generates electricity from living plants.
  44. 44.
    Xuejian, Wei et al (2015). Biopower generation in a microfluidic bio-solar panel. Sensors and Actuators B: Chemical, 228: 151. DOI: Scholar
  45. 45.
    Aelterman, P et al (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol., 40: 3388-3394.CrossRefGoogle Scholar
  46. 46.
    Rabaey, Korneel (2005). Tubular Microbial Fuel Cells for Efficient Electricity Generation, Environ. Sci. Technol., 39(20): 8077-8082.CrossRefGoogle Scholar
  47. 47.
    Gregoire, KP and Becker, JG (2012). Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity. Bioresource Technology, 119: 208-215.CrossRefGoogle Scholar
  48. 48.
    Wei, J (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102(20): 9335-9344.CrossRefGoogle Scholar
  49. 49.
    Pec, MK (2010). Reticulated vitreous carbon: A useful material for cell adhesion and tissue invasion. Eur. Cells Mater., 20: 282.CrossRefGoogle Scholar
  50. 50.
    Wang, X et al (2009). Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol., 43: 17, 6870-6874.CrossRefGoogle Scholar
  51. 51.
    Liang, P (2008). Electricity generation using the packing-type microbial fuel cells. Huan. Jing. Ke. Xue., 29: 512-517.Google Scholar
  52. 52.
    Iijima, S (1991). Helical microtubules of graphitic carbon. Nature 354(6348): 56.CrossRefGoogle Scholar
  53. 53.
    Correa-Duarte et al (2004) Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett., 4(11): 2233.CrossRefGoogle Scholar
  54. 54.
    Heister, E (2013). Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl. Mater. Interfaces, 5(6): 1870.CrossRefGoogle Scholar
  55. 55.
    Cheng, S and Logan, BE (2007). Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun., 9(3): 492.CrossRefGoogle Scholar
  56. 56.
    Zhang, Y (2011). A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources, 196(13): 5402.CrossRefGoogle Scholar
  57. 57.
    Ghasemi, M (2011). Activated carbon nanofibers as an alternative cathode catalyst to platinum in a two-chamber microbial fuel cell. Int. J. Hydrog. Energy, 36(21): 13746. doi: CrossRefGoogle Scholar
  58. 58.
    Yuan, Y (2011). Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresour. Technol., 102(10): 5849.CrossRefGoogle Scholar
  59. 59.
    Cheng, S (2006). Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol., 40(1): 364.CrossRefGoogle Scholar
  60. 60.
    Harnisch, F and Schröder, U (2010). From MFC to MXC: Chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem. Soc. Rev., 39(11): 4433.CrossRefGoogle Scholar
  61. 61.
    Park, DH and Zeikus, JG (2003). Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng., 81(3): 348.CrossRefGoogle Scholar
  62. 62.
    Rabaey, K and Rozendal, RA (2010). Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nat. Rev. Microbiol., 8(10): 706.CrossRefGoogle Scholar
  63. 63.
    Li, WW (2011). Recent advances in the separators for microbial fuel cells. Bioresource. Technol., 102: 244-252.CrossRefGoogle Scholar
  64. 64.
    Hideo, K (2014). Ion Exchange Membranes, Ion Exchangers. Korean Journal of Chemical Engineering, 31: 1187-1193.CrossRefGoogle Scholar
  65. 65.
    Kim, JR (2007). Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol., 41: 1004-1009.CrossRefGoogle Scholar
  66. 66.
    Zhang, X (2009). Logan Separator characteristics for increasing performance of microbial fuel cells. Environ. Sci. Technol., 43: 8456-8461.CrossRefGoogle Scholar
  67. 67.
    Zhuang, L (2012). Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresource Technol., 106: 82-88.CrossRefGoogle Scholar
  68. 68.
    Dihrab, SS(2009). Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells. Renew. Sust. Energy Rev., 13: 1663-1668.CrossRefGoogle Scholar
  69. 69.
    Pasternak, G. et al (2016). Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells. Chem Sus Chem, 9(1): 88-96.CrossRefGoogle Scholar
  70. 70.
