Advertisement

Microcalcifications, Their Genesis, Growth, and Biomechanical Stability in Fibrous Cap Rupture

  • Luis Cardoso
  • Sheldon Weinbaum
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1097)

Abstract

For many decades, cardiovascular calcification has been considered as a passive process, accompanying atheroma progression, correlated with plaque burden, and apparently without a major role on plaque vulnerability. Clinical and pathological analyses have previously focused on the total amount of calcification (calcified area in a whole atheroma cross section) and whether more calcification means higher risk of plaque rupture or not. However, this paradigm has been changing in the last decade or so. Recent research has focused on the presence of microcalcifications (μCalcs) in the atheroma and more importantly on whether clusters of μCalcs are located in the cap of the atheroma. While the vast majority of μCalcs are found in the lipid pool or necrotic core, they are inconsequential to vulnerable plaque. Nevertheless, it has been shown that μCalcs located within the fibrous cap could be numerous and that they behave as an intensifier of the background circumferential stress in the cap. It is now known that such intensifying effect depends on the size and shape of the μCalc as well as the proximity between two or more μCalcs. If μCalcs are located in caps with very low background stress, the increase in stress concentration may not be sufficient to reach the rupture threshold. However, the presence of μCalc(s) in the cap with a background stress of about one fifth to one half the rupture threshold (a stable plaque) will produce a significant increase in local stress, which may exceed the cap rupture threshold and thus transform a non-vulnerable plaque into a vulnerable one. Also, the classic view that treats cardiovascular calcification as a passive process has been challenged, and emerging data suggest that cardiovascular calcification may encompass both passive and active processes. The passive calcification process comprises biochemical factors, specifically circulating nucleating complexes, which would lead to calcification of the atheroma. The active mechanism of atherosclerotic calcification is a cell-mediated process via cell death of macrophages and smooth muscle cells (SMCs) and/or the release of matrix vesicles by SMCs.

Notes

Acknowledgments

This research has been supported by NIH grants 1R01HL136431 and 1SC1DK103362; NSF grants CMMI-1662970, CMMI-1333560, MRI-0723027, and MRI-1229449; and NYS DOH grant C31291GG.

Conflict of Interest The authors have no conflict of interest.

References

  1. Abedin M, Tintut Y, Demer LL (2004) Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 24(7):1161–1170PubMedCrossRefPubMedCentralGoogle Scholar
  2. Agatston AS et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15(4):827–832PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aikawa E et al (2007) Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 116(24):2841–2850 PubMedCrossRefPubMedCentralGoogle Scholar
  4. Akyildiz AC et al (2011) Effects of intima stiffness and plaque morphology on peak cap stress. Biomed Eng Online 10:25PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amizuka N et al (2012) Histology of epiphyseal cartilage calcification and endochondral ossification. Front Biosci (Elite Ed) 4:2085–2100CrossRefGoogle Scholar
  6. Anderson, H.C., Mineralization by matrix vesicles. Scan Electron Microsc. 1984;(Pt 2):953–964Google Scholar
  7. Arad Y et al (1998) Serum concentration of calcium, 1,25 vitamin D and parathyroid hormone are not correlated with coronary calcifications. An electron beam computed tomography study. Coron Artery Dis 9(8):513–518PubMedCrossRefPubMedCentralGoogle Scholar
  8. Balderman JA et al (2012) Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification. J Am Heart Assoc 1(6):e003905PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bennett MR, Evan GI, Schwartz SM (1995) Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95(5):2266–2274PubMedPubMedCentralCrossRefGoogle Scholar
  10. Berliner JA et al (1995) Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91(9):2488–2496PubMedCrossRefGoogle Scholar
  11. Bessueille L, Magne D (2015) Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol Life Sci 72(13):2475–2489PubMedCrossRefGoogle Scholar
