Gasoline-Like Biofuel

  • Basanta Kumara Behera
  • Ajit Varma


Biomass is plants’ origin. Biomass includes all of the earth’s living matter, plants and animals and the remains of this living matter. Plant biomass is a renewable energy source that is produced through photosynthesis when plants capture carbon dioxide from the air and combine it with water to form carbohydrates and oxygen under the influence of sunlight. Biomass does not include plant or animal matter that has been converted by geologic processes to create fossil fuels such as oil or coal. Biomass is an industry term for getting energy by burning wood and other organic matter. As an energy source, biomass can either be used directly via combustion to produce heat or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into thermal, chemical and biochemical methods.


  1. 1.
    Page, M Le (2016). The Great Carbon Scam. 231 New Scientist, 20–21.CrossRefGoogle Scholar
  2. 2.
    Black, CC et al (1969). Biochemical basis for plant competition. Weed Science, 338–344.Google Scholar
  3. 3.
    Wheals, AE et al (1999). Fuel ethanol after 25 years. Trends in Biotechnology, 17(12): 482–487.CrossRefGoogle Scholar
  4. 4.
    Moreira, JR (2000). Sugarcane for energy—recent results and progress in Brazil. Energy for Sustainable Development, 4(3): 43–54.CrossRefGoogle Scholar
  5. 5.
    Ghosh, P and Ghose, TK (2003). Bioethanol in India: Recent Past and Emerging Future. Springer, Berlin, Germany.Google Scholar
  6. 6.
    Altintas, MM et al (2002). Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors. Enzyme Microb. Technol., 31: 640–647.CrossRefGoogle Scholar
  7. 7.
    Inlow, DJ et al (1988). Fermentation of corn starch to ethanol with genetically engineered yeast. Biotechnol. Bioeng., 32: 227–234.CrossRefGoogle Scholar
  8. 8.
    Meher, L et al (2006). Optimization of alkali-catalyzed transesterification of pongamia pinnata oil for production of Biodiesel. Bioresour. Technol., 97: 1392–1397.CrossRefGoogle Scholar
  9. 9.
    Senthil Kumar, M et al (2003). An experimental comparison of methods to use methanol and jatropha oil in a compression ignition engine. Biomass and Bioenergy J., 25: 309–318.CrossRefGoogle Scholar
  10. 10.
    Lü, J et al (2011). Metabolic engineering of algae for fourth generation biofuels production. Energy & Environmental Science, 4(7): 2451. doi: Scholar
  11. 11.
    Summers Rebecca (2013). Bacteria churn out first ever petrol-like biofuel. New Scientist.
  12. 12.
    Choi, YJ and Lee, SY (2013). Microbial production of short-chain alkanes. Nature, 502: 571–574. doi: Scholar
  13. 13.
    Bisio, A, Boots, S and Siegel, P (eds) (1997). The Wiley Encyclopedia of Energy and the Environment, Vols. I–II. John Wiley & Sons, New York.Google Scholar
  14. 14.
    Review of EU Biofuels Directive (2006). Public Consultation Exercise, April-July 2006. Input from Novozymes A/S.Google Scholar
  15. 15.
    Chisti, Y (2007). Biodiesel from Microalgae. Biotechnology Advances, 25: 294–306.CrossRefGoogle Scholar
  16. 16.
    Schmetz, E et al (2007). Increasing Security and Reducing Carbon Emissions of the U.S. Transportation Sector: A Transformational Role for Coal with Biomass. National Energy Technology Laboratory;
  17. 17.
    Cardona, CA and Sánchez, OJ (2007). Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology, 98(12): 2415–2457.CrossRefGoogle Scholar
  18. 18.
    Hossain, ABMS and Fazliny, AR (2010). Creation of alternative energy by bio-ethanol production from pineapple waste and the usage of its properties for engine. African Journal of Microbiology Research, 4(9): 813–819.Google Scholar
  19. 19.
    da Silva, GP (2005). Ethanolic fermentation of sucrose, sugarcane juice and molasses by Escherichia coli strain KO11 and Klebsiella oxytoca strain P2. Brazilian Journal of Microbiology, 36(4): 395–404.CrossRefGoogle Scholar
  20. 20.
    Limtong, S et al (2007). Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresource Technology, 98(17): 3367–3374.CrossRefGoogle Scholar
  21. 21.
    Dhaliwal, SS et al (2011). Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii. Bioresource Technology, 102(10): 5968–5975.CrossRefGoogle Scholar
  22. 22.
    Kawa-Rygielska, J et al (2013). Utilization of concentrate after membrane filtration of sugar beet thin juice for ethanol production. Bioresource Technology, 133: 134–141.CrossRefGoogle Scholar
  23. 23.
    Ogbonna, JC et al (2001), Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresource Technology, 76(1): 1–8.CrossRefGoogle Scholar
  24. 24.
