Advertisement

Modeling Cell Adhesion and Extravasation in Microvascular System

  • L. L. Xiao
  • W. W. Yan
  • Y. Liu
  • S. Chen
  • B. M. Fu
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1097)

Abstract

The blood flow behaviors in the microvessels determine the transport modes and further affect the metastasis of circulating tumor cells (CTCs). Much biochemical and biological efforts have been made on CTC metastasis; however, precise experimental measurement and accurate theoretical prediction on its mechanical mechanism are limited. To complement these, numerical modeling of a CTC extravasation from the blood circulation, including the steps of adhesion and transmigration, is discussed in this chapter. The results demonstrate that CTCs prefer to adhere at the positive curvature of curved microvessels, which is attributed to the positive wall shear stress/gradient. Then, the effects of particulate nature of blood on CTC adhesion are investigated and are found to be significant in the microvessels. Furthermore, the presence of red blood cell (RBC) aggregates is also found to promote the CTC adhesion by providing an additional wall-directed force. Finally, a single cell passing through a narrow slit, mimicking CTC transmigration, was examined under the effects of cell deformability. It showed that the cell shape and surface area increase play a more important role than the cell elasticity in cell transit across the narrow slit.

Notes

Acknowledgments

Supports given by HKRGC PolyU 5202/13E, PolyU G-YBG9 and G-UACM, National Natural Science Foundation of China (Grant No. 51276130), and NIH SC1 CA153325-01 are gratefully acknowledged.