  12. Bezerra HG et al (2009) Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv 2(11):1035–1046PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bluestein D et al (2008) Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J Biomech 41(5):1111–1118PubMedCrossRefGoogle Scholar
  14. Bobryshev YV et al (2008) Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture. J Cell Mol Med 12(5B):2073–2082PubMedPubMedCentralCrossRefGoogle Scholar
  15. de Boer IH et al (2009) 25-hydroxyvitamin D levels inversely associate with risk for developing coronary artery calcification. J Am Soc Nephrol 20(8):1805–1812PubMedPubMedCentralCrossRefGoogle Scholar
  16. Born GVR, Richardson PD (1989) Mechanical properties of human atherosclerotic lesions. In: Glagov S, Newman WP, Shaffer S (eds) Pathology of the human atherosclerotic plaque. Springer, BerlinGoogle Scholar
  17. Boström KI (2016) Where do we stand on vascular calcification? Vasc Pharmacol 84:8–14CrossRefGoogle Scholar
  18. Boström K et al (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91(4):1800–1809PubMedPubMedCentralCrossRefGoogle Scholar
  19. Boström KI et al (2011) Activation of vascular bone morphogenetic protein signaling in diabetes mellitus. Circ Res 108(4):446–457PubMedCrossRefGoogle Scholar
  20. Brandenburg VM et al (2014) Fibroblast growth factor 23 (FGF23) and mortality: the Ludwigshafen risk and cardiovascular health study. Atherosclerosis 237(1):53–59 PubMedCrossRefGoogle Scholar
  21. Bucay N et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12(9):1260–1268PubMedPubMedCentralCrossRefGoogle Scholar
  22. Burke AP et al (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336(18):1276–1282PubMedCrossRefGoogle Scholar
  23. Burke AP et al (1999) Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 281(10):921–926PubMedCrossRefPubMedCentralGoogle Scholar
  24. Burke AP et al (2001) Pathophysiology of calcium deposition in coronary arteries. Herz 26(4):239–244 PubMedCrossRefPubMedCentralGoogle Scholar
  25. Burke AP et al (2002) Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 105(3):297–303PubMedCrossRefGoogle Scholar
  26. Burleigh MC et al (1992) Collagen types I and III, collagen content, GAGs and mechanical strength of human atherosclerotic plaque caps: span-wise variations. Atherosclerosis 96(1):71–81PubMedCrossRefGoogle Scholar
  27. Cancela AL et al (2012) Phosphorus is associated with coronary artery disease in patients with preserved renal function. PLoS One 7(5):e36883PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cardoso L, Weinbaum S (2014) Changing views of the biomechanics of vulnerable plaque rupture: a review. Ann Biomed Eng 42(2):415–431PubMedCrossRefGoogle Scholar
  29. Cardoso L et al (2014) Effect of tissue properties, shape and orientation of microcalcifications on vulnerable cap stability using different hyperelastic constitutive models. J Biomech 47(4):870–877PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cheng GC et al (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87(4):1179–1187PubMedCrossRefPubMedCentralGoogle Scholar
  31. Cheng SL et al (2013) Dkk1 and MSX2-Wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells. Arterioscler Thromb Vasc Biol 33(7):1679–1689PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cheng SL et al (2015) Vascular smooth muscle LRP6 limits arteriosclerotic calcification in diabetic LDLR−/− mice by restraining noncanonical Wnt signals. Circ Res 117(2):142–156PubMedPubMedCentralCrossRefGoogle Scholar
  33. Choi BJ et al (2008) Comparison of 64-slice multidetector computed tomography with spectral analysis of intravascular ultrasound backscatter signals for characterizations of noncalcified coronary arterial plaques. Am J Cardiol 102(8):988–993PubMedCrossRefPubMedCentralGoogle Scholar
  34. Choudhury RP et al (2002) MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 22(7):1065–1074PubMedCrossRefPubMedCentralGoogle Scholar
  35. Clarke MC et al (2008) Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res 102(12):1529–1538PubMedCrossRefGoogle Scholar
  36. Clarke MC et al (2010) Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation: effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ Res 106(2):363–372PubMedCrossRefPubMedCentralGoogle Scholar
  37. Collett GD, Canfield AE (2005) Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res 96(9):930–938PubMedCrossRefPubMedCentralGoogle Scholar
