Advertisement

Tumor Metastasis in the Microcirculation

  • Bingmei M. Fu
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1097)

Abstract

Tumor cell metastasis through blood circulation is a complex process and is one of the great challenges in cancer research as metastatic spread is responsible for ∼90% of cancer-related mortality. Tumor cell intravasation into, arrest and adhesion at, and extravasation from the microvessel walls are critical steps in metastatic spread. Understanding these steps may lead to new therapeutic concepts for tumor metastasis. Vascular endothelium forming the microvessel wall and the glycocalyx layer at its surface are the principal barriers to and regulators of the material exchange between circulating blood and body tissues. The cleft between adjacent endothelial cells is the principal pathway for water and solute transport through the microvessel wall in health. Recently, this cleft has been found to be the location for tumor cell adhesion and extravasation. The blood-flow-induced hydrodynamic factors such as shear rates and stresses, shear rate and stress gradients, as well as vorticities, especially at the branches and turns of microvasculatures, also play important roles in tumor cell arrest and adhesion. This chapter therefore reports the current advances from in vivo animal studies and in vitro culture cell studies to demonstrate how the endothelial integrity or microvascular permeability, hydrodynamic factors, microvascular geometry, cell adhesion molecules, and surrounding extracellular matrix affect critical steps of tumor metastasis in the microcirculation.

Notes

Acknowledgments

This work was supported by the NSF CBET 0754158, NIH CA153325-01, CA137788-01, and 1UG3TR002151-01.

References

  1. Achen MG, Stacker SA (2008) Molecular control of lymphatic metastasis. Ann N Y Acad Sci 1131:225–234PubMedCrossRefGoogle Scholar
  2. Adamson RH, Clough G (1992) Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J Physiol 445:473–486PubMedPubMedCentralGoogle Scholar
  3. Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE (2004) Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol 557:889–907PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arkill KP, Knupp C, Michel CC, Neal CR, Qvortrup K, Rostgaard J, Squire JM (2011) Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: evidence for a common filtering mechanism? Biophys J 101:1046–1056PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bacac M, Stamenkovic I (2008) Metastatic cancer cell. Annu Rev Pathol 3:221–247PubMedCrossRefGoogle Scholar
  6. Bates DO, Heald RI, Curry FE, Williams B (2001) Vascular endothelial growth factor increases Rana vascular permeability and compliance by different signalling pathways. J Physiol 533(Pt. 1):263–272PubMedPubMedCentralCrossRefGoogle Scholar
  7. Berman AT, Thukral AD, Hwang WT, Solin LJ, Vapiwala N (2013) Incidence and patterns of distant metastases for patients with early-stage breast cancer after breast conservation treatment. Clin Breast Cancer 13:88–94PubMedCrossRefGoogle Scholar
  8. Betteridge KB, Arkill KP, Neal CR, Harper SJ, Foster RR, Satchell SC, Bates DO, Salmon AHJ (2017) Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function. J Physiol 595(15):5015–5035PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brenner W, Langer P, Oesch F, Edgell CJ, Wieser RJ (1995) Tumor cell-endothelium adhesion in an artificial venule. Anal Biochem 225:213–219PubMedCrossRefGoogle Scholar
  10. Bucci M, Roviezzo F, Posadas I, Yu J, Parente L (2005) Endothelial nitric oxide synthase activation is critical for vascular leakage during acute inflammation in vivo. Proc Natl Acad Sci U S A 102:904–908PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bundgaard M (1984) The three-dimensional organization of tight junctions in a capillary endothelium revealed by serial-section electron microscopy. J Ultmstruct Res 88:1–17CrossRefGoogle Scholar