References

  1. Abbitt KB, Nash GB (2003) Rheological properties of the blood influencing selectin-mediated adhesion of flowing leukocytes. Am J Physiol Heart Circ Physiol 285:H229–H240CrossRefPubMedGoogle Scholar
  2. Albelda SM, Smith CW, Ward PA (1994) Adhesion molecules and inflammatory injury. FASEB J 8: 504–512CrossRefPubMedGoogle Scholar
  3. Au SH et al (2016) Clusters of circulating tumor cells traverse capillary-sized vessels. Proc Natl Acad Sci U S A 113:4947–4952.  https://doi.org/10.1073/pnas.1524448113 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Behr J, Gaskin B, Fu C, Dong C, Kunz R (2015) Localized modeling of biochemical and flow interactions during cancer cell adhesion. PLoS One 10:e0136926.  https://doi.org/10.1371/journal.pone.0136926 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627CrossRefPubMedGoogle Scholar
  6. Bendas G, Borsig L (2012) Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol 2012:676731.  https://doi.org/10.1155/2012/676731 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Boey SK, Boal DH, Discher DE (1998) Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys J 75:1573–1583CrossRefPubMedGoogle Scholar
  8. Caputo KE, Hammer DA (2005) Effect of microvillus deformability on leukocyte adhesion explored using adhesive dynamics simulations. Biophys J 89:187–200.  https://doi.org/10.1529/biophysj.104.054171 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Chang KC, Hammer DA (1996) Influence of direction and type of applied force on the detachment of macromolecularly-bound particles from surfaces. Langmuir 12:2271–2282.  https://doi.org/10.1021/La950690y CrossRefGoogle Scholar
  10. Chang KC, Tees DFJ, Hammer DA (2000) The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc Natl Acad Sci U S A 97:11262–11267.  https://doi.org/10.1073/pnas.200240897 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Chaw KC, Manimaran M, Tay EH, Swaminathan S (2007) Multi-step microfluidic device for studying cancer metastasis. Lab Chip 7:1041–1047CrossRefPubMedGoogle Scholar
  12. Chen MB, Whisler JA, Jeon JS, Kamm RD (2013) Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr Biol 5:1262–1271CrossRefGoogle Scholar
  13. Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783CrossRefPubMedGoogle Scholar
  14. Dembo M, Torney DC, Saxman K, Hammer D (1988) The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond B Biol Sci 234:55–83.  https://doi.org/10.1098/rspb.1988.0038 CrossRefPubMedGoogle Scholar
  15. Dewitt S, Hallett M (2007) Leukocyte membrane “expansion”: a central mechanism for leukocyte extravasation. J Leukoc Biol 81:1160–1164CrossRefPubMedGoogle Scholar
  16. Dong C, Slattery MJ, Liang S, Peng HH (2005) Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Molecular Cell Biomech 2:145–159Google Scholar
  17. Fan J, Fu BM (2015) Quantification of malignant breast cancer cell MDA-MB-231 transmigration across brain and lung microvascular endothelium. Ann Biomed Eng 44(7):2189–2201.  https://doi.org/10.1007/s10439-015-1517-y CrossRefPubMedCentralPubMedGoogle Scholar
  18. Fedosov DA, Gompper G (2014) White blood cell margination in microcirculation. Soft Matter 10: 2961–2970CrossRefPubMedGoogle Scholar
  19. Fedosov DA, Caswell B, Karniadakis GE (2010a) Systematic coarse-graining of spectrin-level red blood cell models. Comput Methods Appl Mech Eng 199: 1937–1948CrossRefGoogle Scholar
  20. Fedosov DA, Caswell B, Popel AS, Karniadakis GE (2010b) Blood flow and cell-free layer in microvessels. Microcirculation 17:615–628CrossRefPubMedGoogle Scholar
  21. Freund JB (2013) The flow of red blood cells through a narrow spleen-like slit. Phys Fluids 25:110807CrossRefGoogle Scholar
  22. Freund JB (2014) Numerical simulation of flowing blood cells. Annu Rev Fluid Mech 46:67.  https://doi.org/10.1146/annurev-fluid-010313-141349 CrossRefGoogle Scholar
  23. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer-Verlag, New YorkCrossRefGoogle Scholar
  24. Gompper G, Fedosov DA (2016) Modeling microcirculatory blood flow: current state and future perspectives. WIREs Syst Biol Med 8:157–168.  https://doi.org/10.1002/wsbm.1326 CrossRefGoogle Scholar
