Advertisement

Regional Heterogeneity in the Regulation of Vasoconstriction in Arteries and Its Role in Vascular Mechanics

  • Sae-Il Murtada
  • Jay D. Humphrey
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1097)

Abstract

Vasoconstriction and vasodilation play important roles in the circulatory system and can be regulated through different pathways that depend on myriad biomolecules. These different pathways reflect the various functions of smooth muscle cell (SMC) contractility within the different regions of the arterial tree and how they contribute to both the mechanics and the mechanobiology. Here, we review the primary regulatory pathways involved in SMC contractility and highlight their regional differences in elastic, muscular, and resistance arteries. In this way, one can begin to assess how these properties affect important biomechanical and mechanobiological functions in the circulatory system in health and disease.

Notes

Acknowledgments

This work was supported, in part, by grants from the NIH: R01 HL105297, U01 HL116323, and R01 HL134712.

References

  1. Akata T, Kanna T, Yoshino J, Takahashi S (2003) Mechanisms of direct inhibitory action of isoflurane on vascular smooth muscle of mesenteric resistance arteries. Anesthesiology 99(3):666–677CrossRefGoogle Scholar
  2. Andreasen D, Friis UG, Uhrenholt TR, Jensen BL, Skøtt O, Hansen PB (2006) Coexpression of voltage-dependent calcium channels Cav1.2, 2.1a, and 2.1b in vascular myocytes. Hypertension 47(4):735–741CrossRefGoogle Scholar
  3. Archer SL, Huang JM, Reeve HL, Hampl V, Tolarová S, Michelakis E, Weir EK (1996) Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ Res 78(3):431–442CrossRefGoogle Scholar
  4. Arner A, Malmqvist U, Uvelius B (1984) Structural and mechanical adaptations in rat aorta in response to sustained changes in arterial pressure. Acta Physiol Scand 122:119–126CrossRefGoogle Scholar
  5. Bakker ENTP, Matlung HL, Bonta P, De Vries CJ, Van Rooijen N, Vanbavel E (2008) Blood flow-dependent arterial remodelling is facilitated by inflammation but directed by vascular tone. Cardiovasc Res 78(2):341–348CrossRefGoogle Scholar
  6. Ball CJ, Wilson DP, Turner SP, Saint DA, Beltrame JF (2009) Heterogeneity of L- and T-channels in the vasculature: rationale for the efficacy of combined L- and T-blockade. Hypertension 53(4):654–660CrossRefGoogle Scholar
  7. Barman SA, Zhu S, White RE (2004) Protein kinase C inhibits BKCa channel activity in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286(1):L149–L155CrossRefGoogle Scholar
  8. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312(5992):315–321CrossRefGoogle Scholar
  9. Bersi MR, Khosravi R, Wujciak AJ, Harrison DG, Humphrey JD (2017) Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. J R Soc Interface 14(136):327CrossRefGoogle Scholar
  10. Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG (2016) Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev 68(2):476–532CrossRefGoogle Scholar
  11. Bulley S, Jaggar JH (2014) Cl channels in smooth muscle cells. Pflugers Arch 466(5):861–872CrossRefGoogle Scholar
  12. Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schroder E, Browning DD, Eaton P (2007) Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317(5843):1393–1397CrossRefGoogle Scholar
  13. Burgoyne JR, Prysyazhna O, Rudyk O, Eaton P (2012) cGMP-dependent activation of protein kinase G precludes disulfide activation: implications for blood pressure control. Hypertension 60(5):1301–1308CrossRefGoogle Scholar