    Ratnavathi, CV et al (2010). Study on genotypic variation for ethanol production from sweet sorghum juice. Biomass and Bioenergy, 34(7): 947–952.CrossRefGoogle Scholar
  25. 25.
    Wu, X et al (2010). Features of sweet sorghum juice and their performance in ethanol fermentation. Industrial Crops and Products, 31(1): 164–170.CrossRefGoogle Scholar
  26. 26.
    Fish WW et al (2009). Watermelon juice: A promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production. Biotechnology for Biofuels, 2(1): 1–9.CrossRefGoogle Scholar
  27. 27.
    Louhichi, B (2013). Production of bio-ethanol from three varieties of dates. Renewable Energy, 51, 170–174.CrossRefGoogle Scholar
  28. 28.
    Ensinas, AV et al (2009). Reduction of irreversibility generation in sugar and ethanol production from sugarcane. Energy, 34(5): 680–688.CrossRefGoogle Scholar
  29. 29.
    Bryan, WL (1990). Solid-state fermentation of sugars in sweet sorghum. Enzyme and Microbial Technology, 12(6): 437–442.CrossRefGoogle Scholar
  30. 30.
    Quintero, JA et al (2008). Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case. Energy, 33(3): 385–399.CrossRefGoogle Scholar
  31. 31.
    Ratnavathi, CV et al (2011). Sweet sorghum as feedstock for biofuel production: A review. Sugar Tech, 13(4): 399–407.CrossRefGoogle Scholar
  32. 32.
    Mamma, D et al (1995). An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol. Biomass and Bioenergy, 8(2): 99–103.CrossRefGoogle Scholar
  33. 33.
    Sprenger, G (1996). Carbohydrate metabolism in Zymomonas mobilis: A catabolic highway with some scenic routes. FEMS Microbiol. Lett., 145: 301–307.CrossRefGoogle Scholar
  34. 34.
    Flamholz, A et al (2013). Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl. Acad. Sci. USA, 110: 10039–10044.CrossRefGoogle Scholar
  35. 35.
    Flamholz, A et al (2012). The biochemical thermodynamics calculator. Nucleic Acids Res., 40: 770–775.CrossRefGoogle Scholar
  36. 36.
    Weber, C et al (2010). Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl. Microbiol. Biotechnol., 87: 1303–1315.CrossRefGoogle Scholar
  37. 37.
    Yanase, H et al (2012). Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Appl. Microbiol. Biotechnol., 94: 1667–1678.CrossRefGoogle Scholar
  38. 38.
    Shen, CR et al (2011). Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol., 77: 2905–2915.CrossRefGoogle Scholar
  39. 39.
    Baez, A et al (2011). High-flux isobutanol production using engineered Escherichia coli: A bioreactor study with in situ product removal. Appl. Microbiol. Biotechnol., 90: 1681–1690.CrossRefGoogle Scholar
  40. 40.
    Connor, MR et al (2010). 3-Methyl-1-butanol production in Escherichia coli: Random mutagenesis and two-phase fermentation. Appl. Microbiol. Biotechnol., 86: 1155–1164.CrossRefGoogle Scholar
  41. 41.
    George, KW et al (2015). Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Sci. Rep., 5: 11128.CrossRefGoogle Scholar
  42. 42.
    Cann, AF and Liao, JC (2008). Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl.Microbiol. Biotechnol., 81: 89–98.CrossRefGoogle Scholar
  43. 43.
    Rude, MA and Schirmer, A (2009). New microbial fuels: A biotech perspective. Curr. Opin. Microbiol., 12: 274–281.CrossRefGoogle Scholar
  44. 44.
    Alonso-Gutierrez, J et al (2005). Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab. Eng., 28: 123–133.CrossRefGoogle Scholar
  45. 45.
    Sarria, S et al (2014). Microbial synthesis of pinene. ACS Synth. Biol., 3: 466–475.CrossRefGoogle Scholar
  46. 46.
    Zhang, F et al (2012). Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol., 30: 354–359.CrossRefGoogle Scholar
  47. 47.
    Goh, EB et al (2014). Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies. Metab. Eng., 26: 67–76.CrossRefGoogle Scholar
  48. 48.
    Hansen, AC et al (2005). Ethanol-diesel fuel blends—A review. Bioresour. Technol., 96: 277–285.Google Scholar
  49. 49.
    Basso, TO et al (2011). Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metab. Eng., 13: 694–703.CrossRefGoogle Scholar
  50. 50.
    Nielsen, J et al (2013). Metabolic engineering of yeast for production of fuels and chemicals. Curr. Opin. Biotechnol., 24: 398–404.CrossRefGoogle Scholar
  51. 51.
    Zaldivar, J et al ((2001). Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol., 56(1–2): 17–34. Scholar
  52. 52.
