Patterns of Extreme Precipitation in Santos

  • Lucí Hidalgo NunesEmail author
  • Lincoln Muniz Alves
  • Eduardo Kimoto Hosokawa
  • José Antonio Marengo


Analysis of extreme precipitation events in different time scales over Santos is presented using the rain gauge network for the period 1980–2015. Located in the humid tropics, the area presents high annual total rainfall, particularly concentrated in spring and summer. However, the rainiest month—January—was also the one with the most homogeneous distribution. More than 40% of the days presented precipitation, which ranged from 0.1 to 332.9 mm. The precipitation variability was quite high, a fact observed in all scales evaluated, which reveals that the mechanisms that generate precipitation in the area are distinct throughout the year. The high precipitation variability is particularly important in the case of daily distribution: for instance, 25% of the rainy days responded for 71% of the total rainfall. Such concentration is a key element in the outbreak of numerous hazards, such as floods and landslides, that cause extensive property damage and loss of life, being the worst situations registered when extreme precipitation episodes coincide with storm surges.


Rainfall Extreme events Santos Concentration index 



To the Civil Defence of Santos, for ceding the data from the Saboó station.


  1. Berndtsson, R., & Niemczynowicz, J. (1988). Spatial and temporal scales in rainfall analysis-some aspects and future perspectives. Journal of Hydrology, 100, 293–313. Scholar
  2. IPCC Intergovernmental Panel on Climate Change (2007) Climate change 2007: Synthesis report. Accessed 17 April 2017.CrossRefGoogle Scholar
  3. IPCC Intergovernmental Panel on Climate Change. (2012a). Glossary of terms. In: Managing the risks of extreme events and disasters to advance climate change adaptation. Accessed 17 Apr 2017.
  4. IPCC Intergovernmental Panel on Climate Change. (2012b). Managing the risks of extreme events and disasters to advance climate change adaptation, Special Report of the IPCC. Cambridge: IPCC.Google Scholar
  5. IPCC Intergovernmental Panel on Climate Change. (2014). Climate change 2013 – the physical science basis. Cambridge: IPCC.CrossRefGoogle Scholar
  6. Karl, T. R., & Knight, R. W. (1998). Secular trends of precipitation amount, frequency, and intensity in the United States. BAMS, 79, 231–241.<0231:STOPAF>2.0.CO;2.CrossRefGoogle Scholar
  7. Liebmann B, Jones C, Carvalho, LMV de (2001) Interannual variability of daily extreme precipitation events in the State of São Paulo, Brazil. JCLI 14: 208–218.<0208:IVODEP>2.0.CO;2 . CrossRefGoogle Scholar
  8. Marengo, J. A., Nobre, C., Seluchi, M., et al. (2015). A seca e a crise hídrica de 2014-2015 em São Paulo. Revista USP, 106, 31–45. Scholar
  9. Martín-Vide, J. (2004). Spatial Distribution of a daily precipitation concentration index in Peninsular Spain. International Journal of Climatology, 24, 959–971. Scholar
  10. Monteiro, C. A. d. F. (1973). A dinâmica climática e as chuvas no Estado de São Paulo: estudo geográfico sob a forma de atlas. São Paulo: Instituto de Geografia/USP.Google Scholar
  11. NAST National Assessment Synthesis Team. (2001). Climate change impacts on the United States: the potential consequences of climate variability and change, Report for the US Global Change Research Program. Cambridge: NAST National Assessment Synthesis Team.Google Scholar
  12. Nobre, C. A., Marengo, J. A., Seluchi, M. E., et al. (2016). Some characteristics and impacts of the drought and water crisis in Southeastern Brazil during 2014 and 2015. JWARP, 8, 252–262. Scholar
  13. Nogueira, F. R. (2002). Gerenciamento de riscos ambientais associados a escorregamentos: contribuição às políticas públicas municipais para áreas de habitação subnormal. Thesis, Universidade Estadual Paulista.Google Scholar
  14. Nunes, L. H. (2008). Critérios para a definição de eventos extremos – estudo de caso para o litoral central paulista. Paper presented at the 8th Brazilian Symposium of Geographical Climatology, University of Uberlândia, Alto Caparaó, MG 24–29 August 2008.Google Scholar
  15. Pichler, E. (1957). Aspectos geológicos dos escorregamentos de Santos. Boletim da Sociedade Brasileira de Geologia, 6(2), 68–77.Google Scholar
  16. Pinkayan, S. (1966). Conditional probabilities of ocurrence of wet and dry years over a large continental area. Boulder: Colorado State University. . Accessed 13 Sept 2017.Google Scholar
  17. Robledo, F. A., & Penalba, O. C. (2008). Study of the frequency of extreme daily precipitation on the south of Andes Mountain Range. Temporal variability in the period 1961–2003 and relation with Antarctic Oscillation. Paper presented at the 20th. Conference on Climate Variability and Trend, New Orleans Ernest N. Morial Convention, 20–24 January 2008.Google Scholar
  18. Roy, S. S., & Balling, R. C., Jr. (2004). Trends in daily extreme precipitation indices in India. International Journal of Climatology, 24, 457–466.CrossRefGoogle Scholar
  19. WMO World Meteorological Organization. (2003). Technical note agrometeorology related to extreme events. WMO 943. Accessed 23 May 2017.
  20. Xavier, T. d. M. S., Silva, J. F., & Rebello, E. R. G. (2002). A técnica dos quantis e suas aplicações em meteorologia, climatologia e hidrologia em regiões brasileiras. Brasília: Thesaurus Editora de Brasília, Brasília.Google Scholar
  21. Xavier, T. M. S., Xavier, A. F. S., & Alves, J. M. B. (2007). Quantis e eventos extremos. Aplicações em Ciências da Terra e Ambientais. Fortaleza: RDS.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lucí Hidalgo Nunes
    • 1
    Email author
  • Lincoln Muniz Alves
    • 2
  • Eduardo Kimoto Hosokawa
    • 3
  • José Antonio Marengo
    • 4
  1. 1.SantosSão PauloBrazil
  2. 2.National Institute for Space Research (INPE)São José dos CamposBrazil
  3. 3.Municipal Government of Santos, Secretariat of Urban DevelopmentSantosBrazil
  4. 4.National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN)São José dos CamposBrazil

Personalised recommendations