Diesel-Like Biofuels

  • Basanta Kumara Behera
  • Ajit Varma


Diesel fuel is a mixture of hydrocarbons obtained by petroleum diesel, or petrodiesel is produced by distilling crude oil between 200 °C (392 °F) and 350 °C (662 °F) at atmospheric pressure. The important properties which are used to characterize diesel fuel include cetane number (or cetane index), fuel volatility, density, viscosity, cold behaviour and sulphur content. Diesel fuel specifications differ for various fuel grades and in different countries. Biodiesel is a fuel developed from vegetable oil, animal fat and algal lipids which works in a diesel engine. These fuels are made as greener and cleaner alternatives to petrol and diesel.


  1. 1.
    Demirbas, A (2009). Production of biodiesel fuels from linseed oil using methanol and ethanol in non-catalytic SCF conditions. Biomass Bioenergy, 33: 113–118.CrossRefGoogle Scholar
  2. 2.
    Demirbas, A (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50(4): 923–927.CrossRefGoogle Scholar
  3. 3.
    Demirbas, A (2009). EnergyProgress and recent trends in biodiesel fuels. Energy Conversion and Management, 50: 923–927.CrossRefGoogle Scholar
  4. 4.
    Shahid, EM et al (2012). Effect of Used Cooking Oil Methyl Ester on Compression Ignition Engine. Journal of Quality and Technology Management, VIII (II), 4: 91–104.Google Scholar
  5. 5.
    Lotero, E et al (2005). Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res., 44(14): 5353–5363.CrossRefGoogle Scholar
  6. 6.
    Zhang, Y et al (2003a). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Tech., 89(1): 1–16.CrossRefGoogle Scholar
  7. 7.
    Zhang, Y et al (2003b). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Tech., 90(3): 229–240.CrossRefGoogle Scholar
  8. 8.
    Wang, Y et al (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A-Chem., 252(1–2): 107–112.CrossRefGoogle Scholar
  9. 9.
    Leung, DYC and Guo Y (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process Tech., 87(10): 883–890.CrossRefGoogle Scholar
  10. 10.
    Meher, LC et al (2006). Technical aspects of biodiesel production by transesterification—A review. Renew. Sust. Energ. Rev., 10(3): 248–268.CrossRefGoogle Scholar
  11. 11.
    Bournay, L et al (2005). New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal. Today, 106(1–4): 190–192.CrossRefGoogle Scholar
  12. 12.
    Cao, F et al (2008). Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid. Biotech. Bioengin, 101(1): 93–100.CrossRefGoogle Scholar
  13. 13.
    Srinivasan, S (2009). The food v fuel debate: A nuanced view of incentive structures. Renew. Energ., 34(4): 950–954.CrossRefGoogle Scholar
  14. 14.
    Canakci, M and Van Gerpen, JH (2001). Biodiesel production from oils and fats with high free fatty acids. Transactions of the American Society of Agricultural Engineers, 44(6): 1429–1436.Google Scholar
  15. 15.
    Hama, S et al (2004). Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochemical Engineering Journal, 21(2): 155–160.CrossRefGoogle Scholar
  16. 16.
    Kusdiana, D and Saka, S (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 80: 225–231.CrossRefGoogle Scholar
  17. 17.
    Demirbas, A (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion & Management, 43: 2349–2356.CrossRefGoogle Scholar
  18. 18.
    Warabi, Y et al (2004). Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technology, 91: 283–287.CrossRefGoogle Scholar
  19. 19.
    Kusdiana, D and Saka, S (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 91: 289–295.CrossRefGoogle Scholar
  20. 20.
    Glisic, S and Skala, D (2009).The problems in design and detailed analyses of energy consumption for biodiesel synthesis at supercritical conditions. The Journal of Supercritical Fluids, 49: 293–301.CrossRefGoogle Scholar
  21. 21.
    Deshpande, A et al (2010). Supercritical biodiesel production and power cogeneration: Technical and economic feasibilities. Bioresource Technology, 101: 1834–1843.CrossRefGoogle Scholar
  22. 22.
    Math, MC et al (2010). Technologies for biodiesel production from used cooking oil—A review. Energy for Sustainable Development, 14(4): 339–345.CrossRefGoogle Scholar
  23. 23.
    Schuchardt, U et al (1998). Transesterification of vegetable oils: A review. Journal of the Brazilian Chemical Society, 9(3): 199–210.CrossRefGoogle Scholar
  24. 24.
    Meher, LC et al (2006). Technical aspects of biodiesel production by transesterification—A review. Renewable and Sustainable Energy Reviews, 10: 248–268.CrossRefGoogle Scholar
  25. 25.