    Aristidou, A and Penttila, M (2000). Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol., 11(2): 187–198.CrossRefGoogle Scholar
  53. 53.
    Zaldivar, J et al (2001). Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol., 56(1–2): 17–34.CrossRefGoogle Scholar
  54. 54.
    Ingram, LO et al (1998). Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng., 58(2–3): 204–214.CrossRefGoogle Scholar
  55. 55.
    Ostergaard, S et al (2000). Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev., 64(1): 34–50.MathSciNetCrossRefGoogle Scholar
  56. 56.
    Kuyper, M et al (2004). Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle. Fems Yeast Res., 4(6): 655–664.CrossRefGoogle Scholar
  57. 57.
    Nevoigt, E (2008). Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev., 72(3): 379–412CrossRefGoogle Scholar
  58. 58.
    Matsushika, A et al (2009). Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives. Appl Microbiol Biotechnol., 84(1): 37–53.CrossRefGoogle Scholar
  59. 59.
    Zhang, M et al (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science, 267(5195): 240–243.CrossRefGoogle Scholar
  60. 60.
    Van Maris, AJA (2007). Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Biofuels.Google Scholar
  61. 61.
    Böck, A and Sawers, G (1996). Fermentation. Escherichia coli and Salmonella: Cellular and molecular biology. Niedhardt, FC, Curtiss, IR, Lin, ECC, Low, KB, Magasanik, B, Rezniko, WS, Riley, M, Schaechter, M, Umbarger, HE (eds). Washington D.C., American Society for Microbiology.Google Scholar
  62. 62.
    Nevoigt, E (2008). Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev., 72(3): 379–412.CrossRefGoogle Scholar
  63. 63.
    Fish, WW et al (2009). Watermelon juice: A promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production. Biotechnology for Biofuels, 2(1): 1–9.CrossRefGoogle Scholar
  64. 64.
    Wendhausen, R A et al (2001). Continuous fermentation of sugar cane syrup using immobilized yeast cells. Journal of Bioscience and Bioengineering, 91(1): 48–52.CrossRefGoogle Scholar
  65. 65.
    Paiva, TCB et al (1996). Continuous alcoholic fermentation process in a tower reactor with recycling of flocculating yeast. Applied Biochemistry and Biotechnology A, 57–58: 535–541.CrossRefGoogle Scholar
  66. 66.
    Daniel, PH et al (1991). A comparison of sweet sorghum cultivars and maize for ethanol production. Journal of Production Agriculture, 4(3): 377–381.CrossRefGoogle Scholar
  67. 67.
    Laopaiboon, L et al (2009). Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresource Technology, 100(18): 4176–4182.CrossRefGoogle Scholar
  68. 68.
    Liu, R and Shen, F (2008). Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresource Technology, 99(4): 847–854.CrossRefGoogle Scholar
  69. 69.
    Donalies, U et al (2008). Improvement of Saccharomyces Yeast Stains Used in Brewing, Wine Making and Baking. In: Stahl, U, Donalies, U and Nevoigt, E (eds). Food Biotechnology. Springer-Verlag, Berlin, Heidelberg. doi: Scholar
  70. 70.
    Graybosch, RA et al (2009). New uses for wheat and modified wheat products. In: Carver, BF (ed.), Wheat: Science and trade, Volume 4 of World Agriculture Series, John Wiley & Sons.Google Scholar
  71. 71.
    Cozannet, P et al (2009). Nutritional values of European wheat dried distillers grains with solubles for growing pigs. Journées Rech. Porc., 41: 117–130.Google Scholar
  72. 72.
    Lyons, TP (2003). Production of Scotch and Irish whiskies: Their history and evolution. In: Jacques, KA, Lyons, TP and Kelsall, DR (eds). The alcohol textbook: A reference for the beverage, fuel and industrial alcohol industries. Nottingham University Press.Google Scholar
  73. 73.
    Weiss, B et al (2007). Distillers Grains. Ohio State University, Ohio State University Extension Factsheet;
  74. 74.
    Hayes, DJ (2008). Introduction. In: Babcock, BA, Hayes, DJ and Lawrence, JD (eds). Using distillers’ grains in the US and international livestock and poultry industries. MATRIC, Iowa State University.Google Scholar
  75. 75.
    Newkirk, R (2011). Wheat DDGS Feed Guide: Wheat dried distiller grains with solubles. Feed Opportunities from the Biofuels Industries (FOBI), 1st Edition. Canadian International Grains Institute (Cigi).Google Scholar
  76. 76.
    Stein, HH and Shurson, GC (2009). The use and application of distillers dried grains with solubles in swine diets. J. Anim. Sci., 87(4): 1292–1303.CrossRefGoogle Scholar
  77. 77.
    Cozannet, P et al (2009). Wheat dried distiller grains with solubles (DDGS) for pigs. Inra Prod. Anim., 22(1): 11–16.Google Scholar
  78. 78.