  25. Guo P, Cai B, Lei M, Liu Y, Fu BMM (2014) Differential arrest and adhesion of tumor cells and microbeads in the microvasculature. Biomech Model Mechanobiol 13:537–550.  https://doi.org/10.1007/s10237-013-0515-y CrossRefPubMedGoogle Scholar
  26. Haier J, Nicolson GL (2001) Tumor cell adhesion under hydrodynamic conditions of fluid flow. APMIS 109:241–262.  https://doi.org/10.1034/j.1600-0463.2001.d01-118.x CrossRefPubMedGoogle Scholar
  27. Hammer DA, Apte SM (1992) Simulation of cell rolling and adhesion on surfaces in shear-flow - general results and analysis of selectin-mediated neutrophil adhesion. Biophys J 63:35–57CrossRefPubMedGoogle Scholar
  28. Hong YP, Fang F, Zhang Q (2016) Circulating tumor cell clusters: what we know and what we expect (review). Int J Oncol 49:2206–2216CrossRefPubMedGoogle Scholar
  29. Imai Y, Omori T, Shimogonya Y, Yamaguchi T, Ishikawa T (2016) Numerical methods for simulating blood flow at macro, micro, and multi scales. J Biomech 49:2221–2228.  https://doi.org/10.1016/j.jbiomech.2015.11.047 CrossRefPubMedGoogle Scholar
  30. Ju M, Ye SS, Namgung B, Cho S, Low HT, Leo HL, Kim S (2015) A review of numerical methods for red blood cell flow simulation. Comput Methods Biomech Biomed Engin 18:130–140.  https://doi.org/10.1080/10255842.2013.783574 CrossRefPubMedGoogle Scholar
  31. King MR, Hammer DA (2001) Multiparticle adhesive dynamics: hydrodynamic recruitment of rolling leukocytes. Proc Natl Acad Sci USA 98:14919–14924.  https://doi.org/10.1073/pnas.261272498 CrossRefPubMedGoogle Scholar
  32. King MR et al (2015) A physical sciences network characterization of circulating tumor cell aggregate transport. Am J Physiol Cell Physiol 308:C792–C802.  https://doi.org/10.1152/ajpcell.00346.2014 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Koumoutsakos P, Pivkin I, Milde F (2013) The fluid mechanics of cancer and its therapy. Annu Rev Fluid Mech 45(45):325–355.  https://doi.org/10.1146/annurev-fluid-120710-101102 CrossRefGoogle Scholar
  34. Kunz RF, Gaskin BJ, Li Q, Davanloo-Tajbakhsh S, Dong C (2015) Multi-scale biological and physical modelling of the tumour micro-environment. Drug Discov Today Dis Model 16:7–15.  https://doi.org/10.1016/j.ddmod.2015.03.001 CrossRefGoogle Scholar
  35. Leong FY, Li QS, Lim CT, Chiam KH (2011) Modeling cell entry into a micro-channel. Biomech Model Mechanobiol 10:755–766CrossRefPubMedGoogle Scholar
  36. Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys J 88:3707–3719.  https://doi.org/10.1529/biophysj.104.047332 CrossRefPubMedCentralPubMedGoogle Scholar
  37. Li XJ, Popel AS, Karniadakis GE (2012) Blood-plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Phys Biol 9:026010CrossRefPubMedGoogle Scholar
  38. Li X, Peng Z, Lei H, Dao M, Karniadakis GE (2014) Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model. Philos Transact A Math Phys Eng Sci 372:20130389.  https://doi.org/10.1098/rsta.2013.0389 CrossRefGoogle Scholar
  39. Liu YL, Liu WK (2006) Rheology of red blood cell aggregation by computer simulation. J Comput Phys 220:139–154.  https://doi.org/10.1016/j.jcp.2006.05.010 CrossRefGoogle Scholar
  40. Liu Q, Mirc D, Fu BM (2008) Mechanical mechanisms of thrombosis in intact bent microvessels of rat mesentery. J Biomech 41:2726–2734CrossRefPubMedGoogle Scholar
  41. Maheswaran S, Haber DA (2010) Circulating tumor cells: a window into cancer biology and metastasis. Curr Opin Genet Dev 20:96–99.  https://doi.org/10.1016/j.gde.2009.12.002 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Mierke CT (2011) Cancer cells regulate biomechanical properties of human microvascular endothelial cells. J Biol Chem 286:40025–40037CrossRefPubMedGoogle Scholar
  43. Mierke CT (2012) Endothelial cell's biomechanical properties are regulated by invasive cancer cells. Mol BioSyst 8:1639–1649CrossRefPubMedGoogle Scholar
  44. Mitchell MJ, King MR (2014) Physical biology in cancer. 3. The role of cell glycocalyx in vascular transport of circulating tumor cells. Am J Phys Cell Phys 306:C89–C97.  https://doi.org/10.1152/ajpcell.00285.2013 CrossRefGoogle Scholar