  14. Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the rho/Rac family: regulation, effectors and functions in vivo. BioEssays 29(4):356–370CrossRefGoogle Scholar
  15. Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T, Aubert JF, Michel MC, Yang M, Lembo G, Vecchione C, Mostardini M, Schmidt A, Beermann F, Cotecchia S (1997) Decreased blood pressure response in mice deficient of the alpha1b-adrenergic receptor. Proc Natl Acad Sci U S A 94(21):11589–11594CrossRefGoogle Scholar
  16. Chen L, Xin X, Eckhart AD, Yang N, Faber JE (1995) Regulation of vascular smooth muscle growth by alpha 1-adrenoreceptor subtypes in vitro and in situ. J Biol Chem 270(52):30980–30988CrossRefGoogle Scholar
  17. Chiquet M, Renedo AS, Huber F, Flück M (2003) How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol 22(1):73–80CrossRefGoogle Scholar
  18. Cox RH (1978) Regional variation of series elasticity in canine arterial smooth muscles. Am J Phys 234(18):H542–H551Google Scholar
  19. Cox RH, Folander K, Swanson R (2001) Differential expression of voltage-gated K(+) channel genes in arteries from spontaneously hypertensive and Wistar-Kyoto rats. Hypertension 37(5):1315–1322CrossRefGoogle Scholar
  20. Criddle DN, de Moura RS, Greenwood IA, Large WA (1996) Effect of niflumic acid on noradrenaline-induced contractions of the rat aorta. Br J Pharmacol 118(4):1065–1071CrossRefGoogle Scholar
  21. Criddle DN, de Moura RS, Greenwood IA, Large WA (1997) Inhibitory action of niflumic acid on noradrenaline- and 5-hydroxytryptamine-induced pressor responses in the isolated mesenteric vascular bed of the rat. Br J Pharmacol 120(5):813–818CrossRefGoogle Scholar
  22. Dajnowiec D, Langille BL (2007) Arterial adaptations to chronic changes in haemodynamic function: coupling vasomotor tone to structural remodelling. Clin Sci 113(1):15–23CrossRefGoogle Scholar
  23. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6(1):16–26CrossRefGoogle Scholar
  24. Devine CE, Somlyo AV, Somlyo AP (1972) Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol 52(3):690–718CrossRefGoogle Scholar
  25. Dimopoulos GJ, Semba S, Kitazawa K, Eto M, Kitazawa T (2007) Ca2-dependent rapid Ca2 sensitization of contraction in arterial smooth muscle. Circ Res 100(1):121–129CrossRefGoogle Scholar
  26. Doyle JJ, Doyle AJ, Wilson NK, Habashi JP, Bedja D, Whitworth RE, Lindsay ME, Schoenhoff F, Myers L, Huso N, Bachir S, Squires O, Rusholme B, Ehsan H, Huso D, Thomas CJ, Caulfield MJ, Van Eyk JE, Judge DP, Dietz HC, Farrar C, Ravekes W, Dietz HC, Lurman K, Holmes KW, Habashi J, Milewicz DM, Prakash SK, Terry M, Lemaire SA, Morris SA, Volguina I, Maslen CL, Song HK, Silberbach GM, Pyeritz RE, Bavaria JE, Milewski K, Parker A, Devereux RB, Weinsaft JW, Roman MJ, Latortue T, Shohet R, Kennedy F, McDonnell N, Griswold B, Asch FM, Weissman NJ, Eagle KA, Tolunay HE, Desvigne-Nickens P, Stylianou MP, Mitchell M, Tseng H, Kroner BL, Hendershot T, Whitworth R, Ringer D, Dietz HC, McCallion A, Loeys B, Van Laer L, Eriksson P, Franco-Cereceda A, Mertens L, Mittal S, Mohamed SA, Andelfinger G, Dietz HC (2015) A deleterious gene-by-environment interaction imposed by calcium channel blockers in Marfan syndrome. elife 4:1–18CrossRefGoogle Scholar