    Schoenau, J (2011). Co-products of the bioenergy industry: Value as soil amendments. In: Farming for Profit 2011, 18th annual Moose Jaw Conference, Competition from Ukraine and Russia: Making agriculture more productive and profitable.Google Scholar
  79. 79.
    Kumar, R et al (2009). Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol, 100: 3948–3962.CrossRefGoogle Scholar
  80. 80.
    Sarkar, N et al (2012). Bioethanol production from agricultural wastes: An overview. Renew Energy 37: 19–27.CrossRefGoogle Scholar
  81. 81.
    Biswas, R et al (2014). Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Biomass Bioenergy, 61: 104–113.CrossRefGoogle Scholar
  82. 82.
    Howard, RL et al (2004). Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr J Biotechnol, 2: 602–619.CrossRefGoogle Scholar
  83. 83.
    Szulczyk, KR et al (2010). Market penetration of ethanol. Renew Sustain Energy Rev, 14: 394–403.CrossRefGoogle Scholar
  84. 84.
    Van Dyk, JS and Pletschke, BI (2012). A review of lignocellulose bio-conversion using enzymatic hydrolysis and synergistic cooperation between enzymes–factors affecting enzymes, conversion and synergy. Biotechnol Adv, 30: 1458–1480.CrossRefGoogle Scholar
  85. 85.
    Pedersen, M and Meyer, AS (2010). Lignocellulose pretreatment severity—Relating pH to biomatrix opening. N Biotechno, 27: 739–750CrossRefGoogle Scholar
  86. 86.
    Robbins, MP et al (2012). New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Prog Energy Combust Sci, 38: 138–155.CrossRefGoogle Scholar
  87. 87.
    Palonen, H et al (2004). Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl Biochem Biotechnol, 117: 1–17.CrossRefGoogle Scholar
  88. 88.
    Nguyen, T-AD et al (2010). Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol, 101: 7432–7438.CrossRefGoogle Scholar
  89. 89.
    Singh, A et al (2011). Enhanced saccharification of rice straw and hull by microwave-alkali pretreatment and lignocellulolytic enzyme production. Bioresour Technol, 102: 1773–1782.CrossRefGoogle Scholar
  90. 90.
    Saha, BC and Cotta, M (2010). Comparison of pretreatment strategies for enzymatic saccharification and fermentation of barley straw to ethanol. N Biotechnol, 27: 10–16.CrossRefGoogle Scholar
  91. 91.
    Adapa, P et al (2009). Compaction characteristics of barley, canola, oat and wheat straw. Biosyst Eng, 104: 335–344.CrossRefGoogle Scholar
  92. 92.
    Toor, SS et al (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36: 2328–2342.CrossRefGoogle Scholar
  93. 93.
    Wyman, CE et al (2011). Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour Technol, 102: 11052–11062.CrossRefGoogle Scholar
  94. 94.
    Wen, Z et al (2004). Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour Technol, 91: 31–39.CrossRefGoogle Scholar
  95. 95.
    McGinnis, GD et al (1983). Biomass pretreatment with water and high-pressure oxygen: The wet-oxidation process. Ind Eng Chem Prod Res Dev, 22: 352–335.CrossRefGoogle Scholar
  96. 96.
    Kim, M and Day, DF (2011). Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of Industrial Microbiology & Biotechnology, 38(7): 803–807.CrossRefGoogle Scholar
  97. 97.
    Malherbe, S and Cloete, TE (2002). Lignocellulose biodegradation: Fundamentals and applications. Reviews in Environmental Science and Biotechnology, 1: 105–114.CrossRefGoogle Scholar
  98. 98.
    Howard, RL et al (2003). Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12): 602–619.CrossRefGoogle Scholar
  99. 99.
    John, F et al (2006). Ethanol production of banana shell and cassava starch Dyna, Universidad Nacional de Colombia, 73: 21–27.Google Scholar
  100. 100.
    Guimarães, JL et al (2009). Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil Industrial Crops and Products, 30(3): 407–415.CrossRefGoogle Scholar
  101. 101.
    Zheng, Y et al (2009). Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric & Biol Eng, 2: 51–68.Google Scholar
  102. 102.
    Zhao, H (2006). Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy & Fuels, 20: 807–811.CrossRefGoogle Scholar
  103. 103.
    Keshwani, DR and Cheng, JJ (2010). Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnol Prog, 3: 644–652.Google Scholar
  104. 104.
    Hu, ZH and Wen, ZY (2008). Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J, 38: 369–378.CrossRefGoogle Scholar
  105. 105.
    Chen, WH et al (2011a). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohy Polym, 83: 1804–1811.CrossRefGoogle Scholar
  106. 106.
    Chen, WH et al (2011b). Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy, 88: 2726–2734.CrossRefGoogle Scholar
  107. 107.