  45. Munn LL, Dupin MM (2008) Blood cell interactions and segregation in flow. Ann Biomed Eng 36:534–544CrossRefPubMedGoogle Scholar
  46. Omori T, Hosaka H, Imai Y, Yamaguchi T, Ishikawa T (2014) Numerical analysis of a red blood cell flowing through a thin micropore. Phys Rev E 89:013008CrossRefGoogle Scholar
  47. Park S, Ang RR, Duffy SP, Bazov J, Chi KN, Black PC, Ma HS (2014) Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells. PLoS One 9:e85264CrossRefPubMedGoogle Scholar
  48. Pearson MJ, Lipowsky HH (2000) Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery. Am J Physiol Heart Circ Physiol 279:H1460–H1471CrossRefPubMedGoogle Scholar
  49. Pivkin IV, Karniadakis GE (2008) Accurate coarse-grained modeling of red blood cells. Phys Rev Lett 101:118105CrossRefPubMedGoogle Scholar
  50. Pozrikidis C (2001) Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J Fluid Mech 440:269–291CrossRefGoogle Scholar
  51. Pozrikidis C (2003) Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng 31:1194–1205.  https://doi.org/10.1114/1.1617985 CrossRefPubMedGoogle Scholar
  52. Pries AR, Neuhaus D, Gaehtgens P (1992) Blood-viscosity in tube flow - dependence on diameter and hematocrit. Am J Phys 263:H1770–H1778Google Scholar
  53. Quinn DJ, Pivkin I, Wong SY, Chiam KH, Dao M, Karniadakis GE, Suresh S (2011) Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems. Ann Biomed Eng 39:1041–1050CrossRefPubMedGoogle Scholar
  54. Reinke W, Gaehtgens P, Johnson PC (1987) Blood-viscosity in small tubes - effect of shear rate, aggregation, and sedimentation. Am J Phys 253:H540–H547Google Scholar
  55. Rejniak KA (2012) Investigating dynamical deformations of tumor cells in circulation: predictions from a theoretical model. Front Oncol 2:111.  https://doi.org/10.3389/fonc.2012.00111 CrossRefPubMedCentralPubMedGoogle Scholar
  56. Shao JY, Xu G (2007) The adhesion between a microvillus-bearing cell and a ligand-coated substrate: a Monte Carlo study. Ann Biomed Eng 35:397–407.  https://doi.org/10.1007/s10439-006-9221-6 CrossRefPubMedGoogle Scholar
  57. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration - the multistep paradigm. Cell 76:301–314.  https://doi.org/10.1016/0092-8674(94)90337-9 CrossRefPubMedGoogle Scholar
  58. Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J, Shattil S, Klemke R (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123: 2332–2341CrossRefPubMedGoogle Scholar
  59. Stroka KM, Konstantopoulos K (2014) Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration. Am J Physiol Cell Physiol 306:C98–C109.  https://doi.org/10.1152/ajpcell.00289.2013 CrossRefPubMedGoogle Scholar
  60. Sugihara-Seki M, Fu BMM (2005) Blood flow and permeability in microvessels. Fluid Dyn Res 37:82–132CrossRefGoogle Scholar
  61. Sun CH, Munn LL (2005) Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis. Biophys J 88:1635–1645CrossRefPubMedGoogle Scholar
  62. Sun C, Munn LL (2006) Influence of erythrocyte aggregation on leukocyte margination in postcapillary expansions: a lattice Boltzmann analysis. Physica A 362:191–196.  https://doi.org/10.1016/j.physa.2005.09.027 CrossRefGoogle Scholar
  63. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438CrossRefPubMedGoogle Scholar
  64. Takeishi N, Imai Y, Nakaaki K, Yamaguchi T, Ishikawa T (2014) Leukocyte margination at arteriole shear rate. Physiol Rep 2:e12037.  https://doi.org/10.14814/phy2.12037 CrossRefPubMedCentralPubMedGoogle Scholar
  65. Takeishi N, Imai Y, Yamaguchi T, Ishikawa T (2015) Flow of a circulating tumor cell and red blood cells in microvessels. Phys Rev E 92:063011CrossRefGoogle Scholar
  66. Takeishi N, Imai Y, Ishida S, Omori T, Kamm RD, Ishikawa T (2016) Cell adhesion during bullet motion in capillaries. Am J Physiol Heart Circ Physiol 311:H395–H403CrossRefPubMedGoogle Scholar
  67. Vahidkhah K, Fatouraee N (2012) Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method. Int J Numer Methods Biomed Eng 28:239–256.  https://doi.org/10.1002/cnm.1463 CrossRefGoogle Scholar