  27. Ferruzzi J, Bersi MR, Uman S, Yanagisawa H, Humphrey JD (2015) Decreased elastic energy storage, not increased material stiffness, characterizes central artery dysfunction in fibulin-5 deficiency independent of sex. J Biomech Eng 137(3):31007CrossRefGoogle Scholar
  28. Ferruzzi J, Murtada S-I, Li G, Jiao Y, Uman S, Ting MYL, Tellides G, Humphrey JD (2016) Pharmacologically improved contractility protects against aortic dissection in mice with disrupted transforming growth factor-?? Signaling despite compromised extracellular matrix properties. Arterioscler Thromb Vasc Biol 36(5):919–927CrossRefGoogle Scholar
  29. Fisher SA (2010) Vascular smooth muscle phenotypic diversity and function. Physiol Genomics 42(3):169–187CrossRefGoogle Scholar
  30. Francis SH, Busch JL, Corbin JD, Sibley D (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62(3):525–563CrossRefGoogle Scholar
  31. Ghisdal P, Vandenberg G, Morel N (2003) Rho-dependent kinase is involved in agonist-activated calcium entry in rat arteries. J Physiol 551(Pt 3):855–867CrossRefGoogle Scholar
  32. Haga JH, Li Y-SJ, Chien S (2007) Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J Biomech 40(5):947–960CrossRefGoogle Scholar
  33. Herring BP, El-Mounayri O, Gallagher PJ, Yin F, Zhou J (2006) Regulation of myosin light chain kinase and telokin expression in smooth muscle tissues. Am J Physiol Cell Physiol 291(5):C817–C827CrossRefGoogle Scholar
  34. Hill-Eubanks DC, Werner ME, Heppner TJ, Nelson MT (2011) Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol 3(9):a004549CrossRefGoogle Scholar
  35. Hong F, Haldeman BD, Jackson D, Carter M, Baker JE, Cremo CR (2011) Biochemistry of smooth muscle myosin light chain kinase. Arch Biochem Biophys 510(2):135–146CrossRefGoogle Scholar
  36. Hosoda C, Koshimizu T-A, Tanoue A, Nasa Y, Oikawa R, Tomabechi T, Fukuda S, Shinoura H, Oshikawa S, Takeo S, Kitamura T, Cotecchia S, Tsujimoto G (2005) Two alpha1-adrenergic receptor subtypes regulating the vasopressor response have differential roles in blood pressure regulation. Mol Pharmacol 67(3):912–922CrossRefGoogle Scholar
  37. Humphrey JD (2002) Cardiovascular solid mechanics. Springer, New York, NYCrossRefGoogle Scholar
  38. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802–812CrossRefGoogle Scholar
  39. Humphrey JD, Schwartz MA, Tellides G, Milewicz DM (2015) Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ Res 116(8):1448–1461CrossRefGoogle Scholar
  40. Humphrey JD, Harrison DG, Figueroa CA, Lacolley P, Laurent S (2016) Central artery stiffness in hypertension and aging: a problem with cause and consequence. Circ Res 118(3):379–381CrossRefGoogle Scholar
  41. Intengan HD, Thibault G, Li JS, Schiffrin EL (1999) Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats: effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation 100(22):2267–2275CrossRefGoogle Scholar
  42. Jackson WF (2000) Ion channels and vascular tone. Hypertension 35(1 Pt 2):173–178CrossRefGoogle Scholar
  43. Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG (2008) Smooth muscle signalling pathways in health and disease. J Cell Mol Med 12(6A):2165–2180CrossRefGoogle Scholar
  44. Kitazawa T, Kitazawa K (2012) Size-dependent heterogeneity of contractile Ca2+ sensitization in rat arterial smooth muscle. J Physiol 590(Pt 21):5401–5423CrossRefGoogle Scholar
  45. Kitazawa T, Semba S, Huh YH, Kitazawa K, Eto M (2009) Nitric oxide-induced biphasic mechanism of vascular relaxation via dephosphorylation of CPI-17 and MYPT1. J Physiol 587(Pt 14):3587–3603CrossRefGoogle Scholar
