Green Gaseous Fuel Technology

  • Basanta Kumara Behera
  • Ajit Varma


The concept of biogas production by anaerobic digestion (AD) and its subsequent conversion into electricity in combined heat and power (CHP) plants or feeding as biomethane into the gas networks is an essential contribution to utilizing biowastes from households, communities and agriculture, on the one hand, and the purposeful production of CO2-neutral energy from regenerative raw materials (Fig. 4.1) on the other.


  1. 1.
    McCabe, J and Eckenfelder, W (eds.) (1957). Biological Treatment of Sewage and Industrial Wastes. Two volumes. New York: Reinbold Publishing.Google Scholar
  2. 2.
    Buswell, AM and Hatfield, WD (1936). Bulletin 32, Anaerobic Fermentations. Urbana, IL: State of Illinois Department of Registration and Education.Google Scholar
  3. 3.
    Sanders, WTM et al (2000). Anaerobic hydrolysis kinetics of particulate substrates. Water Science and Technology, 41(3): 17–24.CrossRefGoogle Scholar
  4. 4.
    Mata-Alvarez, J (2003). Fundamentals of the anaerobic digestion process. In: Mata-Alvarez, J. (ed.), Biomethanization of the Organic Fraction of Municipal Solid Waste. IWA Publishing, UK.Google Scholar
  5. 5.
    Pavlostathis, SG and Giraldo-Gomez, E (1991). Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Control, 21(5,6): 411–490.CrossRefGoogle Scholar
  6. 6.
    Gerardi, MH (ed.) (2003). The Microbiology of Anaerobic Digesters. Wiley Publishers.Google Scholar
  7. 7.
    Fayyaz Ali Shah et al. (2014). Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis. Scientific World Journal, 183752.
  8. 8.
    Reinhold, F and Noak, W (1956). Laboratoriumsver-suche uber die Gasgewinnung aus landwirtschaftlichen Stoffen. In: Liebmann, H (ed.), Gewinnung und Verwertung von Methan aus Klärschlamm und Mist., R. Oldenbourg, Munchen, Germany.Google Scholar
  9. 9.
    Stewart, DJ et al (1984). Biogas production from crops and organic wastes. Results of continuous digestion tests. New Zealand J. Sci., 27: 285–294.Google Scholar
  10. 10.
    Weiland, P (2008). Impact of competition claims for food and energy on German biogas production. Paper presented at the IEA Bio-energy Seminar, Ludlow, UK, April 17th, 2008 and Fachagentur für Nachwachsende Rohstoffe (FNR), Hofplatz 1, D-18276 Gülzow (ed.), ISBN 978-3-939371-46-5. Google Scholar
  11. 11.
    MNES Report (2001). Renewable Energy in India and business opportunities. Govt of India, New Delhi.Google Scholar
  12. 12.
    Nirmala, B and Gaur, AC (1997). Effects of carbon and nitrogen ratio on rice straw biomethanation. Journal of Rural Energy, 11: 1–16.Google Scholar
  13. 13.
    Singh, JB and Anil, D (1988). Manual on Deenbandhu Biogas plant. New Delhi: Tata McGraw Hill Publishing.Google Scholar
  14. 14.
    Allan Elliott and Talat Mahmood (2007). Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Water Research, 41: 4273–4286.CrossRefGoogle Scholar
  15. 15.
    Erden, G and Filibeli, A (2009). Ultrasonic pre-treatment of biological sludge: Consequences for disintegration, anaerobic biodegradability, and filterability. J. Chem. Technol. Biotechnol., 85(1): 145–150.CrossRefGoogle Scholar
  16. 16.
    Haug, RT et al (1978). Effect of thermal pretreatment on digestibility and dewaterability of organic sludges. J. Water Pol. Control Fed., 73–85.Google Scholar
  17. 17.
    Kim, J et al (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng., 95(3): 271–275.CrossRefGoogle Scholar
  18. 18.
    Neyens, E and Baeyens, J (2002). A review of thermal sludge pretreatment processes to improve dewaterability. Journal of Hazardous Materials, B98: 51–67.CrossRefGoogle Scholar
  19. 19.
    Penaud, V et al (1999). Thermo-chemical pretreatment of a microbial biomass: Influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enz Microbial Tech, 25: 258–263.CrossRefGoogle Scholar
  20. 20.
    Saktaywin, W et al (2005). Advanced sewage treatment process with excess sludge reduction and phosphorus recovery. Water Res., 39: 902–910.CrossRefGoogle Scholar
  21. 21.
    Tanaka, S et al (1997). Effects of thermo-chemical pre-treatment on the anaerobic digestion of waste activated sludge. Wat Sci Tech, 35: 209–215.CrossRefGoogle Scholar
  22. 22.
    Tiehm, A et al (1997). The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Sci. Technol., 36: 121–128.CrossRefGoogle Scholar