    Manaswini, B (2010). Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource Technology, 101(4): 1183-1189.CrossRefGoogle Scholar
  71. 71.
    Winfield, J (2013). Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and Biosystems Engineering, 36(12): 1913-1921.CrossRefGoogle Scholar
  72. 72.
    Bengamin, Erable et al (2012). Microbial Catalysis of the Oxygen Reduction Reaction for Microbial Fuel Cells: A Review. 5(6): 975-987.Google Scholar
  73. 73.
    Berk, RS and Canfield, JH (1964). Bioelectrochemical energy conversion. Appl. Microbiol., 12: 10-12.Google Scholar
  74. 74.
    Rao, JR et al (1976). The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectrochem. Bioenerg., 3: 139-150.CrossRefGoogle Scholar
  75. 75.
    Logan, BE (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol., 85(6): 1665.CrossRefGoogle Scholar
  76. 76.
    Rismani-Yazdi (2008). Cathodic limitations in microbial fuel cells: An overview. J. Power Sources, 180(2): 683.CrossRefGoogle Scholar
  77. 77.
    Duncan Graham-Rowe (2012). Giving waste water the power to clean itself: A novel form of renewable energy can generate electricity from waste-water treatment. Nature, doi:
  78. 78.
    Rahimnejad, M (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl. Energy, 88: 3999-4004.CrossRefGoogle Scholar
  79. 79.
    Yang, H et al (2015). Microbial fuel cells for biosensor applications. Biotechnol Lett. 37(12): 2357-2364. doi: Scholar
  80. 80.
    Hailiang, Song et al (2017). Optimization of Bioelectricity Generation in Constructed Wetland-Coupled Microbial Fuel Cell Systems. Water, 9(185): 2-13.Google Scholar
  81. 81.
    Theerkadharshini, S (2017). Production of Hydrogen Fuel from Waste Water Using Microbial Fuel Cell. International Journal of Innovative Research in Science, Engineering and Technology, 6(3): 4211-4215.Google Scholar
  82. 82.
    Michael, GW and Thomas, AT (2013). Review of Microbial Fuel Cells for wastewater treatment: Large-scale application, future need and current research gaps. In: Proceedings of the ASME 2013 7th International Conference on Energy Sustainability & 11th Fuel Cell Science, Engineering and Technology Conference.Google Scholar
  83. 83.
    Logan, B (2005). Generating Electricity from Wastewater Treatment. (Editorial). Water Environment Research, 77(3): 209.Google Scholar
  84. 84.
    Trabold, TA ( 2011). Analysis of waste-to-energy opportunities in the New York State food processing industry. In: Proceedings of the ASME 5th International Conference on Energy Sustainability, Paper ES Fuel Cell 2011-54334, Washington D.C.Google Scholar
  85. 85.
    Liang, S (2008). Effect of solution chemistry on the fouling potential of dissolved organic matter in membrane bioreactor systems. Journal of Membrane Science, 310(1–2): 503-511.CrossRefGoogle Scholar
  86. 86.
    Rittmann, BE (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnology and Bioengineering, 100(2): 203-212.CrossRefGoogle Scholar
  87. 87.
    Rabaey, K et al (2007). Microbial ecology meets electrochemistry: Electricity-driven and driving communities. The ISME Journal, l (1): 9-18.CrossRefGoogle Scholar
  88. 88.
    Potter, MC (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84 (571): 260–276.CrossRefGoogle Scholar
  89. 89.
    Kim, HJ (1999). A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol, 9(3): 365-367.MathSciNetGoogle Scholar
  90. 90.
    Liu, HR et al (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38(7): 2281-2285.CrossRefGoogle Scholar
  91. 91.
    Yatala Case Study – Australian Water Recycling Centre of Excellence
  92. 92.
    Ge, Z. and Zhen, He (2015). Energy extraction from a large scale microbial fuel cell system treating municipal waste water. Journal of Power Sources, 297: 260-264.CrossRefGoogle Scholar
  93. 93.
    Webb, B (1999). The first mobile robot. In: Proceedings of TIMR 99, Towards Intelligent Mobile Robots. Bristol.Google Scholar
