Advertisement

Projections of Climate Change in the Coastal Area of Santos

  • Sin-Chan ChouEmail author
  • José A. Marengo
  • Adan J. Silva
  • André A. Lyra
  • Priscila Tavares
  • Celia Regina de Gouveia Souza
  • Joseph Harari
  • Lucí H. Nunes
  • Roberto Greco
  • Eduardo K. Hosokawa
  • Luiz E. O. C. Aragão
  • Lincoln M. Alves
Chapter

Abstract

The objective of this work is to assess the projections of climate change in the city of Santos. The assessment is based on the downscaling of two global climate model simulations using the Eta Regional Climate Model at 20-km and 5-km resolutions, under RCP4.5 and RCP8.5 scenarios for the period between 1961 and 2100. The higher horizontal resolution simulations reproduce in more detail the surface characteristics, such as the topography, vegetation cover, and coastline, and capture the extreme climate events. Evaluation of the model simulations of the present climate show reasonable agreement with observed climatology. Frequency distributions of precipitation and temperature values show that the 5-km run approaches the observed precipitation better than the 20-km resolution run. The assessment of climate change projections indicates that warming in the region reaches about 2 °C until the end of the twenty-first century, and that precipitation reduces in the entire region. Trends of climatic extreme indices show increase of hot days, warm nights, and in the length of consecutive dry days with the increase of the atmospheric greenhouse gas concentrations. Projections of the minimum surface pressure off the coast of Southeast Brazil show weakening tendency under RCP8.5 scenario.

Keywords

Santos Climate projections Dynamical downscaling Extreme-climate indices Storms 

Notes

Acknowledgments

This work was partially funded by CNPq 308035/2013-5, CNPq 306757/2017-6, FAPESP 2012/51876-0, FAPESP 2014/21048-4, FAPESP 2014/00192-0, and FAPESP 2017/06627-6.