    Nomanbhay, SM et al (2013). Microwave assisted enzymatic saccharification of oil palm empty fruit bunch fiber for enhanced fermentable sugar yield. J Sustain Bioenergy Syst, 3: 7–17.CrossRefGoogle Scholar
  108. 108.
    Yachmenev, V et al (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J Biobased Mater Bioenergy, 3: 25–31.CrossRefGoogle Scholar
  109. 109.
    Bussemaker, MJ and Zhang, D (2013). Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52: 3563–3580.CrossRefGoogle Scholar
  110. 110.
    Sun, RC and Tomkinson, J (2002), Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason Sonochem, 9: 85–93.CrossRefGoogle Scholar
  111. 111.
    Ma, F et al (2010). Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol, 101: 9600–9604.CrossRefGoogle Scholar
  112. 112.
    Kumar, R and Wyman, CE (2009). Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog., 25: 302–314.CrossRefGoogle Scholar
  113. 113.
    Salerno, MB et al (2009). Using a pulsed electric field as a pretreatment for improved biosolids digestion and methanogenesis. Water Environment Federation WEFTEC Water Environ Res., 81(8): 831–839.CrossRefGoogle Scholar
  114. 114.
    Toepfl, S et al (2006). Review: Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev. Int., 22: 405–423.CrossRefGoogle Scholar
  115. 115.
    Chang, VS et al (1997). Lime pretreatment of switchgrass. Appl Biochem Biotechnol., 63–65: 3–19. doi: Scholar
  116. 116.
    Tanahashi, M (1990). Characterization and degradation mechanisms of wood components by steam explosion and utilization of exploded wood. Wood Research, 77: 11–49.Google Scholar
  117. 117.
    Glasser, WG and Wright, RS (1998). Steam assisted biomass fractionation. II. Fractionation behavior of various biomass resources. Biomass and Bioenergy, 14: 219–235.CrossRefGoogle Scholar
  118. 118.
    Boussaid, A et al (2000). Steam pretreatment of Douglas Fir Wood Chips. Applied Biochemistry and Biotechnology, 84–86: 693–705.CrossRefGoogle Scholar
  119. 119.
    Shevchenko, SM et al (2001). Structure and properties of lignin in softwoods after SO2 catalyzed steam explosion and enzymatic hydrolysis. Cellulose Chemistry and Technology 35(5–6): 487–502.Google Scholar
  120. 120.
    Bura, R et al (2002). SO2 catalyzed steam explosion of corn fiber for ethanol production. Applied Biochemistry and Biotechnology, 98–100: 59–72.CrossRefGoogle Scholar
  121. 121.
    Agbor, VB (2011). Biomass pretreatment: Fundamentals toward application. Biotechnol Adv., 29: 675–685. doi: Scholar
  122. 122.
    Rabemanolontsoa, H and Saka, S (2016). Various pretreatments of lignocellulosics. Bioresour Technol., 199: 83–91. doi: Scholar
  123. 123.
    Zhu, JY et al (2011). Efficient Ethanol Production from Beetle-Killed Lodgepole Pine using SPORL Technology and Saccharomyces cerevisiae without Detoxification. TAPPI Journal.Google Scholar
  124. 124.
    Idrees, M et al (2013). Optimization of sulfide/sulfite pretreatment of lignocellulosic biomass for lactic acid production. BioMed Research International, 1–11.CrossRefGoogle Scholar
  125. 125.
    Bajpai, P (2016). Pretreatment of lignocellulosic biomass for biofuel production. Springer Briefs in Molecular Science.Google Scholar
  126. 126.
    Klinke, HB et al (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour. Technol., 82: 15–26.CrossRefGoogle Scholar
  127. 127.
    Martín, C et al (2007). Study of the phenolic compounds formed during pretreatment of sugarcane bagasse by wet oxidation and steam explosion. Holzforschung, 61: 483–487.CrossRefGoogle Scholar
  128. 128.
    Dadi, AP et al (2006). Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng, 95: 904–910. View ArticleGoogle Scholar.
  129. 129.
    Dai, Y et al (2013). Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta, 766: 61–68. View ArticleGoogle Scholar CrossRefGoogle Scholar
  130. 130.
    Dai, Y et al (2015). Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem, 187: 14–19.CrossRefGoogle Scholar
  131. 131.
    Dhiman, SS et al (2015). Simultaneous pretreatment and saccharification: Green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour Technol, 179: 50–57.CrossRefGoogle Scholar
  132. 132.
    Ben, GD and Miron, J (1981). The effect of combined chemical and enzyme treatment on the saccharification and in vitro digestion rate of wheat straw. Biotechnol Bioeng., 23: 823–831. doi: Scholar
  133. 133.
    Neely, WC (1984). Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng., 26(1): 59–65.CrossRefGoogle Scholar
  134. 134.
