Advertisement

Problem Definition and Identification of Contradictions in the Interdisciplinary Areas of Mechatronic Engineering

  • Pavel LivotovEmail author
  • Didier Casner
  • Rémy Houssin
  • Jean Renaud
Chapter

Abstract

The modern TRIZ is today considered as the most organized and comprehensive methodology for knowledge-driven invention and innovation. When applying TRIZ for inventive problem solving, the quality of obtained solutions strongly depends on the level of completeness of the problem analysis and the abilities of designers to identify the main technical and physical contradictions in the inventive situation. These tasks are more complex and hence more time consuming in the case of interdisciplinary systems. Considering a mechatronic product as a system resulting from the integration of different technologies, the problem definition reveals two kinds of contradictions: 1) the mono-disciplinary contradictions within a homogenous sub-system, e.g., only mechanical or only electrical; 2) the interdisciplinary contradictions resulting from the interaction of the mechatronic sub-systems (mechanics, electrics, control and software). This paper presents a TRIZ-based approach for a fast and systematic problem definition and contradiction identification, which could be useful both for engineers and students facing mechatronic problems. It also proposes some useful problem formulation tech-niques such as the System Circle Diagram, the enhancement of System Operator with the Evolution Patterns, the extension of MATChEM-IB operator with Infor-mation field and Human Interactions, as well as the Cause-Effect-Matrix.

References

  1. 1.
    Cavallucci D (2011) A research agenda for computing developments associated with innovation pipelines. Comput Ind 62:377–383.  https://doi.org/10.1016/j.compind.2010.12.002CrossRefGoogle Scholar
  2. 2.
    Mori T (1969) Mechatronics, Yaskawa Internal Trademark ApplicationGoogle Scholar
  3. 3.
    Bradley D (2010) Mechatronics – more questions than answers. Mechatronics 20:827–841.  https://doi.org/10.1016/j.mechatronics.2010.07.011CrossRefGoogle Scholar
  4. 4.
    VDI (2016) VDI Standard 4521: inventive problem solving with TRIZ. Fundamentals, terms and definitions, BerlinGoogle Scholar
  5. 5.
    Altshuller GS (1984) Creativity as an exact science: the theory of the solution of inventive problems. Gordon & Breach Science Publishers, New York ISSN 0275-5807Google Scholar
  6. 6.
    Cavallucci D, Cascini G et al (2015) TRIZ and knowledge-based innovation in science and industry. Procedia Eng. 131:1–2.  https://doi.org/10.1016/j.proeng.2015.12.341CrossRefGoogle Scholar
  7. 7.
    Sun X, Houssin R et al (2016) Integrating user information into design process to solve contradictions in product usage. Procedia CIRP 39:166–172.  https://doi.org/10.1016/j.procir.2016.01.183CrossRefGoogle Scholar
  8. 8.
    Cavallucci D, Rousselot F et al (2010) Initial situation analysis through problem graph. CIRP J Manuf Sci Technol 2:310–317.  https://doi.org/10.1016/j.cirpj.2010.07.004CrossRefGoogle Scholar
  9. 9.
    Makino K, Sawaguchi M et al (2015) Research on functional analysis useful for utilizing TRIZ. Procedia Eng 131:1021–1030.  https://doi.org/10.1016/j.proeng.2015.12.420CrossRefGoogle Scholar
  10. 10.
    Dobrusskin C (2016) On the identification of contradictions using cause effect chain analysis. Procedia CIRP 39(2016):221–224.  https://doi.org/10.1016/j.procir.2016.01.192CrossRefGoogle Scholar
  11. 11.
    Souchkov V (2005) Root conflict analysis (RCA+): structuring and visualization of contradictions. In: Proceedings of ETRIA TRIZ Future 2005 Conference, Graz, Austria, November 16–18, 2005. Leykam BuchverlagGoogle Scholar
  12. 12.
    Cascini G, Rotini F et al (2009) Functional modeling for TRIZ-based evolutionary analyses. Proceedings of ICED 09, the 17th International Conference on Engineering Design, vol 5, Design Methods and Tools (pt. 1), Palo Alto, CA, USA, ISBN 978-1-904670-09-4Google Scholar
  13. 13.
    Efimov-Soini NK, Chechurin L (2016) Method of ranking in the function model. Procedia CIRP 39:22–26.  https://doi.org/10.1016/j.procir.2016.01.160CrossRefGoogle Scholar
  14. 14.
    Khomenko N, Ashtiani M (2007) Classical TRIZ and OTSM as a scientific theoretical background for non-typical problem solving instruments. In: 7th ETRIA TRIZ Future Conference, Frankfurt, Germany, pp 73–80Google Scholar
  15. 15.
    Harlim J, Belski I (2015) On the effectiveness of TRIZ tools for problem finding. Procedia Engineering 131:892–898.  https://doi.org/10.1016/j.proeng.2015.12.400CrossRefGoogle Scholar
  16. 16.
    Baldussu A, Becattini N et al (2011) Network of contradictions analysis and structured identification of critical control parameters. Procedia Engineering 9:3–17.  https://doi.org/10.1016/j.proeng.2011CrossRefGoogle Scholar
  17. 17.
    Livotov P, Petrov V (2013) TRIZ innovation technology: product development and inventive problem solving. Handbook. Berlin, 2013, 284 pages, INNOVATOR (06) 01/2013, ISSN 1866-4180Google Scholar
  18. 18.
    Spreafico C, Russo D (2016) TRIZ industrial case studies: a critical survey. Procedia CIRP 39:51–56.  https://doi.org/10.1016/j.procir.2016.01.165CrossRefGoogle Scholar
  19. 19.
    Oh KW, Lee P, Choi YW (2015) Enhanced unlatch operation of disk drive for low temperature environment. Procedia Engineering 131:906–913.  https://doi.org/10.1016/j.proeng.2015.12.402CrossRefGoogle Scholar
  20. 20.
    Maass JT, Nagel T et al (2016) The Variopanto® – with TRIZ from idea to reality. Procedia CIRP 39:109–113.  https://doi.org/10.1016/j.procir.2016.01.174CrossRefGoogle Scholar
  21. 21.
    Cooke J (2016) TRIZ-based modelling and value analysis of products as processes. J Eur TRIZ Assoc 01-2016, ISSN 1866-4180:8–17Google Scholar
  22. 22.
    Friedenthal S, Moore A et al (2008) A practical guide to SysML: systems modeling language. Morgan Kaufmann Publishers Inc., San Francisco, CAGoogle Scholar
  23. 23.
    Souchkov V (2011) A guide to Root Conflict Analysis (RCA+). ICG Training & Consulting. http://www.xtriz.com/publications/RCA_Plus_July2011.pdf. Retrieved on 01 Jan 2017
  24. 24.
    Livotova O, Livotov P (2015) The principle of feeling – the method of structural systemic constellations for technical problem solving and decision making. Procedia Engineering 131:204–213.  https://doi.org/10.1016/j.proeng.2015.12.373CrossRefGoogle Scholar
  25. 25.
    Belski I, Livotov P et al (2016) Eight fields of MATCEMIB help students to generate more ideas. Procedia CIRP 39:85–90.  https://doi.org/10.1016/j.procir.2016.01.170CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Pavel Livotov
    • 1
    Email author
  • Didier Casner
    • 1
  • Rémy Houssin
    • 2
  • Jean Renaud
    • 2
  1. 1.Faculty of Mechanical and Process Engineering, Laboratory for Product and Process InnovationOffenburg UniversityOffenburgGermany
  2. 2.INSA Strasbourg, Laboratoire du Génie de la ConceptionStrasbourg CedexFrance

Personalised recommendations