    Al-Zuhair Sulaiman et al (2006). A new method for preparing raw material for biodiesel production. Biochemical Engineering Journal, 30: 212–217.CrossRefGoogle Scholar
  26. 26.
    Ma, F et al (1999).The effect of mixing on transesterification of beef tallow. BioresourTechnol, 69: 289–293.CrossRefGoogle Scholar
  27. 27.
    Ogunniyi, DS (2006). Castor oil: A vital industrial raw material. BioresourceTechnol, 97: 1086–1091.CrossRefGoogle Scholar
  28. 28.
    Ogunwole, OA (2012). Production of Biodiesel from Jatropha Oil (Curcas Oil). Research Journal of Chemical Sciences, 2(11): 30–33.Google Scholar
  29. 29.
    Gude, VG et al (2012). Sustainable Biodiesel Production. Second world Sustainable forum 1–14,
  30. 30.
    Peterson, et al (2005). Biodiesel from Yellow Mustard Oil. National Institute for Advanced Transportation Technology. KLK311, NIATT Report Number N05–06.Google Scholar
  31. 31.
    Hartman and Eviana (2008). A Promising Oil Alternative: Algae Energy. The Washington Post. Retrieved 10 June 2008.Google Scholar
  32. 32.
    Dyer and Gwynne (2008). A replacement for oil. The Chatham Daily News.Google Scholar
  33. 33.
    Sheehan, J et al (1998). Look Back at the U S Department of Energy’s Aquatic Species Program—Biodiesel from Algae.Vol. 328. National Renewable Energy Laboratory, CO, USA.Google Scholar
  34. 34.
    Huesemann, MH et al (2009). Biomass productivities in wild type and pigment mutant of Cyclotella sp. (diatom). Appl Biochem Biotechnol, 157(3): 507–526.CrossRefGoogle Scholar
  35. 35.
    Yang, Jia et al (2010). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance (PDF). Bioresources Technology, 10: 1016. Google Scholar
  36. 36.
    Cornell, CB (2008). First Algae Biodiesel Plant Goes Online: 1 April 2008.
  37. 37.
    Dinh, LT et al (2009). Sustainability evaluation of biodiesel production using multicriteria decision-making. Environmental Progress & Sustainable Energy, 28: 38–46. doi: .CrossRefGoogle Scholar
  38. 38.
    Demirbas, A (2011). Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems. Applied Energy, 88(10): 3541–3547.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Demirbas, AH (2009). Inexpensive oil and fats feedstocks for production of biodiesel. Energy Education Science and Technology Part A: Energy Science and Research, 23: 1–13. Google Scholar
  40. 40.
    Carriquiry, MA et al (2011). Second generation biofuels: Economics and policies. Energy Policy, 39(7): 4222–4234. CrossRefGoogle Scholar
  41. 41.
    Greenwell, J et al (2009). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7(46): 703–726. CrossRefGoogle Scholar
  42. 42.
    Moheimani, NR and Borowitzka, MA (2007). Limits to productivity of the alga Pleurochrysis carterae (haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng, 96(1): 27–36.CrossRefGoogle Scholar
  43. 43.
    Blanco, AM et al (2007). Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol, 73(6):1259–1266.CrossRefGoogle Scholar
  44. 44.
    Metting, FB (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17: 477–489.CrossRefGoogle Scholar
  45. 45.
    Spolaore, P et al (2006). Commercial application of microalgae. Journal of Bioscience and Bioengineering, 101: 87–96.CrossRefGoogle Scholar
  46. 46.
    Seckbach, J et al (1971). Growth and photosynthesis of Cyanidium caldarium cultured under pure CO2. Israel Journal of Botany, 20: 84–90.Google Scholar
  47. 47.
    Hanagata, N et al (1992). Tolerance of microalgae to high CO2 and high temperature. Phytochemistry, 31(10): 3345–3348.CrossRefGoogle Scholar
  48. 48.
    Kodama, M et al (1993). A new species of highly CO2-tolerant fast growing marine microalga suitable for high-density culture. Journal of Marine Biotechnology, 1: 21–25.Google Scholar
  49. 49.
    Miyairi, S (1995). CO2 assimilation in a thermophilic cyanobacterium. Energy Conversion and Management, 36(6–9): 763–766.CrossRefGoogle Scholar
  50. 50.
    Nakano, Y et al (1996). Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. Acta Hort, 440: 49–54.CrossRefGoogle Scholar
  51. 51.
    Nagase, H et al (1998). Improvement of microalgal NOx removal in bubble column and airlift reactors. Journal of Fermentation and Bioengineering, 86(4): 421–423.CrossRefGoogle Scholar
  52. 52.
    Miura, Y et al (1993). Stimulation of hydrogen production in algal cells grown under high CO2 concentration and low temperature. Applied Biochemistry and Biotechnology, 39/40: 753–761.CrossRefGoogle Scholar
  53. 53.