  68. Wang JK, Slattery MJ, Hoskins MH, Liang SL, Dong C, Du Q (2006) Monte Carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Math Biosci Eng 3:683–696CrossRefPubMedGoogle Scholar
  69. Weiss L (1982) Metastatic inefficiency. Pathol Res Pract 176:86–86Google Scholar
  70. Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11:512–522.  https://doi.org/10.1038/nrc3080 CrossRefPubMedCentralPubMedGoogle Scholar
  71. Wu TH, Feng JJ (2013) Simulation of malaria-infected red blood cells in microfluidic channels: passage and blockage. Biomicrofluidics 7:044115CrossRefGoogle Scholar
  72. Xiao LL, Liu Y, Chen S, Fu BM (2016a) Numerical simulation of a single cell passing through a narrow slit. Biomech Model Mechanobiol 15:1655–1667CrossRefPubMedGoogle Scholar
  73. Xiao LL, Liu Y, Chen S, Fu BM (2016b) Simulation of deformation and aggregation of two red blood cells in a stenosed microvessel by dissipative particle dynamics. Cell Biochem Biophys 74:513–525.  https://doi.org/10.1007/s12013-016-0765-2 CrossRefPubMedGoogle Scholar
  74. Xiao LL, Liu Y, Chen S, Fu BM (2017) Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels. Biomech Model Mechanobiol 16:597–610.  https://doi.org/10.1007/s10237-016-0839-5 CrossRefPubMedGoogle Scholar
  75. Yan WW, Liu Y, Fu BM (2010) Effects of curvature and cell-cell interaction on cell adhesion in microvessels. Biomech Model Mechanobiol 9:629–640.  https://doi.org/10.1007/s10237-010-0202-1 CrossRefPubMedGoogle Scholar
  76. Yan WW, Cai B, Liu Y, Fu BM (2012) Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels. Biomech Model Mechanobiol 11:641–653.  https://doi.org/10.1007/s10237-011-0339-6 CrossRefPubMedGoogle Scholar
  77. Yan WW, Liu Y, Fu BM (2016) LBM simulations on the influence of endothelial SGL structure on cell adhesion in the micro-vessels. Comp Math Appl  https://doi.org/10.1016/j.camwa.2016.07.005
  78. Yen RT, Fung YC (1978) Effect of velocity distribution on red-cell distribution in capillary blood-vessels. Am J Phys 235:H251–H257CrossRefGoogle Scholar
  79. Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382.  https://doi.org/10.1083/jcb.201010021 CrossRefPubMedCentralPubMedGoogle Scholar
  80. Zhang J, Johnson PC, Popel AS (2008) Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J Biomech 41:47–55.  https://doi.org/10.1016/j.jbiomech.2007.07.020 CrossRefPubMedGoogle Scholar
  81. Zhang ZF, Xu J, Hong B, Chen XL (2014) The effects of 3D channel geometry on CTC passing pressure - towards deformability-based cancer cell separation. Lab Chip 14:2576–2584CrossRefPubMedGoogle Scholar
  82. Zhang L, Zeng M, Fu BM (2016) Inhibition of endothelial nitric oxide synthase decreases breast cancer cell MDA-MB-231 adhesion to intact microvessels under physiological flows. Am J Phys Heart Circ Phys 310(11):H1735–H1747.  https://doi.org/10.1152/ajpheart.00109.2016 CrossRefGoogle Scholar
  83. Zhao H, Isfahani AHG, Olson LN, Freund JB (2010) A spectral boundary integral method for flowing blood cells. J Comput Phys 229:3726–3744.  https://doi.org/10.1016/j.jcp.2010.01.024 CrossRefGoogle Scholar
  84. Zhu C (2000) Kinetics and mechanics of cell adhesion. J Biomech 33:23–33.  https://doi.org/10.1016/S0021-9290(99)00163-3 CrossRefPubMedGoogle Scholar
  85. Zhu C, Bao G, Wang N (2000) Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng 2:189–226.  https://doi.org/10.1146/annurev.bioeng.2.1.189 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • L. L. Xiao
    • 1
  • W. W. Yan
    • 2
  • Y. Liu
    • 3
  • S. Chen
    • 4
  • B. M. Fu
    • 5
  1. 1.College of Automotive Engineering, Shanghai University of Engineering ScienceShanghaiChina
  2. 2.College of Metrology and Measurement Engineering, China Jiliang UniversityHangzhouChina
  3. 3.Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityKowloonChina
  4. 4.School of Aerospace Engineering and Applied Mechanics, Tongji UniversityShanghaiChina
  5. 5.Department of Biomedical EngineeringThe City College of the City University of New YorkNew YorkUSA

Personalised recommendations