  46. Kleinbongard P, Schleiger A, Heusch G (2013) Characterization of vasomotor responses in different vascular territories of C57BL/6J mice. Exp Biol Med (Maywood) 238(10):1180–1191CrossRefGoogle Scholar
  47. Knepper SM, Buckner SA, Brune ME, DeBernardis JF, Meyer MD, Hancock AA (1995) A-61603, a potent alpha 1-adrenergic receptor agonist, selective for the alpha 1A receptor subtype. J Pharmacol Exp Ther 274(1):97–103PubMedGoogle Scholar
  48. Ko EA, Han J, Jung ID, Park WS (2008) Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res 44(2):65–81CrossRefGoogle Scholar
  49. Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, Hartshorne DJ, Nakano T (2000) Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by rho-kinase. FEBS Lett 475(3):197–200CrossRefGoogle Scholar
  50. Leloup AJA, Fransen P (2015) Elastic and muscular arteries differ in structure, basal NO production and voltage-gated Ca (2+)-channels. Front Physiol 6:1–9CrossRefGoogle Scholar
  51. Leung FP, Yung LM, Yao X, Laher I, Huang Y (2008) Store-operated calcium entry in vascular smooth muscle. Br J Pharmacol 153(5):846–857CrossRefGoogle Scholar
  52. Lincoln TM (2007) Myosin phosphatase regulatory pathways: different functions or redundant functions? Circ Res 100(1):10–12CrossRefGoogle Scholar
  53. Lincoln TM, Dey N, Sellak H (2001) Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 91(3):1421–1430CrossRefGoogle Scholar
  54. Martens JR, Gelband CH (1996) Alterations in rat interlobar artery membrane potential and K+ channels in genetic and nongenetic hypertension. Circ Res 79(2):295–301CrossRefGoogle Scholar
  55. Martinez-Lemus LA, Hill MA, Meininger GA (2009) The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology 24(1):45–57CrossRefGoogle Scholar
  56. Martinsen A, Dessy C, Morel N (2014) Regulation of calcium channels in smooth muscle: new insights into the role of myosin light chain kinase. Channels (Austin) 8(5):402–413CrossRefGoogle Scholar
  57. Mellander S (1970) Systemic circulation: local control. Annu Rev Physiol 32:313–344CrossRefGoogle Scholar
  58. Michelotti GA, Price DT, Schwinn DA (2000) Alpha 1-adrenergic receptor regulation: basic science and clinical implications. Pharmacol Ther 88(3):281–309CrossRefGoogle Scholar
  59. Milnor WR (1990) Cardiovascular physiology. Oxford University Press, Oxford, UKGoogle Scholar
  60. Mueed I, Bains P, Zhang L, Macleod KM (2004) Differential participation of protein kinase C and rho kinase in ␣ 1 -adrenoceptor mediated contraction in rat arteries 1. Can J Physiol Pharmacol 902:895–902CrossRefGoogle Scholar
  61. Murtada S-I, Lewin S, Arner A, Humphrey JD (2016a) Adaptation of active tone in the mouse descending thoracic aorta under acute changes in loading. Biomech Model Mechanobiol 15(3):579–592CrossRefGoogle Scholar
  62. Murtada S-I, Ferruzzi J, Yanagisawa H, Humphrey JD (2016b) Reduced biaxial contractility in the descending thoracic aorta of fibulin-5 deficient mice. J Biomech Eng 138(5):51008CrossRefGoogle Scholar
  63. Murtada S-I, Humphrey JD, Holzapfel GA (2017) Multiscale and multiaxial mechanics of vascular smooth muscle. Biophys J 113(3):714–727CrossRefGoogle Scholar
  64. Nelson MT, Patlak JB, Worley JF, Standen NB (1990) Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Phys 259(1 Pt 1):C3–C18CrossRefGoogle Scholar
  65. Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81(4):1415–1459CrossRefGoogle Scholar