  94. 94.
    Ieropoulos, I (2003). Imitating Metabolism: Energy Autonomy in Biologically Inspired Robots. In: Proceedings of the AISB’03, Second International Symposium on Imitation in Animals and Artifacts. SSAISB, Aberystwyth, Wales.Google Scholar
  95. 95.
    Bennetto, HP (1987). Microbes come to Power. New Scientist, 36-39.Google Scholar
  96. 96.
    Wilkinson, S (2000). Gastronome – A Pioneering Food Powered Mobile Robot. In: Proceedings of the 8th IASTED, International Conference on Robotics and Applications, Paper No. 318-037. Honolulu, Hawaii, USA.Google Scholar
  97. 97.
    Park, DH and Zeikus, G (2000). Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol., 59: 58-61.Google Scholar
  98. 98.
    Byung, Hong Kim et al (2003). Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letter, 25: 541-545.CrossRefGoogle Scholar
  99. 99.
    UltraLife Corporation (2009). Transportation Regulations for Lithium, Lithium Ion and Lithium Ion Polymer Cells and Batteries.
  100. 100.
    Nielsen, ME et al (2007). Enhanced Power from Chambered Benthic Microbial Fuel Cells. Environ. Sci. Technol. (41): 7895-7900.CrossRefGoogle Scholar
  101. 101.
    Reimers, CE (2001). Harvesting Energy from the Marine Sediment-Water Interface. Environ. Sci. Technol., 35: 192-195.MathSciNetCrossRefGoogle Scholar
  102. 102.
    Tender, LM et al (2009). Harnessing microbially generated power on the seafloor. Nature Biotechnology, 20: 821-825.CrossRefGoogle Scholar
  103. 103.
    Tender, L (2008). The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. Journal of Power Source, 179: 571-575.CrossRefGoogle Scholar
  104. 104.
    Ieropoulos, J and Greenman, C (2012). Urine utilisation by microbial fuel cells: Energy fuel for the future. Phys. Chem. Chem. Phys., 14: 94-98.CrossRefGoogle Scholar
  105. 105.
    Mobile phone runs on urine power – Bristol Robotics Laboratory › BRL in the News.
  106. 106.
    Chen, GW et al (2008). Application of biocathode in microbial fuel cells: Cell performance and microbial community. Appl. Microbiol. Biot., 79: 379-388.CrossRefGoogle Scholar
  107. 107.
    Allen, RM (1993). Microbial fuel-cells. Appl. Biochem. Biotech., 39: 27-40.CrossRefGoogle Scholar
  108. 108.
    Kim, BH (1999). Mediator-less biofuel cell. Google Patents 5976719.Google Scholar
  109. 109.
    Mokhtarian, N (2012). Bioelectricity generation in biological fuel cell with and without mediators. World Appl. Sci. J., 18: 559-567.Google Scholar
  110. 110.
    Izadi, P and Rahimnejad, M (2013). Simultaneous electricity generation and sulfide removal via a dual chamber microbial fuel cell. Biofuel Research J., 1: 34-38.CrossRefGoogle Scholar
  111. 111.
    Najafpour, G et al (2010). Bioconversion of whey to electrical energy in a biofuel cell using Saccharomyces cerevisiae. World Appl. Sci. J., 8: 1-5.Google Scholar
  112. 112.
    Habermann, W and Pommer, E (1991). Biological fuel cells with sulphide storage capacity. App. Microbiol. Biot., 35: 128-133.Google Scholar
  113. 113.
    Catal, T et al (2008). Electricity production from twelve monosaccharides using microbial fuel cells. J. Power Sources, 175: 196-200.CrossRefGoogle Scholar
  114. 114.
    Kim, JR (2008). Removal of odors from swine wastewater by using microbial fuel cells. Appl. Environ. Microb., 74: 2540-2543.CrossRefGoogle Scholar
  115. 115.
    Kim M et al (2003). Practical field application of a novel BOD monitoring system. J. Environ. Monit., 5: 640.CrossRefGoogle Scholar
  116. 116.
    Di, Lorenzo (2009). Single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res., 43: 3145-3154.CrossRefGoogle Scholar

Copyright information

© Capital Publishing Company, New Delhi, India 2019

Authors and Affiliations

  • Basanta Kumara Behera
    • 1
  • Ajit Varma
    • 1
  1. 1.Amity UniversityAmity Institute of Microbial TechnologyNoidaIndia

Personalised recommendations