  12. Cai B, Fan J, Zeng M, Zhang L, Fu BM (2012) Adhesion of malignant mammary tumor cell MDA-MB-231 to microvessel wall increases microvascular permeability via degradation of endothelial surface glycocalyx. J of Appl Physiol 13(7):1141–1153CrossRefGoogle Scholar
  13. Cancel LM, Fitting A, Tarbell JM (2007) In vitro study of LDL transport under pressurized (convective) conditions. Am J Phys 293:H126–H132Google Scholar
  14. CDC Report (2015) Number of deaths for leading causes of deathGoogle Scholar
  15. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572PubMedCrossRefGoogle Scholar
  16. Chen MB, Whisler JA, Jeon JS, Kamm RD (2013) Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr Biol (Camb) 5:1262–1271CrossRefGoogle Scholar
  17. Chen MB, Whisler JA, Fröse J, Yu C, Shin Y, Kamm RD (2017) On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protoc 12(5):865–880PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chi CW, Rezwanuddin Ahmed AH, Dereli-Korkut Z, Wang S (2016) Microfluidic cell chips for high throughput drug screening. Bioanalysis 8(9):921–937PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chiu JJ, Chen LJ, Lee PL, Lee CI, Lo LW (2003) Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood 101:2667–2674PubMedCrossRefGoogle Scholar
  20. Chotard-Ghodsnia R, Haddad O, Leyrat A, Drochon A, Verdier C, Duperray A (2007) Morphological analysis of tumor cell/endothelial cell interactions under shear flow. J Biomech 40:335–344PubMedCrossRefGoogle Scholar
  21. Cinamon G, Alon R (2003) A real time in vitro assay for studying leukocyte transendothelial migration under physiological flow conditions. J Immunol Methods 273:53–62PubMedCrossRefGoogle Scholar
  22. Clark AM, Wheeler SE, Young CL, Stockdale L, Shepard Neiman J, Zhao W, Stolz DB, Venkataramanan R, Lauffenburger D, Griffith L, Wells A (2016) A liver microphysiological system of tumor cell dormancy and inflammatory responsiveness is affected by scaffold properties. Lab Chip 17(1):156–168PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cooke JP, Stamler J, Andon N, Davies PF, McKinley G (1990) Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol. Am J Phys 259:H804–H812Google Scholar
  24. van den Berg BM, Vink H, Spaan JA (2003) The endothelial glycocalyx protects against myocardial edema. Circ Res 92:592–594CrossRefGoogle Scholar
  25. Dereli-Korkut Z, Akaydin D, Ahmed AHR, Jiang X, Wang S (2014) Three dimensional microfluidic cell arrays for ex vivo drug screening with mimicked vascular flow. Anal Chem 86(6):2997–3004PubMedPubMedCentralCrossRefGoogle Scholar
  26. Drenckhahn D, Ness W (1997) The endothelial contractile cytoskeleton. In: Born GVR, Schwartz CJ (eds) Vascular endothelium: physiology, pathology and therapeutic opportunities. Schattauer, Stuttgart, Gennany, pp 1–15Google Scholar
  27. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039PubMedPubMedCentralGoogle Scholar
  28. Earley S, Plopper GE (2006) Disruption of focal adhesion kinase slows transendothelial migration of AU-565 breast cancer cells. Biochem Biophys Res Commun 350:405–412PubMedCrossRefGoogle Scholar
  29. Ebong EE, Macaluso FP, Spray DC, Tarbell JM (2011) Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol 31(8): 1908–1915PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fan J, Fu BM (2016) Quantification of malignant breast cancer cell MDA-MB-231 transmigration across brain and lung microvascular endothelium. Annals of Biomed Eng 44(7):2189–2201CrossRefGoogle Scholar
  31. Fan J, Cai B, Zeng M, Hao Y, Giancotti FG, Fu BM (2011) Integrin β4 signaling promotes mammary tumor cell adhesion to brain microvascular endothelium by inducing ErbB2-medicated secretion of VEGF. Ann of Biomed Eng 39(8):2223–2241CrossRefGoogle Scholar
  32. Feng D, Nagy JA, Payne K, Hammel I, Dvorak HF, Dvorak AM (1999) Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators. Microcirculation 6(1):23–44PubMedCrossRefPubMedCentralGoogle Scholar
  33. Ferreira MM, Ramani VC, Jeffrey SS (2016) Circulating tumor cell technologies. Mol Oncol 10(3):374–394PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fidler IJ (2011) The biology of cancer metastasis. Semin Cancer Biol 21:71PubMedCrossRefPubMedCentralGoogle Scholar