  38. Collin-Osdoby P et al (2002) Basic fibroblast growth factor stimulates osteoclast recruitment, development, and bone pit resorption in association with angiogenesis in vivo on the chick chorioallantoic membrane and activates isolated avian osteoclast resorption in vitro. J Bone Miner Res 17(10):1859–1871PubMedCrossRefPubMedCentralGoogle Scholar
  39. Davies MJ, Thomas T (1981) The pathological basis and microanatomy of occlusive thrombus formation in human coronary arteries. Philos Trans R Soc Lond Ser B Biol Sci 294(1072):225–229CrossRefGoogle Scholar
  40. Davies MJ, Thomas AC (1985) Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53(4):363–373PubMedPubMedCentralCrossRefGoogle Scholar
  41. Davies MJ et al (1993) Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69(5):377–381PubMedPubMedCentralCrossRefGoogle Scholar
  42. Demer LL (2002) Vascular calcification and osteoporosis: inflammatory responses to oxidized lipids. Int J Epidemiol 31(4):737–741PubMedCrossRefPubMedCentralGoogle Scholar
  43. Demer LL, Tintut Y (2014) Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol 34(4):715–723PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dhingra R et al (2007) Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 167(9):879–885PubMedCrossRefPubMedCentralGoogle Scholar
  45. Evrard S et al (2015) Vascular calcification: from pathophysiology to biomarkers. Clin Chim Acta 438:401–414PubMedCrossRefPubMedCentralGoogle Scholar
  46. Finet G, Ohayon J, Rioufol G (2004) Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis 15(1):13–20PubMedCrossRefPubMedCentralGoogle Scholar
  47. Fleisch HA et al (1970) The inhibitory effect of phosphonates on the formation of calcium phosphate crystals in vitro and on aortic and kidney calcification in vivo. Eur J Clin Investig 1(1):12–18CrossRefGoogle Scholar
  48. Francis MD (1969) The inhibition of calcium hydroxypatite crystal growth by polyphosphonates and polyphosphates. Calcif Tissue Res 3(2):151–162PubMedCrossRefPubMedCentralGoogle Scholar
  49. Friedrich GJ et al (1994) Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern. Am Heart J 128:435–41PubMedCrossRefPubMedCentralGoogle Scholar
  50. Galvin KM et al (2000) A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24(2):171–174PubMedCrossRefPubMedCentralGoogle Scholar
  51. Gent AN (1980) Detachment of an elastic matrix from a rigid spherical inclusion. J Mater Sci 15(11):2884–2888CrossRefGoogle Scholar
  52. Gent AN, Park B (1984) Failure processes in elastomers at or near a rigid spherical inclusion. J Mater Sci 19(6):1947–1956CrossRefGoogle Scholar
  53. Golub EE (2011) Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol 33(5):409–417PubMedCrossRefPubMedCentralGoogle Scholar
  54. Goodier JN (1933) Concentration of stress around spherical and cylindrical inclusion and flaws. Trans ASME 55:39–44Google Scholar
  55. Grønhøj MH et al (2016) Associations between calcium-phosphate metabolism and coronary artery calcification; a cross sectional study of a middle-aged general population. Atherosclerosis 251:101–108PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hansen NM et al (1976) Aggregation of hydroxyapatite crystals. Biochim Biophys Acta 451(2):549–559PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hoshino T et al (2009) Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability. Am J Physiol Heart Circ Physiol 297(2):H802–H810PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hsu HH, Camacho NP (1999) Isolation of calcifiable vesicles from human atherosclerotic aortas. Atherosclerosis 143(2):353–362PubMedCrossRefPubMedCentralGoogle Scholar
  59. Huang H et al (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103(8):1051–1056PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hutcheson JD, Maldonado N, Aikawa E (2014) Small entities with large impact: microcalcifications and atherosclerotic plaque vulnerability. Curr Opin Lipidol 25(5):327–332PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hutcheson JD et al (2016) Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater 15(3):335–343PubMedPubMedCentralCrossRefGoogle Scholar
  62. Isner JM et al (1995) Apoptosis in human atherosclerosis and restenosis. Circulation 91(11):2703–2711PubMedCrossRefPubMedCentralGoogle Scholar
