Advertisement

First Approach of a Storm Surge Early Warning System for Santos Region

  • Renan Braga Ribeiro
  • Alexandra Franciscatto Penteado Sampaio
  • Matheus Souza Ruiz
  • José Chambel Leitão
  • Paulo Chambel Leitão
Chapter

Abstract

Historically, extratropical cyclones associated with frontal systems cause storm surges in Santos city. Although there are no fatality records, these events cause several socio-economic loss, especially in vulnerable regions including the Port of Santos. Accepting the impossibility of eliminating the risks, adapting to natural phenomenon can be accomplished through adequate emergency procedures. Early warnings are a key tool to minimize events impact on human activities and prevent economic loss. The present chapter describes an early warning system developed for Santos region, focusing on an intense storm surge event that occurred in October 2016. Executing and sending detailed bulletins once intense events are predicted, reporting the probability of significant impacts on vulnerable areas, is an important feature of the system. Since May 2016, more than 50 comprehensive bulletins were sent, in which at least 20% have warned the possibility of flooding and impacts on urban infrastructure. Currently, the Civil Defense Action Plan is based on this system, notifying the population each time an extreme event is forecast, through a variety of media and by sending cell phone messages, thus enabling residents to be prepared.

Keywords

Storm surge Early warning Forecast Santos city Coastal flood 

Notes

Acknowledgement

This study was made possible in part by the Project n°2013-BS_COB-5, called “Implantação de sistema de monitoramento e previsão da qualidade da água por meio de modelagem numérica ambiental e desenvolvimento de base de dados na Bacia Hidrográfica do Estuário de Santos – SV”, and supported by FEHIDRO (Fundo Estadual de Recursos Hídricos).