    Vidal, PF and Molinier, J (1988). Ozonolysis of lignin—Improvement of in vitro digestibility of poplar sawdust. Biomass, 16: 1–17. doi: Scholar
  135. 135.
    Quesada, J et al (1999). Ozonation of lignin rich solid fractions from corn stalks. J Wood Chem Technol., 19: 115–137. doi: Scholar
  136. 136.
    Lee, J and Jeffries, TW (2011). Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour Technol, 102: 5884–5890.CrossRefGoogle Scholar
  137. 137.
    Mosier, NS et al (2002). Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol Bioeng, 79(6): 610–618.CrossRefGoogle Scholar
  138. 138.
    Kim, HK and Hong, J (2001). Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol, 77: 139–144.CrossRefGoogle Scholar
  139. 139.
    Hendricks, AT and Zeeman, G (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol, 100: 10–18.CrossRefGoogle Scholar
  140. 140.
    Zheng, YZ et al (1995). Supercritical carbon-dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett, 17: 845–850.CrossRefGoogle Scholar
  141. 141.
    Badiei, M et al (2014). Comparison of chemical pretreatment methods for cellulosic biomass. Procedia Soc Behav Sci, 9: 170–174.Google Scholar
  142. 142.
    Sun, Y and Cheng, J (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour Technol, 83: 1–11.CrossRefGoogle Scholar
  143. 143.
    Harmsen, P et al (2010). Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Report no. 1184: 1–49.Google Scholar
  144. 144.
    Chang, VS and Holtzapple, MT (2000). Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol., 84: 5–37.CrossRefGoogle Scholar
  145. 145.
    Kim, TH et al (2003). Pretreatment of corn stover by aqueous ammonia. Bioresour Tech., 90: 39–47.CrossRefGoogle Scholar
  146. 146.
    Barakat, A (2014). Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis. Appl Energ., 113: 97–105.CrossRefGoogle Scholar
  147. 147.
    Dekker, RF (1989). Enzymatic hydrolysis of plant polysaccharides: Substrates for fermentation. Braz J Med Biol Res., 22: 1441–1456.Google Scholar
  148. 148.
    Zhao, X et al (2007). Effect of several factors on peracetic acid pretreatment of sugarcane for enzymatic hydrolysis. J Chem Technol Biotechnol., 82: 1115–1121.CrossRefGoogle Scholar
  149. 149.
    Khanok, Ratanakhanokchai et al (2013). Paenibacillus curdlanolyticus Strain B-6 Multienzyme Complex: A novel system for biomass utilization engineering, environmental engineering. In: Biomass Now – Cultivation and Utilization. Miodrag Darko Matovic (ed.), ISBN 978-953-51-1106-1.
  150. 150.
    Agbogbo, FA and Wenger, KS (2007). Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. Journal of Industrial Microbiology and Biotechnology, 34: 723–727. doi: Scholar
  151. 151.
    Mohaghegi, A et al (2004). Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysates. Biotechnology Letters, 26: 321–325. doi: Scholar
  152. 152.
    Reddy, HKY et al (2010). Coculture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2. African Journal of Biotechnology, 9: 1926–1934.CrossRefGoogle Scholar
  153. 153.
    Palonen, H et al (2004). Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. Journal of Biotechnology, 107: 65–72. doi: Scholar
  154. 154.
    Lin, Y and Tanaka, S (2006). Ethanol fermentation from biomass resources: Current state and prospects. Applied Microbiology and Biotechnology, 69: 627–642. doi: Scholar
  155. 155.
    Gouveia, ER et al (2009). Validation of methodology for the chemical characterization of sugar cane bagasse. Química Nova, 32: 1500–1503. doi: Scholar
  156. 156.
    Buckeridge, MS et al (2008). Cell. In: Kerbauy, GB (ed.), Plant Physiology, 2nd Edition. Guanabara Koogan, Rio de Janeiro.Google Scholar
  157. 157.
    Almeida, JRM et al (2007). Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemical Technology and Biotechnology, 82: 340–349. doi: Scholar
  158. 158.
    Wikandari, R et al (2010). Effect of furfural, hydroxymethylfurfural and acetic acid on indigenous microbial isolate for bioethanol production. Agricultural Journal, 5: 105–109. doi: CrossRefGoogle Scholar
  159. 159.
    Olsson, L and Hahn-Hägerdal, B (1996). Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology, 18: 312–331.CrossRefGoogle Scholar
  160. 160.
    Lau, MW et al (2010). Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A (LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnology for Biofuels, 3: 11.CrossRefGoogle Scholar
  161. 161.
    Sanchez, RG et al (2010). Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnology for Biofuels, 3: 13.CrossRefGoogle Scholar
  162. 162.