  63. Jo H, Song H, Mowbray A (2006) Role of NADPH oxidases in disturbed flow- and BMP4- induced inflammation and atherosclerosis. Antioxid Redox Signal 8(9–10):1609–1619PubMedCrossRefPubMedCentralGoogle Scholar
  64. Joshi NV et al (2014) 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383(9918):705–713PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kageyama A et al (2013) Palmitic acid induces osteoblastic differentiation in vascular smooth muscle cells through ACSL3 and NF-κB, novel targets of eicosapentaenoic acid. PLoS One 8(6):e68197PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kapustin AN et al (2011) Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res 109(1):e1–e12PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kapustin AN et al (2015) Vascular smooth muscle cell calcification is mediated by regulated exosome secretion. Circ Res 116(8):1312–1323PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kelly-Arnold A et al (2013) Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A 110(26):10741–10746.  https://doi.org/10.1073/pnas.1308814110 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kestenbaum B et al (2014) Fibroblast growth factor-23 and cardiovascular disease in the general population: the multi-ethnic study of atherosclerosis. Circ Heart Fail 7(3):409–417PubMedPubMedCentralCrossRefGoogle Scholar
  70. Khavandgar Z et al (2014) Elastin haploinsufficiency impedes the progression of arterial calcification in MGP-deficient mice. J Bone Miner Res 29(2):327–337PubMedCrossRefPubMedCentralGoogle Scholar
  71. Knollmann F et al (2008) Quantification of atherosclerotic coronary plaque components by submillimeter computed tomography. Int J Cardiovasc Imaging 24(3):301–310PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kockx MM et al (1998) Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97(23):2307–2315PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kolodgie FD et al (2000) Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157(4):1259–1268PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kolodgie FD et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349(24):2316–2325PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kopp AF et al (2001) Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasound. Eur Radiol 11(9):1607–1611PubMedCrossRefPubMedCentralGoogle Scholar
  76. de Korte CL et al (1998) Intravascular ultrasound elastography: assessment and imaging of elastic properties of diseased arteries and vulnerable plaque. Eur J Ultrasound 7(3):219–224PubMedCrossRefPubMedCentralGoogle Scholar
  77. Lanzer P et al (2014) Medial vascular calcification revisited: review and perspectives. Eur Heart J 35(23):1515–1525PubMedPubMedCentralCrossRefGoogle Scholar
  78. Larose E et al (2005) Characterization of human atherosclerotic plaques by intravascular magnetic resonance imaging. Circulation 112(15):2324–2331PubMedCrossRefPubMedCentralGoogle Scholar
  79. Larose E et al (2008) Improved characterization of atherosclerotic plaques by gadolinium contrast during intravascular magnetic resonance imaging of human arteries. Atherosclerosis 196(2):919–925PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lee RT et al (1991) Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83(5):1764–1770PubMedCrossRefPubMedCentralGoogle Scholar
  81. Lendon CL et al (1991) Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87(1):87–90PubMedCrossRefPubMedCentralGoogle Scholar
  82. Leopold JA (2015) Vascular calcification: mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med 25(4):267–274PubMedCrossRefPubMedCentralGoogle Scholar
  83. Li X, Yang HY, Giachelli CM (2008) BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis 199(2):271–277PubMedPubMedCentralCrossRefGoogle Scholar
  84. Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874PubMedCrossRefGoogle Scholar
  85. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143PubMedCrossRefGoogle Scholar
  86. Lim K et al (2012) Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation 125(18):2243–2255PubMedCrossRefGoogle Scholar
  87. Liu L et al (2011) Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med 17(8):1010–1014PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lomashvili KA et al (2004) Phosphate-induced vascular calcification: role of pyrophosphate and osteopontin. J Am Soc Nephrol 15(6):1392–1401PubMedCrossRefGoogle Scholar
