Management of Fluid Overload in the Pediatric ICU

  • Grace L. Ker
  • Sandeep Gangadharan


The implications and management of fluid overload in pediatric critical care remain areas of ongoing controversy. Consensus definitions and methods of quantitating fluid overload continue to evolve, paralleling our growing understanding of fluid dynamics in critically ill patients. Fluid overload has been associated with adverse outcomes in some patient populations; guidelines for fluid management therapies are sparse and have little supporting data. Conflicting data for efficacy of therapies such as diuretic medications and renal replacement therapy are likely reflective of an incomplete understanding of the dynamic relationship between critical illness and fluid overload. Although some guidance regarding diuresis, continuous renal replacement therapy, and fluid balance goals is elucidated in the following chapters, it is important to recognize that further research into these management strategies is required before standardized approaches to management can be established.


Fluid overload Renal replacement therapy Diuretic agent Mechanical ventilation Cardiac surgery ECMO Outcomes 


  1. 1.
    Foland JA, Fortenberry JD, Warshaw BL, Pettignano R, Merrittv RK, Heard ML, Rogers K, Reid C, Tanner AJ, Easley KA. Fluid overload before csontinuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32:1771–6.Google Scholar
  2. 2.
    Jain A. Body fluid composition. Pediatr Rev. 2015;36:141–52.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bianchetti MG, Simonetti GD, Bettinelli A. Body fluids and salt metabolism - part I. Ital J Pediatr. 2009;35:36.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Agrò F.E. VM. Physiology of body fluid compartments and body fluid movements. Milano: Springer; 2013.Google Scholar
  5. 5.
    Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Rogers’ Textbook of Pediatric Intensive Care. 5th ed. Philadelphia: Wolters Kluwer; 2008.Google Scholar
  7. 7.
    Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth. 2002;89:622–32.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Selewski DT, Cornell TT, Lombel RM, Blatt NB, Han YY, Mottes T, Kommareddi M, Kershaw DB, Shanley TP, Heung M. Weight-based determination of fluid overload status and mortality in pediatric intensive care unit patients requiring continuous renal replacement therapy. Intensive Care Med. 2011;37:1166–73.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Goldstein SL, Currier H, Graf C, Cosio CC, Brewer ED, Sachdeva R. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107:1309–12.Google Scholar
  10. 10.
    Milani GP, Groothoff JW, Vianello FA, Fossali EF, Paglialonga F, Edefonti A, Agostoni C, Consonni D, van Harskamp D, van Goudoever JB, Schierbeek H, Oosterveld MJS. Bioimpedance and fluid status in children and adolescents treated with Dialysis. Am J Kidney Dis. 2017;69:428–35.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Mehta RL, Pascual MT, Soroko S, Chertow GM, for the PSG. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288:2547–53.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kakajiwala A, Kim JY, Hughes JZ, Costarino A, Ferguson J, Gaynor JW, Furth SL, Blinder JJ. Lack of furosemide responsiveness predicts acute kidney injury in infants after cardiac surgery. Ann Thorac Surg. 2017;104:1388–94.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Singh NC, Kissoon N, al Mofada S, Bennett M, Bohn DJ. Comparison of continuous versus intermittent furosemide administration in postoperative pediatric cardiac patients. Crit Care Med. 1992;20:17–21.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Klinge JM, Scharf J, Hofbeck M, Gerling S, Bonakdar S, Singer H. Intermittent administration of furosemide versus continuous infusion in the postoperative management of children following open heart surgery. Intensive Care Med. 1997;23:693–7.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ricci Z, Haiberger R, Pezzella C, Garisto C, Favia I, Cogo P. Furosemide versus ethacrynic acid in pediatric patients undergoing cardiac surgery: a randomized controlled trial. Crit Care. 2015;19:2.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sparrow AW, Friedberg DZ, Nadas AS. The use of ethacrynic acid in infants and children with congestive heart failure. Pediatrics. 1968;42:291–302.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Roush GC, Kaur R, Ernst ME. Diuretics: a review and update. J Cardiovasc Pharmacol Ther. 2013;19:5–13.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ng GYT, Baker EH, Farrer KFM. Aminophylline as an adjunct diuretic for neonates—a case series. Pediatr Nephrol. 2005;20:220–2.CrossRefGoogle Scholar