    Matsumoto, H et al (1995). Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Applied Biochemistry and Biotechnology, 51/52: 681–692.CrossRefGoogle Scholar
  54. 54.
    Li, Q et al (2008). Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol., 80: 749–756.CrossRefGoogle Scholar
  55. 55. (2007). European Biodiesel Board. The EU Biodiesel Industry.
  56. 56.
    Carriquiry, M (). U.S. Biodiesel production: Recent developments and prospects. Iowa Agric. Rev.Online, 13: 8–9.Google Scholar
  57. 57. (2012). TUSNBB. Production statistics.
  58. 58.
  59. 59.
  60. 60.
  61. 61.
  62. 62.
  63. 63.
  64. 64.
    Davey, HM and Kell DB (1996). Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses. Microbiol. Rev., 60: 641–696.Google Scholar
  65. 65.
    Reckermann, M (2000). Flow sorting in aquatic ecology. Sci. Mar., 64: 235–246.CrossRefGoogle Scholar
  66. 66.
    Dinh, LTT et al (2009). Sustainability evaluation of biodiesel production using multicriteria decision-making. Environ. Prog. Sustain. Energy, 28: 38–46.CrossRefGoogle Scholar
  67. 67.
    Chisti, Y (2007). Biodiesel from microalgae. Biotechnol. Adv., 25: 294–306.CrossRefGoogle Scholar
  68. 68.
    Rismani-Yazdi, H et al (2011). Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12: 148.CrossRefGoogle Scholar
  69. 69.
    Sheehan, J (1998). A look back at the US Department of Energy’s aquatic species program—Biodiesel from algae. Prepared for the US Department of Energy, The National Renewable Energy Laboratory (NREL) [R]. NREL/TP-580-24190.Google Scholar
  70. 70.
    Carioca, JOB et al (2009). The hard choice for alternative biofuels to diesel in Brazil. BiotechnolAdv, 27(6): 1043–1050.Google Scholar
  71. 71.
    Vijayarghavank, K et al (2009). Biodiesel production from freshwater algae. Energy Fuels, 23: 5448–5453.CrossRefGoogle Scholar
  72. 72.
    Rodolfil et al (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1): 100–112.CrossRefGoogle Scholar
  73. 73.
    Blackburn, SL et al (2009). Australian strain selection and enhancement for biodiesel from algae. Phycologia, 48(4): 8–9.Google Scholar
  74. 74.
    Neofotis, P et al (2016) Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Research, 15: 164–178.CrossRefGoogle Scholar
  75. 75.
    Slocombe, SP et al (2015). Unlocking nature’s treasure-chest: Screening for oleaginous algae. Sci Rep., 5: 9844.CrossRefGoogle Scholar
  76. 76.
    Mata, TM (2010). Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 14: 217–232.CrossRefGoogle Scholar
  77. 77. (2012). CSIRO. Australian national algae culture collection Organisation-Structure/National-Facilities/Australian-National-Algae-Culture-Collection.aspx
  78. 78.
    Andrade, MR and Costa, JAV (2007). Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 264: 130–134.CrossRefGoogle Scholar
  79. 79.
    Barclay, W and Apt, K (2013). Strategies for bioprospecting microalgae for potential commercial applications. In: Richmond, A and Hu, Q (eds), Handbook of microalgal culture: Applied phycology and biotechnology, 2nd edn. Wiley-Blackwell, Chichester.CrossRefGoogle Scholar
  80. 80.
    Barclay, W et al (2013). Commercial production of microalgae via fermentation. In: Richmond, A and Hu, Q (eds), Handbook of microalgal culture: Applied phycology and biotechnology, 2nd edn. Wiley-Blackwell, Chichester.Google Scholar
  81. 81.
    Bassi, A et al (2014). Mixotrophic algae cultivation for energy production and other applications. In: Bajpai, R, Prokop, A and Zappi, M (eds), Algal biorefineries, Vol. 1. Cultivation of cells and products. Springer, New York.Google Scholar
  82. 82.
    Cheirsilp, B and Torpee, S (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol, 110: 510–516.CrossRefGoogle Scholar
  83. 83.
    Espinosa-Gonzalez, I et al (2014). Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol, 155: 170–176.CrossRefGoogle Scholar
  84. 84.
    Wang, J et al (2014). Mixotrophic cultivation of microalgae for biodiesel production: Status and prospects. Appl Biochem Biotechnol, 172: 3307–3329.CrossRefGoogle Scholar
  85. 85.
    Wijffels, RH et al (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin, 4: 287–295.CrossRefGoogle Scholar
  86. 86.
    Kalnes, TN et al (2012). Green Diesel production by hydrorefining renewable feedstocks. Biofuels Technology, 7–11
  87. 87.
  88. 88.
  89. 89.

Copyright information

© Capital Publishing Company, New Delhi, India 2019

Authors and Affiliations

  • Basanta Kumara Behera
    • 1
  • Ajit Varma
    • 1
  1. 1.Amity UniversityAmity Institute of Microbial TechnologyNoidaIndia

Personalised recommendations