  89. Loree HM et al (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71(4):850–858PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lowe HC et al (2011) Intracoronary optical diagnostics current status, limitations, and potential. JACC Cardiovasc Interv 4(12):1257–1270PubMedCrossRefPubMedCentralGoogle Scholar
  91. Lutgens E et al (1999) Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc Res 41(2):473–479PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lutsey PL et al (2014) Fibroblast growth factor-23 and incident coronary heart disease, heart failure, and cardiovascular mortality: the atherosclerosis risk in communities study. J Am Heart Assoc 3(3):e000936PubMedPubMedCentralCrossRefGoogle Scholar
  93. Maehara A et al (2002) Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound. J Am Coll Cardiol 40(5):904–910PubMedCrossRefGoogle Scholar
  94. Maldonado N et al (2012) A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Physiol Heart Circ Physiol 303(5):H619–H628PubMedPubMedCentralCrossRefGoogle Scholar
  95. Maldonado N et al (2013) The explosive growth of small voids in vulnerable cap rupture; cavitation and interfacial debonding. J Biomech 46(2):396–401PubMedCrossRefGoogle Scholar
  96. Maldonado N et al (2015) Imaging and analysis of microcalcifications and lipid/necrotic core calcification in fibrous cap atheroma. Int J Cardiovasc Imaging 31(5):1079–1087PubMedPubMedCentralCrossRefGoogle Scholar
  97. Masai H et al (2013) A preliminary study of the potential role of FGF-23 in coronary calcification in patients with suspected coronary artery disease. Atherosclerosis 226(1):228–233PubMedCrossRefGoogle Scholar
  98. Mathew JS et al (2014) Fibroblast growth factor-23 and incident atrial fibrillation: the multi-ethnic study of atherosclerosis (MESA) and the cardiovascular health study (CHS). Circulation 130(4):298–307PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mauriello A et al (2013) Coronary calcification identifies the vulnerable patient rather than the vulnerable plaque. Atherosclerosis 229(1):124–129PubMedCrossRefGoogle Scholar
  100. Morena M et al (2009) A cut-off value of plasma osteoprotegerin level may predict the presence of coronary artery calcifications in chronic kidney disease patients. Nephrol Dial Transplant 24(11):3389–3397PubMedCrossRefGoogle Scholar
  101. Moreno PR et al (2002) Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105(8):923–927PubMedCrossRefGoogle Scholar
  102. Motoyama S et al (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50(4):319–326PubMedCrossRefPubMedCentralGoogle Scholar
  103. Nadra I et al (2005) Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ Res 96(12):1248–1256PubMedCrossRefPubMedCentralGoogle Scholar
  104. Naik V et al (2012) Sources of cells that contribute to atherosclerotic intimal calcification: an in vivo genetic fate mapping study. Cardiovasc Res 94(3):545–554PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nakahara T et al (2016) Fibroblast growth factor 23 inhibits osteoblastic gene expression and induces osteoprotegerin in vascular smooth muscle cells. Atherosclerosis 253:102–110PubMedCrossRefGoogle Scholar
  106. Nakahara T et al (2017) Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc Imaging 10(5):582–593PubMedCrossRefGoogle Scholar
  107. Nasu K et al (2006) Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol 47(12):2405–2412PubMedCrossRefPubMedCentralGoogle Scholar
  108. New SEP, Aikawa E (2011) Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res 108(11):1381–1391PubMedPubMedCentralCrossRefGoogle Scholar
  109. New SE et al (2013) Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res 113(1):72–77PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ohayon J et al (2005) A three-dimensional finite element analysis of stress distribution in a coronary atherosclerotic plaque: in-vivo prediction of plaque rupture location. Biomech Appl Comput Assist Surg 661:225–241Google Scholar
  111. Ohayon J et al (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 293(3):H1987–H1996PubMedCrossRefPubMedCentralGoogle Scholar
  112. Ohayon J et al (2008) Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 295(2):H717–H727PubMedPubMedCentralCrossRefGoogle Scholar
  113. Otsuka F et al (2014) Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol 34(4):724–736PubMedPubMedCentralCrossRefGoogle Scholar