    Almeida, JR et al (2009). Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysates. Bioresource Technology, 100: 3674–3677.CrossRefGoogle Scholar
  163. 163.
    Lotfi, A et al (2010). Screening of some Zygomycetes for cellulase activity. African Journal of Biotechnology, 9: 4211–4216.Google Scholar
  164. 164.
    Fang, X et al (2009). Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. Journal of Bioscience and Bioengineering, 107: 256–261. doi: CrossRefGoogle Scholar
  165. 165.
    Lora, JH and Glasser, WG (2002). Recent industrial applications of lignin: A sustainable alternative to non-renewable materials. Journal of Polymers and the Environment, 10: 39–48. doi: CrossRefGoogle Scholar
  166. 166.
    Kadla, JF et al (2002). Lignin-based carbon fibers for composite fiber applications. Carbon, 40: 2913–2920. doi: CrossRefGoogle Scholar
  167. 167.
    Benar, P (1996). Lignins acetosolv and formacell from eucalyptus and sugar cane bagasse: Isolation, fractionation, characterization and use as a component of phenolic resins resol type. Ph.D. Thesis, University of Campinas, Campinas.Google Scholar
  168. 168.
    Mckillip, WJ et al (1989). Furan and derivatives. In: Elvers, B, Hawkins, S, Ravenscroft, M, Rounsaville, JF and Schulz, G (eds), Ullmann’s Encyclopedia of Industrial Chemistry, 5th Edition, VCH Publishers, 119–121.Google Scholar
  169. 169.
    Schuchardt, ULF et al (2001). The petrochemical industry in the next century: How to replace petroleum as raw material. Química Nova, 24: 247–251. doi: CrossRefGoogle Scholar
  170. 170.
    Benito, M et al (2005). Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production. Journal of Power Sources, 151: 11–17. doi: CrossRefGoogle Scholar
  171. 171.
    Maia, TA et al (2007). Hydrogen production by ethanol steam reforming using Cu/Ni/-Al2O3. Química Nova, 30: 339–345. doi: CrossRefGoogle Scholar
  172. 172.
    BNDES, Brazilian Development Bank (2008). Bioethanol from cane sugar: Energy for sustainable development. Rio de Janeiro, BNDES.Google Scholar
  173. 173.
    García, MA et al (2009). Methanolysis and ethanolysis of animal fats: A comparative study of the influence of alcohols. Chemical Industry and Chemical Engineering Quarterly, 15: 1–18. doi: Scholar
  174. 174.
    Silva, JPA et al (2010). The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysates. Applied Biochemistry and Biotechnology, 162: 1306–1313. doi: CrossRefGoogle Scholar
  175. 175.
    Cheng, K et al (2008). Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochemical Engineering Journal, 38: 105–109. doi: Scholar
  176. 176.
    Gouveia, ER et al (2009). Validation of methodology for the chemical characterization of sugar cane bagasse. Química Nova, 32: 1500–1503. doi: CrossRefGoogle Scholar
  177. 177.
    Fabiano, AG et al (2013). Cellulosic ethanol and its co-products from different substrates, pretreatments, microorganisms and bioprocesses: A review. Natural Science, 5(5): 624–630.CrossRefGoogle Scholar
  178. 178.
    Nigam, P et al (2009). Pre-treatment of agro-industrial residues. In: Nigam, P and Pandey, A. Biotechnology for Agro-Industrial Residues Utilisation. Springer Netherlands.Google Scholar
  179. 179.
    Kirk, TM and Farrell, R (1987). Enzymatic “combustion”: The microbial degradation of lignin. Annu Rev Microbiol. 41: 465–505. doi: Scholar
  180. 180.
    Howard, RL et al (2003). Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr J Biotechnol, 2: 602–619.CrossRefGoogle Scholar
  181. 181.
    Kang, S et al (2013). Hydrothermal conversion of lignin: A review. Renew Sustainable Energy Rev, 27: 546–558.CrossRefGoogle Scholar
  182. 182.
    Su, Y et al (2016). Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk. BMC Biotechnol, 16: 81.CrossRefGoogle Scholar
  183. 183.
    Falcon, MA et al (1995). Isolation of microorganisms with lignin transformation potential from soil of Tenerife Island. Soil Biol Biochem, 27: 121–126.CrossRefGoogle Scholar
  184. 184.
  185. 185.
    Blanchette, RA (1995). Degradation of the lignocellulose complex in wood. Can J Bot, 73: 999–1010.CrossRefGoogle Scholar
  186. 186.
    Filley, TR et al (2002). Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem, 33: 111–124.CrossRefGoogle Scholar
  187. 187.
  188. 188.
    Montenecourt, BS et al (1980). Biochemical nature of cellulases from mutants of Trichoderma reesei. In: Biotechnology and Bioengineering Symposium, 10. New York: Wiley.Google Scholar
  189. 189.