  66. Nixon GF, Mignery GA, Somlyo AV (1994) Immunogold localization of inositol 1,4,5-trisphosphate receptors and characterization of ultrastructural features of the sarcoplasmic reticulum in phasic and tonic smooth muscle. J Muscle Res Cell Motil 15(6):682–700CrossRefGoogle Scholar
  67. Orr AW, Hastings NE, Blackman BR, Wamhoff BR (2010) Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res 47(2):168–180CrossRefGoogle Scholar
  68. Poduri A, Owens AP, Howatt DA, Moorleghen JJ, Balakrishnan A, Cassis LA, Daugherty A (2012) Regional variation in aortic AT1b receptor mRNA abundance is associated with contractility but unrelated to atherosclerosis and aortic aneurysms. PLoS One 7(10):1–8CrossRefGoogle Scholar
  69. Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74(3):595–636CrossRefGoogle Scholar
  70. Rensen SSM, Doevendans PAFM, van Eys GJJM (2007) Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 15(3):100–108CrossRefGoogle Scholar
  71. Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, Jodar M, Moro C, Offermanns S, Feng Y, Demolombe S, Patel A, Honoré E (2015) Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep 13(6):1161–1171CrossRefGoogle Scholar
  72. Rokosh DG, Simpson PC (2002) Knockout of the alpha 1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci U S A 99(14):9474–9479CrossRefGoogle Scholar
  73. Rudner XL, Berkowitz DE, Booth JV, Funk BL, Cozart KL, D’Amico EB, El-Moalem H, Page SO, Richardson CD, Winters B, Marucci L, Schwinn DA (1999) Subtype specific regulation of human vascular alpha(1)-adrenergic receptors by vessel bed and age. Circulation 100(23):2336–2343CrossRefGoogle Scholar
  74. Sakurada S, Takuwa N, Sugimoto N, Wang Y, Seto M, Sasaki Y, Takuwa Y (2003) Ca2+−dependent activation of rho and rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ Res 93(6):548–556CrossRefGoogle Scholar
  75. Salamanca DA, Khalil RA (2005) Protein kinase C isoforms as specific targets for modulation of vascular smooth muscle function in hypertension. Biochem Pharmacol 70(11):1537–1547CrossRefGoogle Scholar
  76. Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252(5007):802–808CrossRefGoogle Scholar
  77. Sobey CG (2001) Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol 21(1):28–38CrossRefGoogle Scholar
  78. Somlyo AP, Somlyo AV (1968) Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol Rev 20(4):197–272PubMedGoogle Scholar
  79. Somlyo AP, Somlyo AV (1994) Smooth muscle—excitation-contraction coupling, contractile regulation, and the cross-bridge cycle. Alcohol Clin Exp Res 18(1):138–143CrossRefGoogle Scholar
  80. Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83(4):1325–1358CrossRefGoogle Scholar
  81. Su W, Xie Z, Liu S, Calderon LE, Guo Z, Gong MC (2013) Smooth muscle-selective CPI-17 expression increases vascular smooth muscle contraction and blood pressure. Am J Physiol Heart Circ Physiol 305(1):H104–H113CrossRefGoogle Scholar
  82. Sukriti S, Tauseef M, Yazbeck P, Mehta D (2014) Mechanisms regulating endothelial permeability. Pulm Circ 4(4):535–551CrossRefGoogle Scholar
  83. Tang DD, Anfinogenova Y (2008) Physiologic properties and regulation of the actin cytoskeleton in vascular smooth muscle. J Cardiovasc Pharmacol Ther 13(2):130–140CrossRefGoogle Scholar
  84. Tanoue A, Nasa Y, Koshimizu T, Shinoura H, Oshikawa S, Kawai T, Sunada S, Takeo S, Tsujimoto G (2002) The alpha(1D)-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J Clin Invest 109(6):765–775CrossRefGoogle Scholar