  35. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedCrossRefPubMedCentralGoogle Scholar
  36. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fu BM, Shen S (2003) Structural mechanisms of vascular endothelial growth factor (VEGF) on microvessel permeability. Am J Phys 284(6):H2124–H2135Google Scholar
  38. Fu BM, Shen S (2004) Acute VEGF effect on solution permeability of mammalian microvessels in vivo. Microvasc Res 68(1):51–62PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fu BM, Tarbell JM (2013) Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdiscip Rev Syst Biol Med 5:381–390PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fu BM, Weinbaum S, Tsay RY, Curry FE (1994) A junction-orifice-fiber entrance layer model for capillary permeability: application to frog mesenteric capillaries. ASME J Biomech Eng 116:502–513CrossRefGoogle Scholar
  41. Fu BM, Chen B, Chen W (2003) An electrodiffusion model for effects of surface glycocalyx layer on microvessel solute permeability. Am J Phys 284: H1240–H1250Google Scholar
  42. Fu BM, Shen S, Chen B (2006) Structural mechanisms in the abolishment of VEGF-induced microvascular hyperpermeability by cAMP. ASME J. Biomech. Eng. 128(3):313–328Google Scholar
  43. Fu BM, Yang J, Shen S, Cai B, Fan J, Zhang L, Yen WY, Zeng M (2015) Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo. Scientific Reports Oct 28Google Scholar
  44. Gassmann P, Kang ML, Mees ST, Haier J (2010) In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell-endothelial cell interaction. BMC Cancer 10(177)Google Scholar
  45. Giancotti FG (2007) Targeting integrin beta4 for cancer and anti-angiogenic therapy. Trends Pharmacol Sci 28:506–511PubMedCrossRefPubMedCentralGoogle Scholar
  46. Giavazzi R, Foppolo M, Dossi R, Remuzzi A (1993) Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions. J Clin Invest 92:3038–3044PubMedPubMedCentralCrossRefGoogle Scholar
  47. Glinskii OV, Huxley VH, Glinsky GV, Pienta KJ, Raz A, Glinsky VV (2005) Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7(5):522–527PubMedPubMedCentralCrossRefGoogle Scholar
  48. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698PubMedPubMedCentralCrossRefGoogle Scholar
  49. Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5:816–826PubMedCrossRefPubMedCentralGoogle Scholar
  50. Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, Giancotti FG (2006) Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 126:489–502PubMedCrossRefPubMedCentralGoogle Scholar
  51. Guo P, Cai B, Lei M, Liu Y, Fu BM (2014) Differential arrest and adhesion of tumor cells and microbeads in the microvasculature. Biomech Model Mechanobiol 13:537–550PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695PubMedCrossRefPubMedCentralGoogle Scholar
  53. van Hinsbergh VW, Nieuw Amerongen GP (2002) Intracellular signalling involved in modulating human endothelial barrier function. J Anat 200:549–560PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100PubMedCrossRefPubMedCentralGoogle Scholar
  55. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD (2015) Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A 112(1):214–219PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jiang X, Wong KHK, Khankhel AH, Zeinali M, Reategui E, Phillips MJ, Luo X, Aceto N, Fachin F, Hoang AN, Kim W, Jensen AE, Sequist LV, Maheswaran S, Haber DA, Stott SL, Toner M (2017) Microfluidic isolation of platelet-covered circulating tumor cells. Lab Chip 17(20):3498–3503PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRefPubMedCentralGoogle Scholar
  58. Khamenehfar A, Li PC (2016) Microfluidic devices for circulating tumor cells isolation and subsequent analysis. Curr Pharm Biotechnol 17(9):810–821PubMedCrossRefPubMedCentralGoogle Scholar
  59. Khoo BL, Grenci G, Lim YB, Lee SC, Han J, Lim CT (2018) Expansion of patient-derived circulating tumor cells from liquid biopsies using a CTC microfluidic culture device. Nat Protoc 13(1):34–58PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kielbik M, Szulc I, Brzezinska M, Bednarska K, Przygodzka P (2014) Nitric oxide donors reduce the invasion ability of ovarian cancer cells in vitro. Anti-Cancer Drugs 25:1141–1151PubMedCrossRefGoogle Scholar