References

  1. Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, D05109.  https://doi.org/10.1029/2005JD006290.CrossRefGoogle Scholar
  2. Barbosa, J. P. M. (2008). Avaliação de técnicas empíricas e estatísticas de identificação de extremos de precipitação para o litoral paulista e entorno. MSc dissertation. Universidade Estadual de Campinas, Campinas.Google Scholar
  3. Cavalcanti, I. F. A., Nunes, L. H., Marengo, J. A., Gomes, J. L., Silveira, V. P., & Castellano, M. S. (2017). Projections of precipitation changes in two vulnerable regions of São Paulo State, Brazil. American Journal of Climate Change, 6, 268–293.  https://doi.org/10.4236/ajcc.2017.62014.CrossRefGoogle Scholar
  4. Chou, S. C., Marengo, J. A., Lyra, A. A., Sueiro, G., Pesquero, J. F., Alves, L. M., Kay, G., Betts, R., Chagas, D. J., Gomes, J. L., & Bustamante, J. F. (2012). Downscaling of South America present climate driven by 4-member HadCM3 runs. Climate Dynamics, 38, 635–653.  https://doi.org/10.1007/s00382-011-1002-8.CrossRefGoogle Scholar
  5. Chou, S. C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., & Marengo, J. (2014a). Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. American Journal of Climate Change, 3, 512–527.  https://doi.org/10.4236/ajcc.2014.35043.CrossRefGoogle Scholar
  6. Chou, S. C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., Nobre, P., & Marengo, J. (2014b). Evaluation of the Eta simulations nested in three global climate models. American Journal of Climate Change, 3, 438–454.  https://doi.org/10.4236/ajcc.2014.35039.CrossRefGoogle Scholar
  7. Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., & Rummukainen, M. (2013). Evaluation of climate models. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 741–866). Cambridge, UK: Cambridge University Press.  https://doi.org/10.1017/CBO9781107415324.020. ISBN: 978-1-107-66182-0.CrossRefGoogle Scholar
  8. Gulizia, C., & Camilloni, I. (2015). Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. International Journal of Climatology, 35(4), 583–595.CrossRefGoogle Scholar
  9. IPCC. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (Eds.), Cambridge: Cambridge University Press, 1535 pp.Google Scholar
  10. Lyra, A., Tavares, P., Chou, S. C., Sueiro, G., Dereczynski, C. P., Sondermann, M., Silva, A., Marengo, J., & Giarolla, A. (2017). Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution. Theoretical and Applied Climatology.  https://doi.org/10.1007/s00704-017-2067-z.CrossRefGoogle Scholar
  11. Marengo, J. A., Chou, S. C., Kay, G., Alves, L. M., Pesquero, J. F., Soares, W. R., Santos, D. C., Lyra, A. A., Sueiro, G., Betts, R., Chagas, D. J., Gomes, J. L., Bustamante, J. F., & Tavares, P. (2012). Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: Climatology and regional analyses for the Amazon, São Francisco, and the Paraná River Basins. Climate Dynamics, 38(9–10), 1829–1848.CrossRefGoogle Scholar
  12. Marengo, J. A., Scarano, F. R., Klein, A. F., Souza, C. R. G., & Chou, S. C. (2017). Impacto, vulnerabilidade e adaptação das cidades costeiras brasileiras às mudanças climáticas: Relatório Especial do Painel Brasileiro de Mudanças Climáticas. In J. A. Marengo & F. R. Scarano (Eds.), Painel Brasileiro de Mudanças Climáticas. Rio de Janeiro: PBMC, COPPE – UFRJ. 184 p. ISBN: 978-85-285-0345-6.Google Scholar
  13. Mesinger, F., Chou, S. C., Gomes, J. L., Jovic, D., Bastos, P., Bustamante, J. F., Lazic, L., Lyra, A. A., Morelli, S., Ristic, I., & Veljovic, K. (2012). An upgraded version of the Eta model. Meteorology and Atmospheric Physics, 116(3), 63–79.  https://doi.org/10.1007/s00703-012-0182-z.CrossRefGoogle Scholar
  14. PBMC. (2016). Impacto, vulnerabilidade e adaptação das cidades costeiras brasileiras às mudanças climáticas: Relatório Especial do Painel Brasileiro de Mudanças Climáticas. In: J. A. Marengo & F. R. Scarano (Eds.). PBMC, COPPE – UFRJ. Rio de Janeiro. 184 p. ISBN: 978-85-285-0345-6.Google Scholar
  15. Pesquero, J. F., Chou, S. C., Nobre, C. A., & Marengo, J. A. (2010). Climate downscaling over South America for 1961–1970 using the Eta model. Theoretical and Applied Climatology, 99(1–2), 75–93.CrossRefGoogle Scholar
  16. Reboita, M. S., da Rocha, R. P., Ambrizzi, T., & Sugahara, S. (2010). South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dynamics, 35, 1331–1347.  https://doi.org/10.1007/s00382-009-0668-7.CrossRefGoogle Scholar
  17. van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1–2), 5–31.CrossRefGoogle Scholar
  18. Yin, L., Fu, R., Shevliakova, E., & Dickinson, R. E. (2013). How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dynamics, 41(11–12), 3127–3143.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sin-Chan Chou
    • 1
    Email author
  • José A. Marengo
    • 2
  • Adan J. Silva
    • 1
  • André A. Lyra
    • 1
  • Priscila Tavares
    • 1
  • Celia Regina de Gouveia Souza
    • 3
    • 4
  • Joseph Harari
    • 5
  • Lucí H. Nunes
    • 6
  • Roberto Greco
    • 7
  • Eduardo K. Hosokawa
    • 8
  • Luiz E. O. C. Aragão
    • 1
  • Lincoln M. Alves
    • 1
  1. 1.National Institute for Space Research (INPE)São José dos CamposBrazil
  2. 2.National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN)São José dos CamposBrazil
  3. 3.Institute of Geology – Secretariat for the Environment of the State of São Paulo (IG-SMA/SP)São PauloBrazil
  4. 4.Post-Graduate Programme on Physical Geography – Faculty of Philosophy, Languages and Human SciencesUniversity of São Paulo (FFLCH-USP)São PauloBrazil
  5. 5.Institute of Oceanography, University of São PauloSão PauloBrazil
  6. 6.SantosSão PauloBrazil
  7. 7.Institute of GeosciencesUniversity of Campinas (Unicamp)CampinasBrazil
  8. 8.Municipal Government of Santos, Secretariat of Urban DevelopmentSantosBrazil

Personalised recommendations