  23. 23.
    Wang, Q et al (1999). Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pre-treatment. Bioresour. Technol., 68: 309–313.CrossRefGoogle Scholar
  24. 24.
    Weemaes et al (2000). Anaerobic digestion of ozonized biosolids. Water Research, 34(8): 2330–2336.CrossRefGoogle Scholar
  25. 25.
    Yeom, IT (2002). Effects of ozone treatment on the biodegradability of sludge from municipal wastewater treatment plants. Water Science and Technology, 46(4–5): 421–425.CrossRefGoogle Scholar
  26. 26. Stern (2017). The Future of Gas in Decarbonising European Energy Markets.Google Scholar
  27. 27.
    https://www.eba.europa.euEBA (2016). Statistical report.Google Scholar
  28. 28. (2017). Biogas: A significant contribution to decarbonising gas markets.Google Scholar
  29. 29.,_consumption_and_market_overview Eurostat website (Electricity production, consumption and market overview).Google Scholar
  30. 30. EBA Workshop (2017). Contribution of biogas towards European renewable energy policy beyond 2020.Google Scholar
  31. 31.
    Kuczyńska, I and Pomykała, R (2012). Biogaz z odpadów paliwem dla transportu? bariery i perspektywy, Energetyka gazowa, 4: 34–39.Google Scholar
  32. 32.
    Niemiec. Możliwości wdrożenia technologii w Polsce (2011). www.cire. pl,14.12.2012Google Scholar
  33. 33.
    Smerkowska, B (2012). Ekonomiczne aspekty wytwarzania biogazu w celu wprowadzenia do sieci gazowej, Info Day projektu GreenGasGrids, 24 kwietnia.Google Scholar
  34. 34.
    Fuksa, D et al (2012). Pozytywne aspekty wykorzystania biogazuna przykładzie transportu, Materiały konferencyjne IZIP? Zakopane, 475–485.Google Scholar
  35. 35.
    Ryckebosch, E et al (2011). Techniques for transformation of biogas to biomethane. Biomass and Bioenergy, 35(5): 1633–1645.CrossRefGoogle Scholar
  36. 36.
    Lachwacka, ME (2009). Technologie uszlachetniania biogazu do jakości gazu ziemnego. Czysta Energia, 12: 26–27.Google Scholar
  37. 37.
    Mroczkowski, P and Seiffert, M (2011). Oczyszczanie i zatłaczanie biogazu na przykładzie.Google Scholar
  38. 38.
    Dyrektywa, Rady (1999). WE z dnia 26 kwietnia, r.w sprawie składowania odpadów.Google Scholar
  39. 39. (2007). Steve Gagnon, It’s Elemental: Hydrogen. Jefferson Lab.Google Scholar
  40. 40.
    Levin, DB et al (2004). Biohydrogen production: Prospects and limitations to practical application. Int J Hydrogen Ener, 29: 173–185.CrossRefGoogle Scholar
  41. 41.
    Ley, AC and Mauzerall, DC (1982). Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim Biophys Acta, 680: 95–106.CrossRefGoogle Scholar
  42. 42.
    Greenbaum, E (1988). Energetic efficiency of hydrogen photoevolution by algal water-splitting. Biophys J, 54: 365–368.CrossRefGoogle Scholar
  43. 43.
    Hallenbeck, PC and Benemann, JR (2002). Biological hydrogen production: Fundamentals and limiting processes. Int J Hydrogen Energy, 27: 1185–1193.CrossRefGoogle Scholar
  44. 44.
    Smith, G et al (1992). Hydrogen production by Cyanobacteria. International Journal of Hydrogen Energy, 17(9): 695–698.CrossRefGoogle Scholar
  45. 45.
    Kitashima, M et al (2012). Flexible Plastic Bioreactors for Photobiological Hydrogen Production by Hydrogenase-Deficient Cyanobacteria. Biosci. Biochem. Biotechnol., 76: 831–833.CrossRefGoogle Scholar
  46. 46.
    Lindblad, P et al (2002). Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture. International Journal of Hydrogen Energy, 27: 1271–1281.CrossRefGoogle Scholar
  47. 47.
    Howarth, DC and Codd, GA (1985). The uptake and production of molecular hydrogen by unicellular cyanobacteria. Journal of General Microbiology, 131: 1561–1569.Google Scholar
  48. 48.
    Weissman, JC and Benemann, JR (1977). Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Applied and Environmental Microbiology, 33: 123–131.Google Scholar
  49. 49.
    Sveshnikov, DA et al (1997). Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiology Letters, 147: 297–301.CrossRefGoogle Scholar
  50. 50.
    Borodin, VB et al (2000). Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnology and Bioengineering, 69: 478–485.CrossRefGoogle Scholar
  51. 51.
    Kosourov, S et al (2002). Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Biotechnology and Bioengineering, 78: 731–740.CrossRefGoogle Scholar
  52. 52.