  61. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkle F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nature Med 16(1):116–122PubMedCrossRefGoogle Scholar
  62. Kong L, Dunn GD, Keefer LK, Korthuis RJ (1996) Nitric oxide reduces tumor cell adhesion to isolated rat postcapillary venules. Clin Exp Metastasis 14: 335–343PubMedCrossRefGoogle Scholar
  63. Kong J, Luo Y, Jin D, An F, Zhang W, Liu L, Li J, Fang S, Li X, Yang X, Lin B, Liu T (2016) A novel microfluidic model can mimic organ-specific metastasis of circulating tumor cells. Oncotarget 7(48):78421–78432PubMedPubMedCentralCrossRefGoogle Scholar
  64. Koop S, MacDonald IC, Luzzi K, Schmidt EE, Morris VL, Grattan M, Khokha R, Chambers AF, Groom AC (1995) Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res 55(12):2520–2523PubMedGoogle Scholar
  65. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84: 359–369PubMedCrossRefGoogle Scholar
  66. Lee TH, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278: 5277–5284PubMedCrossRefGoogle Scholar
  67. Li LM, Kilbourn RG, Adams J, Fidler IJ (1991) Role of nitric oxide in lysis of tumor cells by cytokine-activated endothelial cells. Cancer Res 51:2531–2535PubMedGoogle Scholar
  68. Li QS, Lee GY, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374(4):13–609CrossRefGoogle Scholar
  69. Li G, Simon M, Shi Z, Cancel L, Tarbell JM, Morrison B, Fu BM (2010) Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery. Ann of Biomed Eng 38(8):2499–2511CrossRefGoogle Scholar
  70. Liang S, Slattery MJ, Dong C (2005) Shear stress and shear rate differentially affect the multi-step process of leukocyte-facilitated melanoma adhesion. Exp Cell Res 310(2):282–292PubMedPubMedCentralCrossRefGoogle Scholar
  71. Litjens SH, de Pereda JM, Sonnenberg A (2006) Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol 16:376–383PubMedCrossRefGoogle Scholar
  72. Liu Q, Mirc D, Fu BM (2008) Mechanical mechanisms of thrombosis in intact bent microvessels of rat mesentery. J Biomech 41:2726–2734PubMedPubMedCentralCrossRefGoogle Scholar
  73. Liu Z, Han X, Zhou Q, Chen R, Fruge S, Jo MC, Ma Y, Li Z, Yokoi K, Qin L (2017) Integrated microfluidic system for gene silencing and cell migration. Adv Biosyst 1(6)PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lu Y, Yu T, Liang H, Wang J, Xie J (2014) Nitric oxide inhibits hetero-adhesion of cancer cells to endothelial cells: restraining circulating tumor cells from initiating metastatic cascade. Sci Rep 4:4344PubMedPubMedCentralCrossRefGoogle Scholar
  75. Luft JH (1966) Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 25(6):1773–1783PubMedGoogle Scholar
  76. Masri FA, Comhair SA, Koeck T, Xu W, Janocha A (2005) Abnormalities in nitric oxide and its derivatives in lung cancer. Am J Respir Crit Care Med 172:597–605PubMedPubMedCentralCrossRefGoogle Scholar
  77. Matsumoto K, Nishi K, Kikuchi M, Kadowaki D, Tokutomi Y (2007) Alpha1-acid glycoprotein suppresses rat acute inflammatory paw edema through the inhibition of neutrophils activation and prostaglandin E2 generation. Biol Pharm Bull 30:1226–1230PubMedCrossRefGoogle Scholar
  78. Michel CC, Curry FE (1999) Microvascular permeability. Physiol Reviews 79(3):703–761CrossRefGoogle Scholar
  79. Michel CC, Neal CR (1999) Openings through endothelial cells associated with increased microvascular permeability. Microcirculation 6(1):45–62PubMedCrossRefGoogle Scholar
  80. Mierke CT (2008) Role of the endothelium during tumor cell metastasis: is the endothelium a barrier or a promoter for cell invasion and metastasis. J Biophys 2008:183516PubMedCrossRefGoogle Scholar
  81. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD et al (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55PubMedPubMedCentralCrossRefGoogle Scholar
  82. Moasser MM, Basso A, Averbuch SD, Rosen N (2001) The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res 61:7184–7188PubMedGoogle Scholar
