Advertisement

Simulating Free-Surface FSI and Fatigue Damage in Wind-Turbine Structural Systems

  • Y. BazilevsEmail author
  • J. Yan
  • X. Deng
  • A. Korobenko
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This article reviews state-of-the-art numerical techniques for fluid–structure interaction (FSI) of full-scale wind-turbine systems. Simulation of floating wind turbines subjected to combined wind-flow and ocean-wave forcing, and modeling of high-cycle fatigue failure of blades due to long-term cyclic aerodynamic loading are the focal points of this article. Computational techniques including advanced structural modeling based on isogeometric analysis (IGA), free-surface FSI, and fatigue-damage modeling are presented. Representative computational examples involving land-based and floating offshore wind-turbine designs illustrate the versatility and power of the computational methods developed.

Notes

Acknowledgements

The authors gratefully acknowledge the support of AFOSR Award FA9550-16-1-0131 and NSF Award CBET-1306869.

References

  1. 1.
    J. E. Akin, T. E. Tezduyar, and M. Ungor. Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Computers & Fluids, 36:2–11, 2007.zbMATHCrossRefGoogle Scholar
  2. 2.
    I. Akkerman, Y. Bazilevs, D. J. Benson, M. W. Farthing, and C. E. Kees. Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics. Journal of Applied Mechanics, 79:010905, 2012.CrossRefGoogle Scholar
  3. 3.
    I. Akkerman, Y. Bazilevs, C. E. Kees, and M. W. Farthing. Isogeometric analysis of free-surface flow. Journal of Computational Physics, 230:4137–4152, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    I. Akkerman, J. Dunaway, J. Kvandal, J. Spinks, and Y. Bazilevs. Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Computational Mechanics, 50:719–727, 2012.CrossRefGoogle Scholar
  5. 5.
    D. Allaire, G. Biros, J. Chambers, D. Kordonowy, O. Ghattas, and K. Wilcox. Dynamic data driven methods for self-aware aerospace vehicles. Procedia Computer Science, 9:1206–1210, 2012.CrossRefGoogle Scholar
  6. 6.
    D. Allaire, J. Chambers, R. Cowlagi, D. Kordonowy, M. Lecerf, L. Mainini, D. Ulker, and K. Wilcox. An offline/online DDDAS capability for self-aware aerospace vehicles. Procedia Computer Science, 18:1959–1968, 2013.CrossRefGoogle Scholar
  7. 7.
    C. Anitescu, Y.J. Yongjie Jessica Zhang, and T. Rabczuk. An isogeometric collocation method using superconvergent points. Computer Methods in Applied Mechanics and Engineering, 284:1073–1097, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    B. Augier, J. Yan, A. Korobenko, J. Czarnowski, G. Ketterman, and Y. Bazilevs. Experimental and numerical FSI study of compliant hydrofoils. Computational Mechanics, 55:1079–1090, 2015.zbMATHCrossRefGoogle Scholar
  9. 9.
    Y. Bazilevs and I. Akkerman. Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method. Journal of Computational Physics, 229:3402–3414, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang. Isogeometric fluid–structure interaction: theory, algorithms, and computations. Computational Mechanics, 43:3–37, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Y. Bazilevs, Ming-Chen Hsu, and M. A. Scott. Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Computer Methods in Applied Mechanics and Engineering, 249–252:28–41, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Y. Bazilevs, Ming-Chen Hsu, K. Takizawa, and T. E. Tezduyar. ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Mathematical Models and Methods in Applied Sciences, 22(supp02):1230002, 2012.zbMATHCrossRefGoogle Scholar
  14. 14.
    Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers and Fluids, 36:12–26, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Y. Bazilevs, A Korobenko, X. Deng, and J. Yan. Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines. International Journal for Numerical Methods in Engineering, 102:766–783, 2015.Google Scholar
  16. 16.
    Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan. FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. Journal of Applied Mechanics, 83(6):061010, 2016.CrossRefGoogle Scholar
  17. 17.
    Y. Bazilevs, A. Korobenko, X. Deng, J. Yan, M. Kinzel, and J. O. Dabiri. FSI modeling of vertical-axis wind turbines. Journal of Applied Mechanics, 81:081006, 2014.CrossRefGoogle Scholar
  18. 18.
    Y. Bazilevs, A. Korobenko, J. Yan, A. Pal, S. M. I. Gohari, and S. Sarkar. ALE–VMS formulation for stratified turbulent incompressible flows with applications. Mathematical Models and Methods in Applied Sciences, 25:2349–2375, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Y. Bazilevs, A.L. Marsden, F. Lanza di Scalea, A. Majumdar, and M. Tatineni. Toward a computational steering framework for large-scale composite structures based on continually and dynamically injected sensor data. Procedia Computer Science, 9:1149–1158, 2012.CrossRefGoogle Scholar
  20. 20.
    Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Computer Methods in Applied Mechanics and Engineering, 199:780–790, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Challenges and directions in computational fluid–structure interaction. Mathematical Models and Methods in Applied Sciences, 23: 215–221, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods. Mathematical Models and Methods in Applied Sciences, 25:2217–2226, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Computational Fluid–Structure Interaction: Methods and Applications. Wiley, February 2013.zbMATHCrossRefGoogle Scholar
  24. 24.
    Y. Bazilevs, K. Takizawa, T.E. Tezduyar, M.-C. Hsu, N. Kostov, and S. McIntyre. Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Archives of Computational Methods in Engineering, 21:359–398, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Y. Bazilevs, J. Yan, M. de Stadler, and S. Sarkar. Computation of the flow over a sphere at Re = 3700: A comparison of uniform and turbulent inflow conditions. Journal of Applied Mechanics, 81(12):121003, 2014.CrossRefGoogle Scholar
  26. 26.
    D. J. Benson, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes. A large deformation, rotation-free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering, 200: 1367–1378, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    M.J. Borden, T.J.R Hughes, C.M. Landis, and C.V. Verhoosel. A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Computer Methods in Applied Mechanics and Engineering, 273:100–118, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32:199–259, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. Journal of Applied Mechanics, 60:371–75, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis. Toward Integration of CAD and FEA. Wiley, 2009.Google Scholar
  31. 31.
    M. Cruchaga, D. Celentano, and T. Tezduyar. A moving Lagrangian interface technique for flow computations over fixed meshes. Computer Methods in Applied Mechanics and Engineering, 191:525–543, 2001.zbMATHCrossRefGoogle Scholar
  32. 32.
    M. Cruchaga, D. Celentano, and T. Tezduyar. Computation of mould filling processes with a moving Lagrangian interface technique. Communications in Numerical Methods in Engineering, 18:483–493, 2002.zbMATHCrossRefGoogle Scholar
  33. 33.
    M. A. Cruchaga, D. J. Celentano, and T. E. Tezduyar. Moving-interface computations with the edge-tracked interface locator technique (ETILT). International Journal for Numerical Methods in Fluids, 47:451–469, 2005.zbMATHCrossRefGoogle Scholar
  34. 34.
    I. M. Daniel and O. Ishai. Engineering Mechanics of Composite Materials. Oxford University Press, 2006.Google Scholar
  35. 35.
    F. Darema. Dynamic data driven applications systems: A new paradigm for application simulations and measurements. in proceedings of ICCS 2004 4th International Conference on Computational Science, pages 662–669, 2004.Google Scholar
  36. 36.
    J. Degrieck and W. V. Paepegem. Fatigue damage modelling of fiber-reinforced composite materials: Review. Applied Mechanics Reviews, 54(4):279–300, 2001.CrossRefGoogle Scholar
  37. 37.
    R. Echter, B. Oesterle, and M. Bischoff. A hierarchic family of isogeometric shell finite elements. Computer Methods in Applied Mechanics and Engineering, 254:170–180, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    T.D. Griffith. Structural health and prognostics management for offshore wind plants: Final report of Sandia research and developments activities. 2015. Report of the Sandia National Laboratory.Google Scholar
  39. 39.
    Y. Guo and M. Ruess. A layerwise isogeometric approach for NURBS-derived laminate composite shells. Composite Structures, 124:300–309, 2015.CrossRefGoogle Scholar
  40. 40.
    M. Hillman, J.S. Chen, and Y. Bazilevs. Variationally consistent domain integration for isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 284: 521–540, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    S. Hosseini, J.J.C. Remmers, C.V. Verhoosel, and R. de Borst. Propagation of delamination in composite materials with isogeometric continuum shell elements. International Journal for Numerical Methods in Engineering, 102:159–179, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    M.-C. Hsu and Y. Bazilevs. Fluid–structure interaction modeling of wind turbines: Simulating the full machine. Computational Mechanics, 50:821–833, 2012.zbMATHCrossRefGoogle Scholar
  43. 43.