    Guan, YF et al (2004). Two-stage photobiological production of hydrogen by marine green algae Platymonas subcordifermis. Biochemical Engineering Journal, 19: 69–73.CrossRefGoogle Scholar
  53. 53.
    Laurinavichene, TV et al (2006). Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. International Journal of Hydrogen Energy, 31: 659–667.CrossRefGoogle Scholar
  54. 54.
    John Benemann (1996). Hydrogen biotechnology: Progress and prospects. Journal Nature Biotechnology, 14: 1101–1103.CrossRefGoogle Scholar
  55. 55.
    Belafi-Bako, K et al (2002). Enzymatic biodiesel production from sunflower oil by Candida Antarctica lipase in a solvent-free system. Biocatalysis and Biotransformation, 20: 437–439.CrossRefGoogle Scholar
  56. 56.
    Masukawa, H et al (2002). Disruption of the uptake hydrogenase gene, but not the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol, 58: 618–624.CrossRefGoogle Scholar
  57. 57.
    Pinto, F et al (2002). A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrogen Energy, 27: 1209–1215.CrossRefGoogle Scholar
  58. 58.
    Gfeller, RP and Gibbs, M (1985). Fermentative Metabolism of Chlamydomonas reinhardtii: II. Role of Plastoquin. Plant Physiol., 77: 509–511.CrossRefGoogle Scholar
  59. 59.
    Ohta, SK, Miyamoto and Miura, Y (1987) Hydrogen evolution as a consumption mode of reducing equivalent in green algae fermentation. Plant Physiology, 83: 1022–1026.CrossRefGoogle Scholar
  60. 60.
    Miura, Y et al (1997). Stably sustained hydrogen production by biophotolysis in natural day/night cycle. Energy Conv Manag, 38: S533-S537.CrossRefGoogle Scholar
  61. 61.
    Basak, N and Das, D (2007). The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state-of-the-art. World J. Microbiol. Biotechnol., 23: 31–42.CrossRefGoogle Scholar
  62. 62.
    Redwood, MD (2009). Integrating dark and light bio-hydrogen production strategies: Towards the hydrogen economy. Rev. Environ. Sci. Biotechnol., 8: 149–185.CrossRefGoogle Scholar
  63. 63.
    Holladay, JD et al (2009). An overview of hydrogen production technologies. Catal. Today, 139: 244–260.CrossRefGoogle Scholar
  64. 64.
    Kapdan, IK et al (2009). Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int. J. Hydrog. Energy, 34: 2201–2207.CrossRefGoogle Scholar
  65. 65.
    Keskin, T and Hallenbeck, PC (2012). Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresour. Technol., 112: 131–136.CrossRefGoogle Scholar
  66. 66.
    Guo, XM et al (2010). Hydrogen production from agricultural waste by dark fermentation: A review. International Journal of Hydrogen Energy, 35: 10660–10673.CrossRefGoogle Scholar
  67. 67.
    Zhao, X et al (2012). The effects of metal ions and L-cysteine on hydA gene expression and hydrogen production by Clostridium beijerinckii RZF-1108. International Journal of Hydrogen Energy, 37: 13711–13717.CrossRefGoogle Scholar
  68. 68.
    Wolfrum, EJ and Maness, P (2003). Biological Water Gas Shift. U.S. DOE Hydrogen, Fuel Cell and Infrastructure Technologies Program Review; May 19–22, Berkeley, California.Google Scholar
  69. 69.
    Akkerman, I et al (2002). Photobiological hydrogen production: Photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy, 27: 1195–1208.CrossRefGoogle Scholar
  70. 70.
    Greenbaum, E (1984). Biophotolysis of water: The light saturation curves. Photobiochemistry and Photobiophysics, 8: 323–332.Google Scholar
  71. 71.
    Polle, JEW et al (2002). Truncated chlorophyll antenna size of the photosystems—A practical method to improve microalgal productivity and hydrogen production in mass culture. International Journal of Hydrogen Energy 27(11): 1257–1264.CrossRefGoogle Scholar
  72. 72.
    Quigg, A et al (2006). Limitations on microalgal growth at very low photon flux densities: The role of energy slippage and H+ leakage. Photosynthesis Research, 88: 299–310.CrossRefGoogle Scholar
  73. 73.
  74. 74.
    Hallenbeck, PC and Benemann, JR (2002). Biological hydrogen production: Fundamentals and limiting processes. Int J Hydrogen Energy, 27: 1185–1193.CrossRefGoogle Scholar
  75. 75. (2008). Microbial conversion of biomass – Roads2HyCom Hydrogen and Fuel.

Copyright information

© Capital Publishing Company, New Delhi, India 2019

Authors and Affiliations

  • Basanta Kumara Behera
    • 1
  • Ajit Varma
    • 1
  1. 1.Amity UniversityAmity Institute of Microbial TechnologyNoidaIndia

Personalised recommendations