References

  1. Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., & Thielen, J. (2012). Operational early warning systems for water-related hazards in Europe. Environmental Science and Policy.  https://doi.org/10.1016/j.envsci.2012.01.008.CrossRefGoogle Scholar
  2. Berzin, G., & Ribeiro, R. B. (2010, August 10–12). O que os engenheiros precisam saber sobre a elevação do nível do mar e seus efeitos na Baixada Santista. Paper presented at XXI Encontro Técnico AESABESP, São Paulo.Google Scholar
  3. Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., … Roberts, H. J. (2010). A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for Southern Louisiana and Mississippi. Part I: Model development and validation. Monthly Weather Review, 138(2):345–377.  https://doi.org/10.1175/2009MWR2906.1.CrossRefGoogle Scholar
  4. Carrère, L., Lyard, F., Cancet, M., Guillot, A., & Roblou, L. (2013, September 24–29). FES 2012: a new global tidal model taking advantage of nearly 20 years of altimetry. In Ouwehand L (Ed.), 20 Years of Progress in Radar Altimetry, Venice, Italy.Google Scholar
  5. Cassiano, G. F., Ribeiro, R. B., & Yassuda, E. A. (2012, November 4–7). Acquisition of wave data and modeling in Santos Bay, São Paulo, Brazil. In Proceedings of the 10th international conference on hydroscience & engineering, Orlando, Florida, USA. Available via http://mdi-de.baw.de/icheArchive/documents/2012/41238372-Final.pdf. Accessed 14 May 2018.
  6. Dube, S. K., Jain, I., Rao, A. D., & Murty, T. S. (2009). Storm surge modelling for the Bay of Bengal and Arabian Sea. Natural Hazards, 51, 3–27.  https://doi.org/10.1007/s11069-009-9397-9.CrossRefGoogle Scholar
  7. Harari, J., & de Camargo, R. (2003). Numerical simulation of the tidal propagation in the coastal region of Santos (Brazil, 24°S 46°W). Continental Shelf Research, 23(16), 1597–1613.  https://doi.org/10.1016/S0278-4343(03)00143-2.CrossRefGoogle Scholar
  8. Leitão, P., Coelho, H., Santos, A., & Neves, R. (2005). Modelling the main features of the Algarve coastal circulation during July 2004: A downscaling approach. Journal of Atmospheric and Ocean Science, 10(4), 421–462.  https://doi.org/10.1080/17417530601127704.CrossRefGoogle Scholar
  9. Leitão, P., Leitão, J., Ribeiro, R., Sampaio, A., Galvão, P., Ribeiro, J., & Silva, A. (2015, October 14–16). Serviços de previsão de alta resolução de condições meteo-oceanográficas e de eventos de poluição costeira. In Coelho C et al (Eds.), VIII Congresso sobre Planeamento e Gestão das Zonas Costeiras dos Países de Expressão Portuguesa, Aveiro, Portugal. Available via http://www.aprh.pt/ZonasCosteiras2015/pdf/5A2_Artigo_080.pdf. Accessed 14 May 2018.
  10. Lellouche, J. M., & Regnier, C. (2015). GLOBAL ocean sea physical analysis and forecasting products. Product user manual. Available via http://marine.copernicus.eu. Accessed 14 May 2018.
  11. Murty, P. L. N., Padmanabham, J., Srinivasa Kumar, T., Kiran Kumar, N., Ravi Chandra, V., Shenoi, S. S. C., & Mohapatra, M. (2017). Real-time storm surge and inundation forecast for very severe cyclonic storm ‘Hudhud’. Ocean Engineering, 131, 25–35.  https://doi.org/10.1016/j.oceaneng.2016.12.026.CrossRefGoogle Scholar
  12. National Ocean and Atmospheric Administration (NOAA). (2017). Operational forecast system. Available via http://tidesandcurrents.noaa.gov/models. Accessed 14 Dec 2017.
  13. Pugh, D. T. (1996). Tides, surges and mean sea-level (reprinted with corrections) (p. 472). Chichester: .Wiley. Available via https://eprints.soton.ac.uk/19157/1/sea-level.pdf. Accessed 14 May 2018.
  14. Resio, D. T., & Westerink, J. J. (2008). Modeling the physics of storm surges. Physics Today, 61(9), 33–38.  https://doi.org/10.1063/1.2982120.CrossRefGoogle Scholar
  15. Ribeiro, R. B., Leitão, J. C., Leitão, P. C., Puia, H. L., & Sampaio, A. F. P. (2016, October 16–21). Integration of high-resolution metocean forecast and observing systems at Port of Santos. In IX international conference on coastal and port engineering in developing countries (PIANC-COPEDEC), Rio de Janeiro, Brazil. Available via http://www.gapcongressos.com.br/trabalhos/z0167/20151130341_full.pdf. Accessed 14 May 2018.
  16. Ribeiro, R., Sampaio, A., Leitão, J., Leitão, P., & Rodrigues, J. (2017, September 13–15). Sistema de previsão da qualidade das águas balneares como ferramenta de gestão. In 13° Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Portuguesa, Porto, Portugal.Google Scholar
  17. Roversi, F., Rosman, P. C. C., & Harari, J. (2016). Análise da renovação das águas do Sistema Estuarino de Santos usando modelagem computacional. Revista Ambiente e Água, 11(3), 566–585.  https://doi.org/10.4136/ambi-agua.1770.CrossRefGoogle Scholar
  18. Sampaio, A. F. P., Mateus, M., Ribeiro, R. B., & Berzin, G. (2008). A modelling approach to the study of faecal pollution in the Santos Estuary. In R. Neves et al. (Eds.), Perspectives on integrated coastal zone management in South America (pp. 425–434). Lisbon: IST Press Available via https://www.unisanta.br/arquivos/CoastalZoneManagementFinal.pdf. Accessed 14 May 2018.Google Scholar
  19. Tompkins, E. L. (2005). Planning for climate change in small islands: Insights from national hurricane preparedness in the Cayman Islands. Global Environmental Change, 15(2), 139–149.  https://doi.org/10.1016/j.gloenvcha.2004.11.002.CrossRefGoogle Scholar
  20. United Nations International Strategy for Disaster Reduction (UNISDR). (2009). Terminology on disaster risk reduction. Geneva, Switzerland. Available via https://www.unisdr.org/files/7817_UNISDRTerminologyEnglish.pdf. Accessed 14 May 2018.
  21. Valchev, N., Eftimova, P., & Andreeva, N. (2018). Implementation and validation of a multi-domain coastal hazard forecasting system in an open bay. Coastal Engineering, 134, 212–228.  https://doi.org/10.1016/j.coastaleng.2017.08.008.CrossRefGoogle Scholar
  22. Verlaan, M., Zijderveld, A., de Vries, H., & Kroos, J. (2005). Operational storm surge forecasting in the Netherlands: Developments in the last decade. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1831), 1441–1453.  https://doi.org/10.1098/rsta.2005.1578.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Renan Braga Ribeiro
    • 1
  • Alexandra Franciscatto Penteado Sampaio
    • 1
  • Matheus Souza Ruiz
    • 1
  • José Chambel Leitão
    • 2
  • Paulo Chambel Leitão
    • 2
  1. 1.Núcleo de Pesquisas Hidrodinâmicas – Universidade Santa Cecília (NPH-UNISANTA)SantosBrazil
  2. 2.HIDROMODPorto SalvoPortugal

Personalised recommendations