  114. Panh L et al (2017) Coronary artery calcification: from crystal to plaque rupture. Arch Cardiovasc Dis 110(10):550–561PubMedCrossRefPubMedCentralGoogle Scholar
  115. Parker BD et al (2010) The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the heart and soul study. Ann Intern Med 152(10):640–648PubMedPubMedCentralCrossRefGoogle Scholar
  116. Patwari P et al (2000) Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. Am J Cardiol 85(5):641–644PubMedCrossRefPubMedCentralGoogle Scholar
  117. Potkin BN et al (1990) Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 81(5):1575–1585PubMedCrossRefPubMedCentralGoogle Scholar
  118. Proudfoot D et al (2000) Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ Res 87(11):1055–1062PubMedCrossRefPubMedCentralGoogle Scholar
  119. Rambhia SH et al (2012) Microcalcifications increase coronary vulnerable plaque rupture potential: a patient-based micro-CT fluid-structure interaction study. Ann Biomed Eng 40(7):1443–1454PubMedCrossRefPubMedCentralGoogle Scholar
  120. Reynolds JL et al (2004) Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 15(11):2857–2867PubMedCrossRefPubMedCentralGoogle Scholar
  121. Richardson PD, Davies MJ, Born GV (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2(8669):941–944PubMedCrossRefPubMedCentralGoogle Scholar
  122. Rodriguez-Granillo GA et al (2005) In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol 46(11):2038–2042PubMedCrossRefPubMedCentralGoogle Scholar
  123. Roijers RB et al (2011) Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries. Am J Pathol 178(6):2879–2887PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ruiz JL et al (2016) Zooming in on the genesis of atherosclerotic plaque microcalcifications. J Physiol 594(11):2915–2927PubMedPubMedCentralCrossRefGoogle Scholar
  125. Russell RR 3rd, Zaret BL (2006) Nuclear cardiology: present and future. Curr Probl Cardiol 31(9):557–629PubMedCrossRefGoogle Scholar
  126. Rutsch F et al (2008) Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circ Cardiovasc Genet 1(2):133–140PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sage AP et al (2011) Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int 79(4):414–422PubMedCrossRefPubMedCentralGoogle Scholar
  128. Sangiorgi G et al (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31(1):126–133PubMedCrossRefGoogle Scholar
  129. Schaar JA et al (2003) Characterizing vulnerable plaque features with intravascular elastography. Circulation 108(21):2636–2641PubMedCrossRefPubMedCentralGoogle Scholar
  130. Schlieper G et al (2016) Vascular calcification in chronic kidney disease: an update. Nephrol Dial Transplant 31(1):31–39PubMedCrossRefGoogle Scholar
  131. Schrijvers DM et al (2005) Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 25(6):1256–1261PubMedCrossRefPubMedCentralGoogle Scholar
  132. Scialla JJ et al (2013) Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int 83(6):1159–1168PubMedPubMedCentralCrossRefGoogle Scholar
  133. Shao JS et al (2007) Vascular bmp Msx2 Wnt signaling and oxidative stress in arterial calcification. Ann N Y Acad Sci 1117:40–50PubMedCrossRefPubMedCentralGoogle Scholar
  134. Sheen CR et al (2015) Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res 30(5):824–836PubMedPubMedCentralCrossRefGoogle Scholar
  135. Sinusas AJ (2010) Molecular imaging in nuclear cardiology: translating research concepts into clinical applications. Q J Nucl Med Mol Imaging 54(2):230–240PubMedPubMedCentralGoogle Scholar
  136. Speer MY et al (2009) Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res 104(6):733–741PubMedPubMedCentralCrossRefGoogle Scholar
  137. St Hilaire C et al (2011) NT5E mutations and arterial calcifications. N Engl J Med 364(5):432–442PubMedPubMedCentralCrossRefGoogle Scholar
  138. Stary HC et al (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Circulation 89(5):2462–2478PubMedCrossRefPubMedCentralGoogle Scholar
  139. Stary HC et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15(9):1512–1531PubMedCrossRefPubMedCentralGoogle Scholar
  140. Strauss HW, Grewal RK, Pandit-Taskar N (2004) Molecular imaging in nuclear cardiology. Semin Nucl Med 34(1):47–55PubMedCrossRefPubMedCentralGoogle Scholar
  141. Tanaka A et al (2008) Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study. Circulation 118(23):2368–2373PubMedCrossRefPubMedCentralGoogle Scholar
  142. Tang D et al (2004) Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models. J Biomech Eng 126(3):363–370PubMedCrossRefPubMedCentralGoogle Scholar