  85. Tuna BG, Bakker ENTP, VanBavel E (2013) Relation between active and passive biomechanics of small mesenteric arteries during remodeling. J Biomech 46(8):1420–1426CrossRefGoogle Scholar
  86. Valentin A, Cardamone L, Baek S, Humphrey J (2009) Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J R Soc Interface 6(32):293–306CrossRefGoogle Scholar
  87. Wang Y, Zheng XR, Riddick N, Bryden M, Baur W, Zhang X, Surks HK (2009) ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells. Circ Res 104(4):531–540CrossRefGoogle Scholar
  88. Wang L, Guo DC, Cao J, Gong L, Kamm KE, Regalado E, Li L, Shete S, He WQ, Zhu MS, Offermanns S, Gilchrist D, Elefteriades J, Stull JT, Milewicz DM (2010) Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet 87(5):701–707CrossRefGoogle Scholar
  89. Wede OK, Löfgren M, Li Z, Paulin D, Arner A (2002) Mechanical function of intermediate filaments in arteries of different size examined using desmin deficient mice. J Physiol 540(Pt 3):941–949CrossRefGoogle Scholar
  90. Williams TJ, Blue DR, Daniels DV, Davis B, Elworthy T, Gever JR, Kava MS, Morgans D, Padilla F, Tassa S, Vimont RL, Chapple CR, Chess-Williams R, Eglen RM, Clarke DE, Ford AP (1999) In vitro alpha1-adrenoceptor pharmacology of Ro 70-0004 and RS-100329, novel alpha1A-adrenoceptor selective antagonists. Br J Pharmacol 127(1):252–258CrossRefGoogle Scholar
  91. Woodsome TP, Eto M, Everett A, Brautigan DL, Kitazawa T (2001) Expression of CPI-17 and myosin phosphatase correlates with Ca2+ sensitivity of protein kinase C-induced contraction in rabbit smooth muscle. J Physiol 535(2):553–564CrossRefGoogle Scholar
  92. Wynne BM, Chiao C-W, Webb RC (2009) Vascular smooth muscle cell signaling mechanisms for contraction to angiotensin II and endothelin-1. J Am Soc Hypertens 3(2):84–95CrossRefGoogle Scholar
  93. Yamamoto Y, Koike K (2001) Alpha(1)-adrenoceptor subtypes in the mouse mesenteric artery and abdominal aorta. Br J Pharmacol 134(5):1045–1054CrossRefGoogle Scholar
  94. Zalk R, Lehnart SE, Marks AR (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76:367–385CrossRefGoogle Scholar
  95. Zhou Y, Chen Y, Dirksen WP, Morris M, Periasamy M (2003) AT1b receptor predominantly mediates contractions in major mouse blood vessels. Circ Res 93(11):1089–1094CrossRefGoogle Scholar
  96. Zhou Y, Dirksen WP, Zweier JL, Periasamy M (2004) Endothelin-1-induced responses in isolated mouse vessels: the expression and function of receptor types. Am J Physiol Heart Circ Physiol 287(2): H573–H578CrossRefGoogle Scholar
  97. Zhou Y, Varadharaj S, Zhao X, Parinandi N, Flavahan NA, Zweier JL (2005) Acetylcholine causes endothelium-dependent contraction of mouse arteries. Am J Physiol Heart Circ Physiol 289(3): H1027–H1032CrossRefGoogle Scholar
  98. Zhou Y, Dirksen WP, Babu GJ, Periasamy M (2007) Differential vasoconstrictions induced by angiotensin II: role of AT1 and AT2 receptors in isolated C57BL/6J mouse blood vessels. Am J Physiol Heart Circ Physiol 43210:2797–2803Google Scholar
  99. Zygmunt PM, Ryman T, Högestätt ED (1995) Regional differences in endothelium-dependent relaxation in the rat: contribution of nitric oxide and nitric oxide-independent mechanisms. Acta Physiol Scand 155(3):257–266CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringYale UniversityNew HavenUSA

Personalised recommendations