  19. 19.
    Pretzlaff RK, Vardis RJ, Pollack MM. Aminophylline in the treatment of fluid overload. Crit Care Med. 1999;27:2782–5.CrossRefGoogle Scholar
  20. 20.
    Vaara ST, Korhonen A-M, Kaukonen K-M, Nisula S, Inkinen O, Hoppu S, Laurila JJ, Mildh L, Reinikainen M, Lund V. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care. 2012;16:R197.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Bagshaw SM, Laupland KB, Doig CJ, Mortis G, Fick GH, Mucenski M, Godinez-Luna T, Svenson LW, Rosenal T. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Criti Care. 2005;9:R700–9.CrossRefGoogle Scholar
  23. 23.
    Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lee J, Lo S, McArthur C, McGuiness S, Norton R, Myburgh J, Scheinkestel C, Su S. An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. augmented level of replacement therapy trial. Crit Care Med. 2012;40:1753–60.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Seabra VF, Balk EM, Liangos O, Sosa MA, Cendoroglo M, Jaber BL. Timing of renal replacement therapy initiation in acute renal failure: a meta-analysis. Am J Kidney Dis. 2008;52:272–84.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Karvellas CJ, Farhat MR, Sajjad I, Mogensen SS, Leung AA, Wald R, Bagshaw SM. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Criti Care. 2011;15:R72.CrossRefGoogle Scholar
  26. 26.
    Arikan AA, Zappitelli M, Goldstein SL, Naipaul A, Jefferson LS, Loftis LL. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr Crit Care Med. 2012;13:253–8.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Flori HRCG, Liu KD, et al. Positive fluid balance is associated with higher mortality and prolonged mechanical ventilation in pediatric patients with acute lung injury. Crit Care Res Pract. 2011;854142Google Scholar
  28. 28.
    Willson DF, Thomas NJ, Tamburro R, Truemper E, Truwit J, Conaway M, Traul C, Egan EE. The relationship of fluid administration to outcome in the pediatric calfactant in acute respiratory distress syndrome trial. Pediatr Crit Care Med. 2013;14:666–72.Google Scholar
  29. 29.
    Willson DF, Thomas NJ, Tamburro R, Truemper E, Truwit J, Conaway M, Traul C, Egan EE. Pediatric calfactant in acute respiratory distress syndrome trial. Pediatr Crit Care Med. 2013;14:657–65.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sinitsky L, Walls D, Nadel S, Inwald DP. Fluid overload at 48 hours is associated with respiratory morbidity but not mortality in a general PICU: retrospective cohort study. Pediatr Crit Care Med. 2015;16:205–9.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Randolph AG, Forbes PW, Gedeit RG, Arnold JH, Wetzel RC, Luckett PM, O’Neil ME, Venkataraman ST, Meert KL, Cheifetz IM, Cox PN, Hanson JH. Cumulative fluid intake minus output is not associated with ventilator weaning duration or extubation outcomes in children. Pediatr Crit Care Med. 2005;6:642–7.CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ingelse SA, Wiegers HM, Calis JC, van Woensel JB, Bem RA. Early fluid overload prolongs mechanical ventilation in children with viral-lower respiratory tract disease. Pediatr Crit Care Med. 2017;18:e106–11.CrossRefGoogle Scholar
  33. 33.