  143. Tang D et al (2005) Local maximal stress hypothesis and computational plaque vulnerability index for atherosclerotic plaque assessment. Ann Biomed Eng 33(12):1789–1801PubMedPubMedCentralCrossRefGoogle Scholar
  144. Tarbell JM (2010) Shear stress and the endothelial transport barrier. Cardiovasc Res 87(2):320–330PubMedPubMedCentralCrossRefGoogle Scholar
  145. Tawakol A et al (2006) In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 48(9):1818–1824PubMedCrossRefPubMedCentralGoogle Scholar
  146. Tonelli M et al (2005) Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112(17):2627–2633PubMedCrossRefPubMedCentralGoogle Scholar
  147. Tsimikas S, Shaw PX (2002) Non-invasive imaging of vulnerable plaques by molecular targeting of oxidized LDL with tagged oxidation-specific antibodies. J Cell Biochem Suppl 39:138–146PubMedCrossRefPubMedCentralGoogle Scholar
  148. Urry DW (1971) Neutral sites for calcium ion binding to elastin and collagen: a charge neutralization theory for calcification and its relationship to atherosclerosis. Proc Natl Acad Sci U S A 68(4):810–814PubMedPubMedCentralCrossRefGoogle Scholar
  149. Vengrenyuk Y et al (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A 103(40):14678–14683PubMedPubMedCentralCrossRefGoogle Scholar
  150. Vengrenyuk Y, Cardoso L, Weinbaum S (2008) Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps. Mol Cell Biomech 5(1):37–47PubMedPubMedCentralGoogle Scholar
  151. Vengrenyuk Y et al (2010) Computational stress analysis of atherosclerotic plaques in ApoE knockout mice. Ann Biomed Eng 38(3):738–747PubMedCrossRefPubMedCentralGoogle Scholar
  152. Villa-Bellosta R, Sorribas V (2011) Calcium phosphate deposition with normal phosphate concentration. Role of pyrophosphate. Circ J 75(11):2705–2710PubMedCrossRefPubMedCentralGoogle Scholar
  153. Villa-Bellosta R et al (2011) Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle. Am J Physiol Heart Circ Physiol 301(1):H61–H68PubMedPubMedCentralCrossRefGoogle Scholar
  154. Villa-Bellosta R et al (2013) Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 127(24):2442–2451PubMedCrossRefPubMedCentralGoogle Scholar
  155. Virmani R et al (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20(5):1262–1275PubMedCrossRefPubMedCentralGoogle Scholar
  156. Virmani R et al (2003) Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol 16(3):267–272PubMedCrossRefPubMedCentralGoogle Scholar
  157. Virmani R et al (2007) The vulnerable atherosclerotic plaque: strategies for diagnosis and management. Blackwell, Malden, MAGoogle Scholar
  158. Watson KE et al (1997) Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation 96(6):1755–1760PubMedCrossRefPubMedCentralGoogle Scholar
  159. Wenk JF (2011) Numerical modeling of stress in stenotic arteries with microcalcifications: a parameter sensitivity study. J Biomech Eng 133(1):014503PubMedCrossRefPubMedCentralGoogle Scholar
  160. Yabushita H et al (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106(13):1640–1645PubMedCrossRefGoogle Scholar
  161. Yahagi K et al (2017) Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler Thromb Vasc Biol 37(2):191–204PubMedCrossRefPubMedCentralGoogle Scholar
  162. Yang F et al (2003) Segmentation of wall and plaque in in vitro vascular MR images. Int J Cardiovasc Imaging 19(5):419–428PubMedCrossRefPubMedCentralGoogle Scholar
  163. Yang H, Curinga G, Giachelli CM (2004) Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro. Kidney Int 66(6):2293–2299PubMedCrossRefPubMedCentralGoogle Scholar
  164. Yao Y, Shahbazian A, Boström KI (2008) Proline and gamma-carboxylated glutamate residues in matrix Gla protein are critical for binding of bone morphogenetic protein-4. Circ Res 102(9):1065–1074PubMedCrossRefGoogle Scholar
  165. Yao Y et al (2010) Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res 107(4):485–494PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yao Y et al (2013) A role for the endothelium in vascular calcification. Circ Res 113(5):495–504PubMedCrossRefPubMedCentralGoogle Scholar
  167. Yao J et al (2015) Serine protease activation essential for endothelial-Mesenchymal transition in vascular calcification. Circ Res 117(9):758–769PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringThe City College of New YorkNew YorkUSA

Personalised recommendations