    M.-C. Hsu, C. Wang, A.J. Herrema, D. Schillinger, A. Ghoshal, and Y. Bazilevs. An interactive geometry modeling and parametric design platform for isogeometric analysis. Computers and Mathematics with Applications, 70:1481–1500, 2015.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Ming-Chen Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. R. Hughes. Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Computer Methods in Applied Mechanics and Engineering, 199:828–840, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Ming-Chen Hsu, D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes. Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Computational Mechanics, 54:1055–1071, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194:4135–4195, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 29:329–349, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    K. E. Jansen, C. H. Whiting, and G. M. Hulbert. A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering, 190:305–319, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    A. A. Johnson and T. E. Tezduyar. Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Computer Methods in Applied Mechanics and Engineering, 119:73–94, 1994.zbMATHCrossRefGoogle Scholar
  50. 50.
    J. Jonkman and W. Musial. Offshore code comparison collaboration (OC3) for IEA task 23 offshore wind technology and deployment. NREL Technical Report, 2010.Google Scholar
  51. 51.
    J. M. Jonkman. Definition of the Floating System for Phase IV of OC3. National Renewable Energy Laboratory Golden, CO, USA, 2010.Google Scholar
  52. 52.
    D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes. An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering, 284:1005–1053, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    C. E. Kees, I. Akkerman, M. W. Farthing, and Y. Bazilevs. A conservative level set method suitable for variable-order approximations and unstructured meshes. Journal of Computational Physics, 230:4536–4558, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    J. Kiendl, Y. Bazilevs, Ming-Chen Hsu, R. Wüchner, and Kai-Uwe Bletzinger. The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Computer Methods in Applied Mechanics and Engineering, 199: 2403–2416, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering, 198:3902–3914, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    J. Kiendl, M.-C. Hsu, M.C.H. Wu, and A. Reali. Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering, 291:280–303, 2015.MathSciNetCrossRefGoogle Scholar
  57. 57.
    A. Korobenko, M.-C. Hsu, I. Akkerman, and Y. Bazilevs. Aerodynamic simulation of vertical-axis wind turbines. Journal of Applied Mechanics, 81(2), 021011, 2013.CrossRefGoogle Scholar
  58. 58.
    A. Korobenko, Ming-Chen Hsu, I. Akkerman, and Y. Bazilevs. Aerodynamic simulation of vertical-axis wind turbines. Journal of Applied Mechanics, 81:021011, 2013.CrossRefGoogle Scholar
  59. 59.
    A. Korobenko, Ming-Chen Hsu, I. Akkerman, J. Tippmann, and Y. Bazilevs. Structural mechanics modeling and FSI simulation of wind turbines. Mathematical Models and Methods in Applied Sciences, 23:249–272, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    S. Lee, M. Churchfield, P. Moriarty, J. Jonkman, and J. Michalakes. Atmospheric and wake turbulence impacts on wind turbine fatigue loading. 2012. Conference Paper presented at 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee, 2012.Google Scholar
  61. 61.
    J. T. Oden, K. R. Diller, C. Bajaj, J. C. Browne, J. Hazle, I. Babuska, J. Bass, L. Demkowicz, Y. Feng, D. Fuentes, S. Prudhomme, M. N. Rylander, R. J. Stafford, and Y. Zhang. Dynamic data-driven finite element models for laser treatment of prostate cancer. Num. Meth. PDE, 23:904–922, 2007.zbMATHCrossRefGoogle Scholar
  62. 62.
    S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces, volume 153. Springer Science and Business Media, 2006.Google Scholar
  63. 63.
    S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1):12–49, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    W. V. Paepegem and J. Degrieck. A new coupled approach of residual stiffness and strength for fatigue of fiber-reinforced composites. International Journal of Fatigue, 24:747–762, 2002.zbMATHCrossRefGoogle Scholar
  65. 65.
    W. V. Paepegem and J. Degrieck. Simulating in-plane fatigue damage in woven glass fibre-reinforced composites subject to fully reversed cyclic loading. Fatigue Fract Engng Mater Struct, 27:1197–1208, 2004.CrossRefGoogle Scholar
  66. 66.
    P. Raghavan, S. Li, and S. Ghosh. Two scale response and damage modeling of composite materials. Finite Element in Analysis and Design, 40:1619–1640, 2004.CrossRefGoogle Scholar
  67. 67.
    S.B. Raknes, X. Deng, Y. Bazilevs, D.J. Benson, K.M. Mathisen, and T. Kvamsdal. Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells. Comput. Methods Appl. Mech. Engrg., 263:127–143, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    J. N. Reddy. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed. CRC Press, Boca Raton, FL, 2004.CrossRefGoogle Scholar
  69. 69.
    Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing, 14(2):461–469, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Computing, 7:856–869, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    D. Schillinger, M.J. Borden, and H.K. Stolarski. Isogeometric collocation for phase-field fracture models. Computer Methods in Applied Mechanics and Engineering, 284:583–610, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    H.J. Sutherland. On the fatigue analysis of wind turbines. 1999. Report of the Sandia National Laboratory.Google Scholar
  73. 73.