  83. Mook ORF, Marle J, Vreeling-Sindelarova H, Jongens R, Frederiks WM, Noorden CJK (2003) Visualisation of early events in tumor formation of eGFP-transfected rat colon cancer cells in liver. Hepatology 38:295–304PubMedCrossRefGoogle Scholar
  84. Mortensen K, Christensen IJ, Nielsen HJ, Hansen U, Larsson LI (2004) High expression of endothelial cell nitric oxide synthase in peritumoral microvessels predicts increased disease-free survival in colorectal cancer. Cancer Lett 216:109–114PubMedCrossRefGoogle Scholar
  85. Mukhopadhyay D, Nagy JA, Manseau EJ, Dvorak HF (1998) Vascular permeability factor/vascular endothelial growth factor-mediated signaling in mouse mesentery vascular endothelium. Cancer Res 58(6): 1278–1284PubMedGoogle Scholar
  86. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284PubMedCrossRefGoogle Scholar
  87. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371PubMedCrossRefGoogle Scholar
  88. Pohl U, Herlan K, Huang A, Bassenge E (1991) EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am J Physiol 261:H2016–2023CrossRefGoogle Scholar
  89. Qiu H, Orr FW, Jensen D, Wang HH, McIntosh AR et al (2003) Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells. Am J Pathol 162:403–412PubMedPubMedCentralCrossRefGoogle Scholar
  90. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflug Arch: Eur J Physiol 454:345–359CrossRefGoogle Scholar
  91. Ridnour LA, Thomas DD, Donzelli S, Espey MG, Roberts DD (2006) The biphasic nature of nitric oxide responses in tumor biology. Antioxid Redox Signal 8:1329–1337PubMedCrossRefGoogle Scholar
  92. Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial enestration induced by vascular endothelial growth factor. J Cell Sci 108:2369–2379PubMedGoogle Scholar
  93. Salmon AH, Satchell SC (2012) Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol 226(4):562–574PubMedCrossRefGoogle Scholar
  94. Salmon AH, Neal CR, Sage LM, Glass CA, Harper SJ, Bates DO (2009) Angiopoietin-1 alters microvascular permeability coefficients in vivo via modification of endothelial glycocalyx. Cardiovasc Res 83(1):24–33PubMedPubMedCentralCrossRefGoogle Scholar
  95. Scher RL (2007) Role of nitric oxide in the development of distant metastasis from squamous cell carcinoma. Laryngoscope 117:199–209PubMedCrossRefGoogle Scholar
  96. Schluter K, Gassmann P, Enns A, Korb T, Hemping-Bovenkerk A, Holzen J, Haier J (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169:1064–1073PubMedPubMedCentralCrossRefGoogle Scholar
  97. Shea DJ, Li YW, Stebe KJ, Konstantopoulos K (2017) E-selectin-mediated rolling facilitates pancreatic cancer cell adhesion to hyaluronic acid. FASEB J 31(11):5078–5086PubMedCrossRefGoogle Scholar
  98. Shen S, Fan J, Cai B, Lv Y, Zeng M, Hao Y, Giancotti F, Fu BM (2010) Vascular endothelial growth factor enhances mammary cancer cell adhesion to endothelium in vivo. J of Exp Physiology 95:369–379CrossRefGoogle Scholar
  99. Shi L, Zeng M, Sun Y, Fu BM (2014) Quantification of blood-brain barrier solute permeability and brain transport by multiphoton microscopy. J Biomech Eng 136:031005PubMedCrossRefGoogle Scholar
  100. Slattery MJ, Liang S, Dong C (2005) Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. Am J Phys 288:C831–C839CrossRefGoogle Scholar
  101. Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel CC (2001) Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol 136:239–255PubMedPubMedCentralCrossRefGoogle Scholar
  102. Steeg PS, Theodorescu D (2008) Metastasis: a therapeutic target for cancer. Nat Clin Pract Oncol 5(4):206–219PubMedPubMedCentralCrossRefGoogle Scholar
  103. Steinbauer M, Guba M, Cernaianu G, Köhl G, Cetto M, Kunz-Schugart LA, Gcissler EK, Falk W, Jauch KW (2003) GFP-transfected tumor cells are useful in examining early metastasis in vivo, but immune reaction precludes long-term development studies in immunocompetent mice. Clin Exp Metastasis 20: 135–141PubMedCrossRefGoogle Scholar
  104. Strell C, Entschladen F (2008) Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal 6:10PubMedPubMedCentralCrossRefGoogle Scholar