    Pourquie, J and Warzywoda, M (1993). Cellulase production by Trichoderma reesei. In: Saddler, JN (ed.), Bioconversion of forest and agricultural plant residues – Biotechnology in agriculture. Vol. 9. Wallingford: CAB International.Google Scholar
  190. 190.
    Cherry, JR and Fidantsef, AL (2003). Directed evolution of industrial enzymes: An update. Curr Opin Biotechnol, 14: 438–443.CrossRefGoogle Scholar
  191. 191.
    Behera, BC et al (2014). Isolation and identification of cellulose degrading bacteria from mangrove soil of Mahanadi river delta and their cellulase production ability. Afr J Microbiol Res, 2: 41–46.Google Scholar
  192. 192.
    Pedro Lozano et al (2012). A cyclic process for full enzymatic saccharification of pretreated cellulose with full recovery and reuse of the ionic liquid 1-butyl-3-methylimidazolium chloride. Green Chem, 14: 2631–2637.CrossRefGoogle Scholar
  193. 193.
    Gauss, WF et al (1976). Manufacture of alcohol from cellulosic materials using plural ferments. Volume 3990944. Office USPT. USA, Bio Research Center Company Limited.Google Scholar
  194. 194.
    Barba, D et al (1985). Hyperazeotropic ethanol salted-out by extractive distillation. Theoretical evaluation and experimental check. Chemical Engineering Science, 40(12): 2287–2292.CrossRefGoogle Scholar
  195. 195.
    Chianese, A and Zinnamosca, F (1990). Ethanol dehydration by azeotropic distillation with mixed solvent entrainer. The Chemical Engineering Journal, 43: 59–65.CrossRefGoogle Scholar
  196. 196.
    Meirelles, A et al (1992). Ethanol dehydration by extractive distillation. Journal Chemistry and Tech Biotechnology, 53: 181–188.CrossRefGoogle Scholar
  197. 197.
    Gil, ID et al (2012). Control of an extractive distillation process to dehydrate ethanol using glycerol as entrainer. Computers and Chemical Engineering, 39(6): 129–142.CrossRefGoogle Scholar
  198. 198.
    Perry, R (1992). Perry’s Chemical Engineering. United States of America. McGraw-Hill. 7th Ed.Google Scholar
  199. 199.
    Black, C and Distler, D (1972). Dehydration of aqueous ethanol mixtures by extractive distillation. Extractive and azeotropic distillation. Advances in Chemistry Series, 115: 1–15.Google Scholar
  200. 200.
    Lee, F and Gentry, J (1997). Don’t overlook extractive distillation. Chemical Engineering Progress, 93(10): 56–64.Google Scholar
  201. 201.
    Doherty, MF and Malone, MF (1995). Conceptual Design of Distillation Systems. McGraw Hill, New York.Google Scholar
  202. 202.
    Lee, F and Pahl, R (1985). Solvent screening study and conceptual extractive distillation process to produce anhydrous ethanol from fermentation broth. Industrial Engineering Chemical Process Des. Dev., 24: 168–172.CrossRefGoogle Scholar
  203. 203.
    Uyazán, A et al (2006). Producción de alcohol carburante por destilación extractiva: Simulación del proceso con glicerol. Revista Ingeniería e Investigación, 26(1): 45–50.Google Scholar
  204. 204.
    Furter, W (1992). Extractive distillation by salt effect. Chemical Engineering Communications, 116: 35–40.CrossRefGoogle Scholar
  205. 205.
    Ligero, EL and Ravagnani, TMK (2003). Dehydration of ethanol with salt extractive distillation – A comparative analysis between processes with salt recovery. Chemical Engineering and Processing, 42: 543–552.CrossRefGoogle Scholar
  206. 206.
    Llano, M and Aguilar, J (2003). Modeling and simulation of saline extractive distillation columns for the production of absolute ethanol. Computers and Chemical Engineering, 27(4): 527–549.Google Scholar
  207. 207.
    Meirelles, A et al (1992). Ethanol dehydration by extractive distillation. Journal Chemistry and Tech Biotechnology, 53: 181–188.CrossRefGoogle Scholar
  208. 208.
    Pinto, RTP et al (2000). Saline extractive distillation process for ethanol purification. Computers and Chemical Engineering, 24: 1689–1694.CrossRefGoogle Scholar
  209. 209.
    Schmit, D and Vogelpohl, A (1983). Distillation of ethanol-water solutions in the presence of potassium acetate. Separation Science and Technology, 18(6): 547–554.CrossRefGoogle Scholar

Copyright information

© Capital Publishing Company, New Delhi, India 2019

Authors and Affiliations

  • Basanta Kumara Behera
    • 1
  • Ajit Varma
    • 1
  1. 1.Amity UniversityAmity Institute of Microbial TechnologyNoidaIndia

Personalised recommendations