    S. Swaminathan and S. Ghosh. Statistically equivalent representative volume elements for composite microstructures, part ii: With evolving damage. Journal of Composite Materials, 40:605–621, 2006.CrossRefGoogle Scholar
  74. 74.
    S. Swaminathan, S. Ghosh, and N. J. Pagano. Statistically equivalent representative volume elements for composite microstructures, part i: Without damage. Journal of Composite Materials, 40:583–604, 2006.CrossRefGoogle Scholar
  75. 75.
    K. Takizawa. Computational engineering analysis with the new-generation space–time methods. Computational Mechanics, 54:193–211, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    K. Takizawa, Y. Bazilevs, and T. E. Tezduyar. Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Archives of Computational Methods in Engineering, 19:171–225, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    K. Takizawa, Y. Bazilevs, T. E. Tezduyar, Ming-Chen Hsu, O. Øiseth, K. M. Mathisen, N. Kostov, and S. McIntyre. Engineering analysis and design with ALE-VMS and space–time methods. Archives of Computational Methods in Engineering, 21:481–508, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    K. Takizawa, Y. Bazilevs, T. E. Tezduyar, C. C. Long, A. L. Marsden, and K. Schjodt. ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Mathematical Models and Methods in Applied Sciences, 24:2437–2486, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    K. Takizawa, D. Montes, M. Fritze, S. McIntyre, J. Boben, and T. E. Tezduyar. Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Mathematical Models and Methods in Applied Sciences, 23:307–338, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    K. Takizawa, C. Moorman, S. Wright, T. Spielman, and T. E. Tezduyar. Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. International Journal for Numerical Methods in Fluids, 65:271–285, 2011.zbMATHCrossRefGoogle Scholar
  81. 81.
    K. Takizawa, K. Tanizawa, T. Yabe, and T. E. Tezduyar. Computational ship hydrodynamics with the CIP method. In E. Onate, J. Garcia, P. Bergan, and T. Kvamsdal, editors, Marine 2007, Barcelona, Spain, 2007. CIMNE.Google Scholar
  82. 82.
    K. Takizawa, K. Tanizawa, T. Yabe, and T. E. Tezduyar. Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. International Journal for Numerical Methods in Fluids, 54:1011–1019, 2007.zbMATHCrossRefGoogle Scholar
  83. 83.
    K. Takizawa and T. E. Tezduyar. Multiscale space–time fluid–structure interaction techniques. Computational Mechanics, 48:247–267, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    K. Takizawa and T. E. Tezduyar. Computational methods for parachute fluid–structure interactions. Archives of Computational Methods in Engineering, 19:125–169, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    K. Takizawa and T. E. Tezduyar. Space–time fluid–structure interaction methods. Mathematical Models and Methods in Applied Sciences, 22(supp02):1230001, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    K. Takizawa, T. E. Tezduyar, J. Boben, N. Kostov, C. Boswell, and A. Buscher. Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Computational Mechanics, 52:1351–1364, 2013.zbMATHCrossRefGoogle Scholar
  87. 87.
    K. Takizawa, T. E. Tezduyar, C. Boswell, R. Kolesar, and K. Montel. FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Computational Mechanics, 54:1203–1220, 2014.CrossRefGoogle Scholar
  88. 88.
    K. Takizawa, T. E. Tezduyar, and A. Buscher. Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Computational Mechanics, 55:1131–1141, 2015.CrossRefGoogle Scholar
  89. 89.
    K. Takizawa, T. E. Tezduyar, and R. Kolesar. FSI modeling of the Orion spacecraft drogue parachutes. Computational Mechanics, 55:1167–1179, 2015.zbMATHCrossRefGoogle Scholar
  90. 90.
    K. Takizawa, T. E. Tezduyar, R. Kolesar, C. Boswell, T. Kanai, and K. Montel. Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Computational Mechanics, 54:1461–1476, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    K. Takizawa, T. E. Tezduyar, and N. Kostov. Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Computational Mechanics, 54:213–233, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    K. Takizawa, T. E. Tezduyar, and T. Kuraishi. Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Mathematical Models and Methods in Applied Sciences, 25:2227–2255, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    K. Takizawa, T. E. Tezduyar, T. Kuraishi, S. Tabata, and H. Takagi. Computational thermo-fluid analysis of a disk brake. Computational Mechanics, 57:965–977, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    K. Takizawa, T. E. Tezduyar, S. McIntyre, N. Kostov, R. Kolesar, and C. Habluetzel. Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Computational Mechanics, 53:1–15, 2014.zbMATHCrossRefGoogle Scholar
  95. 95.