    Wiedemann HP, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Randolph AG. Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med. 2009;37:2448–54.CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hassinger AB, Wald EL, Goodman DM. Early postoperative fluid overload precedes acute kidney injury and is associated with higher morbidity in pediatric cardiac surgery patients. Pediatr Crit Care Med. 2014;15:131–8.CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Seguin J, Albright B, Vertullo L, Lai P, Dancea A, Bernier P-L, Tchervenkov CI, Calaritis C, Drullinsky D, Gottesman R. Extent, risk factors, and outcome of fluid overload after pediatric heart surgery. Crit Care Med. 2014;42:2591–9.CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Lex DJ, Toth R, Czobor NR, Alexander SI, Breuer T, Sapi E, Szatmari A, Szekely E, Gal J, Szekely A. Fluid overload is associated with higher mortality and morbidity in pediatric patients undergoing cardiac surgery. Pediatr Crit Care Med. 2016;17:307–14.Google Scholar
  38. 38.
    Hazle MA, Gajarski RJ, Yu S, Donohue J, Blatt NB. Fluid overload in infants following congenital heart surgery. Pediatr Crit Care Med. 2013;14:44–9.CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kwiatkowski DM, Goldstein SL, Cooper DS, Nelson DP, Morales DS, Krawczeski CD. Peritoneal dialysis vs furosemide for prevention of fluid overload in infants after cardiac surgery: a randomized clinical trial. JAMA Pediatr. 2017;171:357–64.CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Bojan M, Gioanni S, Vouhe PR, Journois D, Pouard P. Early initiation of peritoneal dialysis in neonates and infants with acute kidney injury following cardiac surgery is associated with a significant decrease in mortality. Kidney Int. 2012;82:474–81.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    ECMO Registry of the Extracorporeal Life Support Organization (ELSO). 2017.Google Scholar
  42. 42.
    Fleming GM, Sahay R, Zappitelli M, King E, Askenazi DJ, Bridges BC, Paden ML, Selewski DT, Cooper DS. The incidence of acute kidney injury and its effect on neonatal and pediatric extracorporeal membrane oxygenation outcomes: a multicenter report from the kidney intervention during extracorporeal membrane oxygenation study group. Pediatr Crit Care Med. 2016;17:1157–69.Google Scholar
  43. 43.
    Kelly RE Jr, Phillips JD, Foglia RP, Bjerke HS, Barcliff LT, Petrus L, Hall TR. Pulmonary edema and fluid mobilization as determinants of the duration of ECMO support. J Pediatr Surg. 1991;26:1016–22.CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Swaniker F, Kolla S, Moler F, Custer J, Grams R, Barlett R, Hirschl R. Extracorporeal life support outcome for 128 pediatric patients with respiratory failure. J Pediatr Surg. 2000;35:197–202.CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Selewski DT, Askenazi DJ, Bridges BC, Cooper DS, Fleming GM, Paden ML, Verway M, Sahay R, King E, Zappitelli M. The impact of fluid overload on outcomes in children treated with extracorporeal membrane oxygenation: a multicenter retrospective cohort study. Pediatr Crit Care Med. 2017;18:1126–35.CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hoover NG, Heard M, Reid C, Wagoner S, Rogers K, Foland J, Paden ML, Fortenberry JD. Enhanced fluid management with continuous venovenous hemofiltration in pediatric respiratory failure patients receiving extracorporeal membrane oxygenation support. Intensive Care Med. 2008;34:2241–7.CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Chen H, Yu RG, Yin NN, Zhou JX. Combination of extracorporeal membrane oxygenation and continuous renal replacement therapy in critically ill patients: a systematic review. Criti Care. 2014;18:675.CrossRefGoogle Scholar
  48. 48.
    Paden ML, Warshaw BL, Heard ML, Fortenberry JD. Recovery of renal function and survival after continuous renal replacement therapy during extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2011;12:153–8.CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Askenazi DJ, Ambalavanan N, Hamilton K, Cutter G, Laney D, Kaslow R, Georgeson K, Barnhart DC, Dimmitt RA. Acute kidney injury and renal replacement therapy independently predict mortality in neonatal and pediatric noncardiac patients on extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2011;12:e1–6.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Grace L. Ker
    • 1
  • Sandeep Gangadharan
    • 1
  1. 1.Department of Pediatric Critical CareCohen Children’s Medical CenterNew Hyde ParkUSA

Personalised recommendations