  105. Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R (2011) Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 71(15):5075–5080PubMedPubMedCentralCrossRefGoogle Scholar
  106. Tadimety A, Syed A, Nie Y, Long CR, Kready KM, Zhang JX (2017) Liquid biopsy on chip: a paradigm shift towards the understanding of cancer metastasis. Integr Biol (Camb) 23 9(1):22–49CrossRefGoogle Scholar
  107. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tarbell JM, Pahakis MY (2006) Mechanotransduction and the glycocalyx. J Intern Med 259:339–350PubMedCrossRefGoogle Scholar
  109. Tobler NE, Detmar M (2006) Tumor and lymph node lymphangiogenesis--impact on cancer metastasis. J Leukoc Biol 80:691–696PubMedCrossRefGoogle Scholar
  110. Um E, Oh JM, Granick S, Cho YK (2017) Cell migration in microengineered tumor environments. Lab Chip 17(24):4171–4185PubMedCrossRefGoogle Scholar
  111. Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79:581–589PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wang HH, McIntosh AR, Hasinoff BB, Rector ES, Ahmed N et al (2000) B16 melanoma cell arrest in the mouse liver induces nitric oxide release and sinusoidal cytotoxicity: a natural hepatic defense against metastasis. Cancer Res 60:5862–5869Google Scholar
  113. Weber GF (2007) Molecular mechanisms of cancer. Springer, NetherlandsGoogle Scholar
  114. Weiss L (1992) Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis 10:191–199PubMedCrossRefGoogle Scholar
  115. Wirtz DKK, Searson PC (2012) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11:512CrossRefGoogle Scholar
  116. Wyckoff JB, Jones JG, Condeelis JS, Segall JE (2000) A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60:2504–2511PubMedGoogle Scholar
  117. Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG (2002) The role of nitric oxide in cancer. Cell Res 12:311–320PubMedCrossRefGoogle Scholar
  118. Yan WW, Liu Y, Fu BM (2010) Effects of curvature and cell-cell interaction on cell adhesion in microvessels. Biomech Model Mechanobiol 9:629–640PubMedPubMedCentralCrossRefGoogle Scholar
  119. Yan WW, Cai B, Liu Y, Fu BM (2012) Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels. Biomech Model Mechanobiol 11(5):641–653.  https://doi.org/10.1007/s10237-011-0339-6 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Yen WY, Cai B, Zeng M, Tarbell JM, Fu BM (2012) Quantification of the endothelial surface glycocalyx on rat and mouse blood vessels. Microvasc ResGoogle Scholar
  121. Yen WY, Cai B, Yang J, Zhang L, Zeng M, Tarbell JM, Fu BM (2015) Endothelial surface glycocalyx can regulate flow-induced endothelial NO production in microvessels in vivo. PLoS One 10(1):e0117133PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yudoh K, Matsui H, Tsuji H (1997) Nitric oxide induced by tumor cells activates tumor cell adhesion to endothelial cells and permeability of the endothelium in vitro. Clin Exp Metastasis 15:557–567PubMedCrossRefGoogle Scholar
  123. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109(34):13515–13520PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zhang L, Zeng M, Fu BM (2016a) Inhibition of endothelial nitric oxide synthase decreases breast cancer cell MDA-MB-231 adhesion to intact microvessels under physiological flows. Am J Physiol Heart Circ Physiol 310(11):H1735–H1747PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhang L, Fan J, Zeng M, Curry F-RE, John MT, Fu BM (2016b) Sphingosine-1-phosphate (S1P) maintains normal microvascular permeability by preserving endothelial surface glycocalyx (ESG) in intact microvessels. Microcirculation 23(4):301–310PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zhang L, Zeng M, Fu BM (2017) Sphingosine-1-phosphate reduces adhesion of malignant mammary tumor cells MDA-MB-231 to microvessel walls by protecting endothelialsurface glycocalyx. Cell Mol Biol (Noisy-le-Grand) 63(4):16–22CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringThe City College of the City University of New YorkNew YorkUSA

Personalised recommendations