    K. Takizawa, T. E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei, L. Pan, and K. Montel. Space–time VMS method for flow computations with slip interfaces (ST-SI). Mathematical Models and Methods in Applied Sciences, 25:2377–2406, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    K. Takizawa, S. Wright, C. Moorman, and T. E. Tezduyar. Fluid–structure interaction modeling of parachute clusters. International Journal for Numerical Methods in Fluids, 65:286–307, 2011.zbMATHCrossRefGoogle Scholar
  97. 97.
    T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal. Parallel finite-element computation of 3D flows. Computer, 26(10):27–36, 1993.zbMATHCrossRefGoogle Scholar
  98. 98.
    T. Tezduyar and S. Sathe. Stabilization parameters in SUPG and PSPG formulations. Journal of Computational and Applied Mechanics, 4:71–88, 2003.MathSciNetzbMATHGoogle Scholar
  99. 99.
    T. E. Tezduyar. Finite element methods for flow problems with moving boundaries and interfaces. Archives of Computational Methods in Engineering, 8:83–130, 2001.zbMATHCrossRefGoogle Scholar
  100. 100.
    T. E. Tezduyar. Computation of moving boundaries and interfaces and stabilization parameters. International Journal for Numerical Methods in Fluids, 43:555–575, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    T. E. Tezduyar. Finite elements in fluids: Special methods and enhanced solution techniques. Computers & Fluids, 36:207–223, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    T. E. Tezduyar. Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces. Computers & Fluids, 36:191–206, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    T. E. Tezduyar, M. Behr, S. Mittal, and A. A. Johnson. Computation of unsteady incompressible flows with the finite element methods: Space–time formulations, iterative strategies and massively parallel implementations. In New Methods in Transient Analysis, PVP-Vol.246/AMD-Vol.143, pages 7–24, New York, 1992. ASME.Google Scholar
  104. 104.
    T. E. Tezduyar and S. Sathe. Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques. International Journal for Numerical Methods in Fluids, 54:855–900, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    T. E. Tezduyar, S. Sathe, R. Keedy, and K. Stein. Space–time finite element techniques for computation of fluid–structure interactions. Computer Methods in Applied Mechanics and Engineering, 195:2002–2027, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    T. E. Tezduyar, S. Sathe, J. Pausewang, M. Schwaab, J. Christopher, and J. Crabtree. Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Computational Mechanics, 43:39–49, 2008.zbMATHCrossRefGoogle Scholar
  107. 107.
    T. E. Tezduyar, S. Sathe, and K. Stein. Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Computer Methods in Applied Mechanics and Engineering, 195:5743–5753, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    T. E. Tezduyar, K. Takizawa, T. Brummer, and P. R. Chen. Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. International Journal for Numerical Methods in Biomedical Engineering, 27:1665–1710, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    T. E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher. Space–time finite element computation of complex fluid–structure interactions. International Journal for Numerical Methods in Fluids, 64:1201–1218, 2010.zbMATHCrossRefGoogle Scholar
  110. 110.
    N. Valizadeh, Y. Bazilevs, J.S. Chen, and T. Rabczuk. A coupled IGA-Meshfree discretization of arbitrary order of accuracy and without global geometry parametrization. Computer Methods in Applied Mechanics and Engineering, 293:20–37, 2015.MathSciNetCrossRefGoogle Scholar
  111. 111.
    T. van Opstal, E. Fonn, R. Holdahl, T. Kvamsdal, A.M. Kvarving, K.M. Mathisen, K. Nordanger, K.M. Okstad, A. Rasheed, and M. Tabib. Isogeometric methods for CFD and FSI-simulation of flow around turbine blades. Energy Procedia, 80:442–449, 2015.CrossRefGoogle Scholar
  112. 112.
    L. Beio Da Veiga, T.J.R. Hughes, J. Kiendl, C. Lovadina, J. Niiranen, A. Reali, and H. Speleers. A locking-free model for Reissner–Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS. Mathematical Models and Methods in Applied Sciences, 28:1519–1551, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    J. Yan, B. Augier, A. Korobenko, J. Czarnowski, G. Ketterman, and Y. Bazilevs. FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration. Computers and Fluids, 141:201–211, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    J. Yan, A. Korobenko, X. Deng, and Y. Bazilevs. Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Computers and Fluids, 141:155–174, 2016.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of EngineeringBrown UniversityProvidenceUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana-ChampaignChampaignUSA
  3. 3.Department of Civil EngineeringThe University of Hong KongPokfulamHong Kong
  4. 4.Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations