Advertisement

Optimization in Civil Engineering and Metaheuristic Algorithms: A Review of State-of-the-Art Developments

  • Gebrail Bekdaş
  • Sinan Melih Nigdeli
  • Aylin Ece Kayabekir
  • Xin-She YangEmail author
Chapter

Abstract

The aim of this state-of-the-art review is to present the recent progress about the design optimization and applications of metaheuristic algorithms in civil engineering. In this chapter, the importance of optimization in civil engineering and differences with other engineering disciplines are emphasized in the first section. The best suitable techniques concerning metaheuristic methods and several approaches have been summarized and reviewed. These algorithms are effective in dealing with nonlinear design optimization with complex constraints, practical discrete design variables, and user-defined special conditions. The modifications of these algorithms have been carried out and then applied to civil engineering applications. Finally, results are presented with discussion about further potential improvements.

Notes

Acknowledgements

The authors acknowledge their universities for the support and also would like to thank the reviewers for their detailed comments.

References

  1. 1.
    Achtziger, W.: On simultaneous optimization of truss geometry and topology. Struct. Multidiscip. Optim. 33(4), 285–304 (2007). https://doi.org/0.1007/s00158-006-0092-0 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Adeli, H., Kumar, S.: Distributed genetic algorithm for structural optimization. J. Aerosp. Eng. 8(3), 156–163 (1995). https://doi.org/10.1061/(ASCE)0893-1321(1995)8:3(156) CrossRefGoogle Scholar
  3. 3.
    Ahmadi-Nedushan, B., Varaee, H.: Optimal design of reinforced concrete retaining walls using a swarm intelligence technique. In: Topping, B.H.V., Tsompanakis, Y. (eds.) Proceedings of the 1st International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, Stirlingshire, pp. 1–12 (2009).  https://doi.org/10.4203/ccp.92.26 Google Scholar
  4. 4.
    Akin, A., Saka, M.P.: Optimum detailed design of reinforced concrete continuous beams using the harmony search algorithm. In: Topping, B.H.V., Adam, J.M., Pallarés, F.J., Bru, R., Romero, M.L. (eds.) Proceedings of the Tenth International Conference on Computational Structures Technology, pp. 1–20. Civil-Comp Press, Stirlingshire (2010).  https://doi.org/10.4203/ccp.93.131 Google Scholar
  5. 5.
    Akin, A., Saka, M.P.: Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions. Comput. Struct. 147, 79–95 (2015). https://doi.org/10.1016/j.compstruc.2014.10.003 CrossRefGoogle Scholar
  6. 6.
    Angelo, J.S., Bernardino, H.S., Barbosa, H.J.C.: Ant colony approaches for multiobjective structural optimization problems with a cardinality constraint. Adv. Eng. Softw. 80, 101–115 (2015). https://doi.org/10.1016/j.advengsoft.2014.09.015 CrossRefGoogle Scholar
  7. 7.
    Aydoğdu, İ., Akın, A., Saka, M.P.: Design optimization of real world steel space frames using artificial bee colony algorithm with Lévy flight distribution. Adv. Eng. Softw. 92, 1–14 (2016). https://doi.org/10.1016/j.advengsoft.2015.10.013 CrossRefGoogle Scholar
  8. 8.
    Basha, B.M., Babu, G.L.S.: Target reliability based design optimization of anchored cantilever sheet pile walls. Can. Geotech. J. 45(4), 535–548 (2008). https://doi.org/10.1139/T08-004 CrossRefGoogle Scholar
  9. 9.
    Bekdaş, G., Nigdeli, S.M.: Estimating optimum parameters of tuned mass dampers using harmony search. Eng. Struct. 33(9), 2716–2723 (2011). https://doi.org/10.1016/j.engstruct.2011.05.024 CrossRefGoogle Scholar
  10. 10.
    Bekdaş, G., Nigdeli, S.M.: Cost optimization of T-shaped reinforced concrete beams under flexural effect according to ACI 318. In: Dmitriev, A., Camarinhas, C.L. (eds.) Proceedings of the 3rd European Conference of Civil Engineering (ECCIE’12), pp. 122–126. WSEAS Press, Paris (2012)Google Scholar
  11. 11.
    Bekdaş, G., Nigdeli, S.M.: Optimization of tuned mass damper with harmony search. In: Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H. (eds.) Metaheuristic Applications in Structures and Infrastructures, pp. 345–371. Elsevier, Oxford (2013). https://doi.org/10.1016/B978-0-12-398364-0.00014-0 CrossRefGoogle Scholar
  12. 12.
    Bekdaş, G., Nigdeli, S.M.: The optimization of slender reinforced concrete columns. In: Steinmann, P., Leugering, G. (eds.) 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics, Erlangen, vol. 14, pp. 183–184 (2014).  https://doi.org/10.1002/pamm.201410079 Google Scholar
  13. 13.
    Bekdaş, G., Nigdeli, S.M., Yang, X.S.: Metaheuristic optimization for the design of reinforced concrete beams under flexure moments. In: Proceedings of the 5th European Conference of Civil Engineering (ECCIE’14), pp. 184–188 (2014)Google Scholar
  14. 14.
    Bekdaş, G., Nigdeli, S.M., Yang, X.S.: Sizing optimization of truss structures using flower pollination algorithm. Appl. Soft Comput. 37, 322–331 (2015). https://doi.org/10.1016/j.asoc.2015.08.037 CrossRefGoogle Scholar
  15. 15.
    Ben-Tal, A., Nemirovski, A.: Robust truss topology design via semidefinite programming. SIAM J. Optim. 7(4), 991–1016 (1997). https://doi.org/10.1137/S1052623495291951 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Bookbinder, J.H., Désilets, A.: Transfer optimization in a transit network. Transport. Sci. 26(2), 106–118 (1992).  https://doi.org/10.1287/trsc.26.2.106 zbMATHCrossRefGoogle Scholar
  17. 17.
    Camp, C.V.: Design of space trusses using big bang-big crunch optimization. J. Struct. Eng. 133(7), 999–1008 (2007). https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999) CrossRefGoogle Scholar
  18. 18.
    Camp, C.V., Akin, A.: Design of retaining walls using big bang-big crunch optimization. J. Struct. Eng. 138(3), 438–448 (2012). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000461 CrossRefGoogle Scholar
  19. 19.
    Camp, C.V., Bichon, B.J.: Design of space trusses using ant colony optimization. J. Struct. Eng. 130(5), 741–751 (2004). https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(741) CrossRefGoogle Scholar
  20. 20.
    Camp, C.V., Farshchin, M.: Design of space trusses using modified teaching-learning based optimization. Eng. Struct. 62–63, 87–97 (2014). https://doi.org/10.1016/j.engstruct.2014.01.020 CrossRefGoogle Scholar
  21. 21.
    Camp, C.V., Huq, F.: CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Eng. Struct. 48, 363–372 (2013). https://doi.org/10.1016/j.engstruct.2012.09.004 CrossRefGoogle Scholar
  22. 22.
    Camp, C.V., Pezeshk, S., Hansson, H.: Flexural design of reinforced concrete frames using a genetic algorithm. J. Struct. Eng. 129(1), 105–115 (2003). https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(105) CrossRefGoogle Scholar
  23. 23.
    Camp, C.V., Bichon, B.J., Stovall, S.P.: Design of steel frames using ant colony optimization. J. Struct. Eng. 131(3), 369–379 (2005). https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(369) CrossRefGoogle Scholar
  24. 24.
    Castillo, E., Mínguez, R., Terán, A.R., Fernández-Canteli, A.: Design and sensitivity analysis using the probability-safety-factor method. An application to retaining walls. Struct. Saf. 26(2), 159–179 (2004). https://doi.org/10.1016/S0167-4730(03)00039-0 zbMATHGoogle Scholar
  25. 25.
    Ceranic, B., Fryer, C., Baines, R.W.: An application of simulated annealing to the optimum design of reinforced concrete retaining structures. Comput. Struct. 79(17), 1569–1581 (2001). https://doi.org/10.1016/S0045-7949(01)00037-2 CrossRefGoogle Scholar
  26. 26.
    Černý, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985). https://doi.org/10.1007/BF00940812 MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Chakroborty, P., Deb, K., Subrahmanyam, P.S.: Optimal scheduling of urban transit systems using genetic algorithms. J. Transport. Eng. 121(6), 544–553 (1995). https://doi.org/10.1061/(ASCE)0733-947X(1995)121:6(544) CrossRefGoogle Scholar
  28. 28.
    Chan, W.T., Chua, D.K.H., Kannan, G.: Construction resource scheduling with genetic algorithms. J. Constr. Eng. Manag. 122(2), 125–132 (1996). https://doi.org/10.1061/(ASCE)0733-9364(1996)122:2(125) CrossRefGoogle Scholar
  29. 29.
    Chang, F.S., Wu, J.S., Lee, C.N., Shen, H.C.: Greedy-search-based Multi-objective genetic algorithm for emergency logistics scheduling. Expert Syst. Appl. 41(6), 2947–2956 (2014). https://doi.org/10.1016/j.eswa.2013.10.026 CrossRefGoogle Scholar
  30. 30.
    Cheng, Y.M.: Global optimization analysis of slope stability by simulated annealing with dynamic bounds and dirac function. Eng. Optim. 39(1), 17–32 (2007). https://doi.org/10.1080/03052150600916294 CrossRefGoogle Scholar
  31. 31.
    Cheng, F.Y., Li, D.: Multiobjective optimization design with Pareto genetic algorithm. J. Struct. Eng. 123(9), 1252–1261 (1997). https://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1252) CrossRefGoogle Scholar
  32. 32.
    Cheng, Y.M., Li, L., Chi, S.C.: Performance studies on six heuristic global optimization methods in the location of critical slip surface. Comput. Geotech. 34(6), 462–484 (2007). https://doi.org/10.1016/j.compgeo.2007.01.004 CrossRefGoogle Scholar
  33. 33.
    Cheng, Y.M., Li, L., Lansivaara, T., Chi, S.C., Sun, Y.J.: An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis. Eng. Optim. 40(2), 95–115 (2008). https://doi.org/10.1080/03052150701618153 CrossRefGoogle Scholar
  34. 34.
    Chien, S.I., Qin, Z.: Optimization of bus stop locations for improving transit accessibility. Transp. Plan. Technol. 27(3), 211–227 (2004). https://doi.org/10.1080/0308106042000226899 CrossRefGoogle Scholar
  35. 35.
    Coello, C.A., Christiansen, A.D.: Multiobjective optimization of trusses using genetic algorithms. Comput. Struct. 75(6), 647–660 (2000). https://doi.org/10.1016/S0045-7949(99)00110-8 CrossRefGoogle Scholar
  36. 36.
    Costa, A.L., da Conceição Cunha, M., Coelho, P.A.L.F., Einstein, H.H.: Solving high-speed rail planning with the simulated annealing algorithm. J. Transport. Eng. 139(6), 635–642 (2013). https://doi.org/10.1061/(ASCE)TE.1943-5436.0000542 CrossRefGoogle Scholar
  37. 37.
    D’Ariano, A., Pacciarelli, D., Pranzo, M.: A branch and bound algorithm for scheduling trains in a railway network. Eur. J. Oper. Res. 183(2), 643–657 (2007). https://doi.org/10.1016/j.ejor.2006.10.034 zbMATHCrossRefGoogle Scholar
  38. 38.
    Dede, T., Ayvaz, Y.: Combined size and shape optimization of structures with a new meta-heuristic algorithm. Appl. Soft Comput. 28, 250–258 (2015). https://doi.org/10.1016/j.asoc.2014.12.007 CrossRefGoogle Scholar
  39. 39.
    Degertekin, S.O., Hayalioglu, M.S.: Sizing truss structures using teaching-learning-based optimization. Comput. Struct. 119, 177–188 (2013). https://doi.org/10.1016/j.compstruc.2012.12.011 CrossRefGoogle Scholar
  40. 40.
    Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the vehicle routing problem with time windows. Oper. Res. 40(2), 342–354 (1992).  https://doi.org/10.1287/opre.40.2.342 MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Desu, N.B., Deb, S.K., Dutta, A.: Coupled tuned mass dampers for control of coupled vibrations in asymmetric buildings. Struct. Control Health Monit. 13(5), 897–916 (2006).  https://doi.org/10.1002/stc.64 CrossRefGoogle Scholar
  42. 42.
    Dezani, H., Bassi, R.D.S., Marranghello, N., Gomes, L., Damiani, F., da Silva, I.N.: Optimizing urban traffic flow using genetic algorithm with Petri net analysis as fitness function. Neurocomputing 124, 162–167 (2014). https://doi.org/10.1016/j.neucom.2013.07.015 CrossRefGoogle Scholar
  43. 43.
    Dias, J.C., Machado, P., Silva, D.C., Abreu, P.H.: An inverted ant colony optimization approach to traffic. Eng. Appl. Artif. Intell. 36, 122–133 (2014). https://doi.org/10.1016/j.engappai.2014.07.005 CrossRefGoogle Scholar
  44. 44.
    Dong, Y., Frangopol, D.M., Saydam, D.: Pre-earthquake multi-objective probabilistic retrofit optimization of bridge networks based on sustainability. J. Bridge Eng. 19(6), 04014, 018 (2014). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000586 CrossRefGoogle Scholar
  45. 45.
    Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Milan (1992)Google Scholar
  46. 46.
    Dou, S., Jensen, J.S.: Optimization of hardening/softening behavior of plane frame structures using nonlinear normal modes. Comput. Struct. 164, 63–74 (2016). https://doi.org/10.1016/j.compstruc.2015.11.001 CrossRefGoogle Scholar
  47. 47.
    El-Rayes, K., Moselhi, O.: Optimizing resource utilization for repetitive construction projects. J. Constr. Eng. Manag. 127(1), 18–27 (2001). https://doi.org/10.1061/(ASCE)0733-9364(2001)127:1(18) CrossRefGoogle Scholar
  48. 48.
    Erbatur, F., Hasançebi, O., Tütüncü, İ., Kılıç, H.: Optimal design of planar and space structures with genetic algorithms. Comput. Struct. 75(2), 209–224 (2000). https://doi.org/10.1016/S0045-7949(99)00084-X CrossRefGoogle Scholar
  49. 49.
    Erol, O.K., Eksin, I.: A new optimization method: big bang–big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006). https://doi.org/10.1016/j.advengsoft.2005.04.005 CrossRefGoogle Scholar
  50. 50.
    Esmaeili, M., Zakeri, J.A., Kaveh, A., Bakhtiary, A., Khayatazad, M.: Designing granular layers for railway tracks using ray optimization algorithm. Sci. Iran. Trans. A 22(1), 47–58 (2015)Google Scholar
  51. 51.
    Farshidianfar, A., Soheili, S.: ABC optimization of TMD parameters for tall buildings with soil structure interaction. Interact. Multiscale Mech. 6, 339–356 (2013).  https://doi.org/10.12989/imm.2013.6.4.339 CrossRefGoogle Scholar
  52. 52.
    Farshidianfar, A., Soheili, S.: Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction. Soil Dyn. Earthq. Eng. 51, 14–22 (2013). https://doi.org/10.1016/j.soildyn.2013.04.002 CrossRefGoogle Scholar
  53. 53.
    Farshidianfar, A., Soheili, S.: Optimization of TMD parameters for earthquake vibrations of tall buildings including soil structure interaction. Int. J. Optim. Civil Eng. 3, 409–429 (2013)Google Scholar
  54. 54.
    Fedghouche, F., Tiliouine, B.: Minimum cost design of reinforced concrete T-beams at ultimate loads using Eurocode2. Eng. Struct. 42, 43–50 (2012). https://doi.org/10.1016/j.engstruct.2012.04.008 CrossRefGoogle Scholar
  55. 55.
    Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., Alizadeh, Y.: Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Comput. Methods Appl. Mech. Eng. 197(33), 3080–3091 (2008). https://doi.org/10.1016/j.cma.2008.02.006 zbMATHCrossRefGoogle Scholar
  56. 56.
    Frangopol, D.M., Lin, K.Y., Estes, A.C.: Life-cycle cost design of deteriorating structures. J. Struct. Eng. 123(10), 1390–1401 (1997). https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1390) CrossRefGoogle Scholar
  57. 57.
    Fwa, T.F., Chan, W.T., Hoque, K.Z.: Multiobjective optimization for pavement maintenance programming. J. Transport. Eng. 126(5), 367–374 (2000). https://doi.org/10.1061/(ASCE)0733-947X(2000)126:5(367) CrossRefGoogle Scholar
  58. 58.
    Gandomi, A.H., Alavi, A.H.: Krill Herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012). https://doi.org/10.1016/j.cnsns.2012.05.010 MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using firefly algorithm. Comput. Struct. 89(23), 2325–2336 (2011). https://doi.org/10.1016/j.compstruc.2011.08.002 CrossRefGoogle Scholar
  60. 60.
    Gandomi, A.H., Yang, X.S., Alavi, A.H., Talatahari, S.: Bat algorithm for constrained optimization tasks. Neural Comput. Appl. 22(6), 1239–1255 (2013). https://doi.org/10.1007/s00521-012-1028-9 CrossRefGoogle Scholar
  61. 61.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013). https://doi.org/10.1007/s00366-011-0241-y CrossRefGoogle Scholar
  62. 62.
    Gandomi, A.H., Talatahari, S., Yang, X., Deb, S.: Design optimization of truss structures using cuckoo search algorithm. Struct. Design Tall Spec. Build. 22(17), 1330–1349 (2013).  https://doi.org/10.1002/tal.1033 CrossRefGoogle Scholar
  63. 63.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Metaheuristic Applications in Structures and Infrastructures. Elsevier, London (2013)Google Scholar
  64. 64.
    Gandomi, A.H., Kashani, A.R., Mousavi, M., Jalalvandi, M.: Slope stability analyzing using recent swarm intelligence techniques. Int. J. Numer. Anal. Methods Geomech. 39(3), 295–309 (2015).  https://doi.org/10.1002/nag.2308 CrossRefGoogle Scholar
  65. 65.
    Gao, W.: Determination of the noncircular critical slip surface in slope stability analysis by meeting ant colony optimization. J. Comput. Civil Eng. 30(2), 06015001–1 (2016). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000475 CrossRefGoogle Scholar
  66. 66.
    Geem, Z.W.: Multiobjective optimization of time-cost trade-off using harmony search. J. Constr. Eng. Manag. 136(6), 711–716 (2010). https://doi.org/10.1061/(ASCE)CO.1943-7862.0000167 CrossRefGoogle Scholar
  67. 67.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001). https://doi.org/10.1177/003754970107600201 CrossRefGoogle Scholar
  68. 68.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: Harmony search optimization: application to pipe network design. Int. J. Model. Simul. 22(2), 125–133 (2002). https://doi.org/10.1080/02286203.2002.11442233 CrossRefGoogle Scholar
  69. 69.
    Ghazavi, M., Salavati, V.: Sensitivity analysis and design of reinforced concrete cantilever retaining walls using bacterial foraging optimization algorithm. In: Vogt, N., Schuppener, B., Straub, D., Bräeu, G. (eds.) Proceedings of the 3rd International Symposium on Geotechnical Safety and Risk (ISGSR), München, pp. 307–314 (2011)Google Scholar
  70. 70.
    Gholizadeh, S., Shahrezaei, A.M.: Optimal placement of steel plate shear walls for steel frames by bat algorithm. Struct. Design Tall Spec. Build. 24(1), 1–18 (2015).  https://doi.org/10.1002/tal.1151 CrossRefGoogle Scholar
  71. 71.
    Goldberg, D.E., Samtani, M.P.: Engineering optimization via genetic algorithm. In: Proceedings of Ninth Conference on Electronic Computation, pp. 471–482. ASCE, New York (1986)Google Scholar
  72. 72.
    Govindaraj, V., Ramasamy, J.V.: Optimum detailed design of reinforced concrete continuous beams using genetic algorithms. Comput. Struct. 84(1), 34–48 (2005). https://doi.org/10.1016/j.compstruc.2005.09.001 CrossRefGoogle Scholar
  73. 73.
    Govindaraj, V., Ramasamy, J.V.: Optimum detailed design of reinforced concrete frames using genetic algorithms. Eng. Optim. 39(4), 471–494 (2007). https://doi.org/10.1080/03052150601180767 CrossRefGoogle Scholar
  74. 74.
    Hadi, M.N.S., Arfiadi, Y.: Optimum design of absorber for MDOF structures. J. Struct. Eng. 124(11), 1272–1280 (1998). https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1272) CrossRefGoogle Scholar
  75. 75.
    Hajebi, S., Temate, S., Barrett, S., Clarke, A., Clarke, S.: Water distribution network sectorisation using structural graph partitioning and multi-objective optimization. Proc. Eng. 89, 1144–1151 (2014). https://doi.org/10.1016/j.proeng.2014.11.238. 16th Water Distribution System Analysis Conference, WDSA2014CrossRefGoogle Scholar
  76. 76.
    Hartog, J.P.D.: Mechanical Vibrations, 4th edn. McGraw-Hill, New York (1956)zbMATHGoogle Scholar
  77. 77.
    Hasançebi, O.: Optimization of truss bridges within a specified design domain using evolution strategies. Eng. Optim. 39(6), 737–756 (2007). https://doi.org/10.1080/03052150701335071 CrossRefGoogle Scholar
  78. 78.
    Hasançebi, O., Azad, S.K.: An exponential big bang-big crunch algorithm for discrete design optimization of steel frames. Comput. Struct. 110–111, 167–179 (2012). https://doi.org/10.1016/j.compstruc.2012.07.014 CrossRefGoogle Scholar
  79. 79.
    Hasançebi, O., Azad, S.K.: Discrete size optimization of steel trusses using a refined big bang–big crunch algorithm. Eng. Optim. 46(1), 61–83 (2014). https://doi.org/10.1080/0305215X.2012.748047 MathSciNetCrossRefGoogle Scholar
  80. 80.
    Ho-Huu, V., Nguyen-Thoi, T., Le-Anh, L., Nguyen-Trang, T.: An effective reliability-based improved constrained differential evolution for reliability-based design optimization of truss structures. Adv. Eng. Softw. 92, 48–56 (2016). https://doi.org/10.1016/j.advengsoft.2015.11.001 CrossRefGoogle Scholar
  81. 81.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT, Cambridge (1975)Google Scholar
  82. 82.
    Jin, Y.X., Cheng, H.Z., yong Yan, J., Zhang, L.: New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electr. Power Syst. Res. 77(3), 227–233 (2007). https://doi.org/10.1016/j.epsr.2006.02.016 CrossRefGoogle Scholar
  83. 83.
    Junghans, L., Darde, N.: Hybrid single objective genetic algorithm coupled with the simulated annealing optimization method for building optimization. Energy Build. 86, 651–662 (2015). https://doi.org/10.1016/j.enbuild.2014.10.039 CrossRefGoogle Scholar
  84. 84.
    Kameshki, E.S., Saka, M.P.: Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm. Comput. Struct. 79(17), 1593–1604 (2001). https://doi.org/10.1016/S0045-7949(01)00035-9 CrossRefGoogle Scholar
  85. 85.
    Kang, Z., Bai, S.: On robust design optimization of truss structures with bounded uncertainties. Struct. Multidiscip. Optim. 47(5), 699–714 (2013). https://doi.org/10.1007/s00158-012-0868-3 MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Kanno, Y.: Mixed-integer second-order cone programming for global optimization of compliance of frame structure with discrete design variables. Struct. Multidiscip. Optim. 54(2), 301–316 (2016). https://doi.org/10.1007/s00158-016-1406-5 MathSciNetCrossRefGoogle Scholar
  87. 87.
    Karovic, O., Mays, L.W.: Sewer system design using simulated annealing in excel. Water Resour. Manag. 28(13), 4551–4565 (2014). https://doi.org/10.1007/s11269-014-0750-8 CrossRefGoogle Scholar
  88. 88.
    Kaveh, A.: Advances in Metaheuristic Algorithms for Optimal Design of Structures, 1st edn. Springer International Publishing, Cham (2014)zbMATHCrossRefGoogle Scholar
  89. 89.
    Kaveh, A., Abadi, A.S.M.: Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls. Int. J. Civil Eng. 9(1), 1–8 (2011)Google Scholar
  90. 90.
    Kaveh, A., Bakhshpoori, T.: Optimum design of steel frames using cuckoo search algorithm with Lévy flights. Struct. Design Tall Spec. Build. 22(13), 1023–1036 (2013).  https://doi.org/10.1002/tal.754 CrossRefGoogle Scholar
  91. 91.
    Kaveh, A., Khayatazad, M.: A new meta-heuristic method: ray optimization. Comput. Struct. 112–113, 283–294 (2012). https://doi.org/10.1016/j.compstruc.2012.09.003 CrossRefGoogle Scholar
  92. 92.
    Kaveh, A., Khayatazad, M.: Ray optimization for size and shape optimization of truss structures. Comput. Struct. 117, 82–94 (2013). https://doi.org/10.1016/j.compstruc.2012.12.010 CrossRefGoogle Scholar
  93. 93.
    Kaveh, A., Maniat, M.: Damage detection in skeletal structures based on charged system search optimization using incomplete modal data. Int. J. Civil Eng. 12(2), 291–298 (2014)Google Scholar
  94. 94.
    Kaveh, A., Massoudi, M.S.: Multi-objective optimization of structures using charged system search. Sci. Iran. 21(6), 1845–1860 (2014)Google Scholar
  95. 95.
    Kaveh, A., Sabzi, O.: A comparative study of two meta-heuristic algorithms for optimum design of reinforced concrete frame. Int. J. Civil Eng. 9(3), 193–206 (2011)Google Scholar
  96. 96.
    Kaveh, A., Shokohi, F.: Cost optimization of castellated beams using charged system search algorithm. Iran. J. Sci. Technol. Trans. Civil Eng. 38(C1+), 235–249 (2014).  https://doi.org/10.22099/ijstc.2014.1866
  97. 97.
    Kaveh, A., Soleimani, N.: CBO and DPSO for optimum design of reinforced concrete cantilever retaining walls. Asian J. Civil Eng. 16(6), 751–774 (2015)Google Scholar
  98. 98.
    Kaveh, A., Talatahari, S.: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput. Struct. 87(5), 267–283 (2009). https://doi.org/10.1016/j.compstruc.2009.01.003 CrossRefGoogle Scholar
  99. 99.
    Kaveh, A., Talatahari, S.: Size optimization of space trusses using big bang–big crunch algorithm. Comput. Struct. 87(17), 1129–1140 (2009). https://doi.org/10.1016/j.compstruc.2009.04.011 CrossRefGoogle Scholar
  100. 100.
    Kaveh, A., Talatahari, S.: A discrete big bang-big crunch algorithm for optimal design of skeletal structures. Asian J. Civil Eng. 11(1), 103–122 (2010)Google Scholar
  101. 101.
    Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213(3), 267–289 (2010). https://doi.org/10.1007/s00707-009-0270-4 zbMATHCrossRefGoogle Scholar
  102. 102.
    Kaveh, A., Zakian, P.: Enhanced bat algorithm for optimal design of skeletal structures. Asian J. Civil Eng. 15(2), 179–212 (2014)Google Scholar
  103. 103.
    Kaveh, A., Kalateh-Ahani, M., Fahimi-Farzam, M.: Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm. Struct. Eng. Mech. 47(2), 227–245 (2013).  https://doi.org/10.12989/sem.2013.47.2.227 CrossRefGoogle Scholar
  104. 104.
    Kaveh, A., Sheikholeslami, R., Talatahari, S., Keshvari-Ilkhichi, M.: Chaotic swarming of particles: a new method for size optimization of truss structures. Adv. Eng. Softw. 67, 136–147 (2014). https://doi.org/10.1016/j.advengsoft.2013.09.006 CrossRefGoogle Scholar
  105. 105.
    Kaveh, A., Kaveh, A., Nasrollahi, A.: Charged system search and particle swarm optimization hybridized for optimal design of engineering structures. Sci. Iran. 21(2), 295–305 (2014)Google Scholar
  106. 106.
    Kaveh, A., Mohammadi, S., Khademhosseini, O., Keyhani, A., Kalatjari, V.: Optimum parameters of tuned mass dampers for seismic applications using charged system search. Iran. J. Sci. Technol. Trans. Civil Eng. 39, 21–40 (2015)Google Scholar
  107. 107.
    Kelesoglu, O.: Fuzzy multiobjective optimization of truss-structures using genetic algorithm. Adv. Eng. Softw. 38(10), 717–721 (2007). https://doi.org/10.1016/j.advengsoft.2007.03.003 CrossRefGoogle Scholar
  108. 108.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995).  https://doi.org/10.1109/ICNN.1995.488968 Google Scholar
  109. 109.
    Khadem-Hosseini, O., Pirgholizadeh, S., Kaveh, A.: Semi-active tuned mass damper performance with optimized fuzzy controller using CSS algorithm. Asian J. Civil Eng. (BHRC) 16(5), 587–606 (2015)Google Scholar
  110. 110.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983).  https://doi.org/10.1126/science.220.4598.671 MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Kociecki, M., Adeli, H.: Two-phase genetic algorithm for topology optimization of free-form steel space-frame roof structures with complex curvatures. Eng. Appl. Artif. Intell. 32, 218–227 (2014). https://doi.org/10.1016/j.engappai.2014.01.010 CrossRefGoogle Scholar
  112. 112.
    Kong, J.S., Frangopol, D.M.: Life-cycle reliability-based maintenance cost optimization of deteriorating structures with emphasis on bridges. J. Struct. Eng. 129(6), 818–828 (2003). https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(818) CrossRefGoogle Scholar
  113. 113.
    Koumousis, V.K., Georgiou, P.G.: Genetic algorithms in discrete optimization of steel truss roofs. J. Comput. Civil Eng. 8(3), 309–325 (1994). https://doi.org/10.1061/(ASCE)0887-3801(1994)8:3(309) CrossRefGoogle Scholar
  114. 114.
    Krishnamoorthy, C.S., Venkatesh, P.P., Sudarshan, R.: Object-oriented framework for genetic algorithms with application to space truss optimization. J. Comput. Civil Eng. 16(1), 66–75 (2002). https://doi.org/10.1061/(ASCE)0887-3801(2002)16:1(66) CrossRefGoogle Scholar
  115. 115.
    Kroon, L.G., Dekker, R., Vromans, M.J.C.M.: Cyclic railway timetabling: a stochastic optimization approach. In: Geraets, F., Kroon, L., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Algorithmic Methods for Railway Optimization, pp. 41–66. Springer, Berlin (2007)CrossRefGoogle Scholar
  116. 116.
    Kuan, S.N., Ong, H.L., Ng, K.M.: Solving the feeder bus network design problem by genetic algorithms and ant colony optimization. Adv. Eng. Softw. 37(6), 351–359 (2006). https://doi.org/10.1016/j.advengsoft.2005.10.003 CrossRefGoogle Scholar
  117. 117.
    Kusano, I., Baldomir, A., Jurado, J.Á., Hernández, S.: Probabilistic Optimization of the main cable and bridge deck of long-span suspension bridges under flutter constraint. J. Wind Eng. Ind. Aerodyn. 146, 59–70 (2015). https://doi.org/10.1016/j.jweia.2015.08.001 CrossRefGoogle Scholar
  118. 118.
    Lee, C., Ahn, J.: Flexural design of reinforced concrete frames by genetic algorithm. J. Struct. Eng. 129(6), 762–774 (2003). https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(762) CrossRefGoogle Scholar
  119. 119.
    Lee, T.Y., Kim, Y.H., Kang, S.W.: Optimization of tensioning strategy for asymmetric cable-stayed bridge and its effect on construction process. Struct. Multidiscip. Optim. 35(6), 623–629 (2008). https://doi.org/10.1007/s00158-007-0172-9 CrossRefGoogle Scholar
  120. 120.
    Lepš, M., Šejnoha, M.: New approach to optimization of reinforced concrete beams. Comput. Struct. 81(18), 1957–1966 (2003). https://doi.org/10.1016/S0045-7949(03)00215-3 CrossRefGoogle Scholar
  121. 121.
    Leung, A.Y.T., Zhang, H.: Particle swarm optimization of tuned mass dampers. Eng. Struct. 31(3), 715–728 (2009). https://doi.org/10.1016/j.engstruct.2008.11.017 CrossRefGoogle Scholar
  122. 122.
    Leung, A.Y.T., Zhang, H., Cheng, C.C., Lee, Y.Y.: Particle swarm optimization of TMD by non-stationary base excitation during earthquake. Earthq. Eng. Struct. Dyn. 37(9), 1223–1246 (2008).  https://doi.org/10.1002/eqe.811 CrossRefGoogle Scholar
  123. 123.
    Leung, Y.F., Klar, A., Soga, K.: Theoretical study on pile length optimization of pile groups and piled rafts. J. Geotech. Geoenviron. Eng. 136(2), 319–330 (2010). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000206 CrossRefGoogle Scholar
  124. 124.
    Li, J.P.: Truss topology optimization using an improved species-conserving genetic algorithm. Eng. Optim. 47(1), 107–128 (2015). https://doi.org/10.1080/0305215X.2013.875165 MathSciNetCrossRefGoogle Scholar
  125. 125.
    Li, W., Li, Q., Steven, G.P., Xie, Y.M.: An evolutionary approach to elastic contact optimization of frame structures. Finite Elem. Anal. Design 40(1), 61–81 (2003). https://doi.org/10.1016/S0168-874X(02)00179-8 CrossRefGoogle Scholar
  126. 126.
    Li, L.J., Huang, Z.B., Liu, F., Wu, Q.H.: A heuristic particle swarm optimizer for optimization of pin connected structures. Comput. Struct. 85(7), 340–349 (2007). https://doi.org/10.1016/j.compstruc.2006.11.020 CrossRefGoogle Scholar
  127. 127.
    Lievens, K., Lombaert, G., Roeck, G.D., den Broeck, P.V.: Robust design of a tmd for the vibration serviceability of a footbridge. Eng. Struct. 123, 408–418 (2016). https://doi.org/10.1016/j.engstruct.2016.05.028 CrossRefGoogle Scholar
  128. 128.
    Liu, W., Ye, J.: Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm. J. Constr. Steel Res. 97, 59–68 (2014). https://doi.org/10.1016/j.jcsr.2014.01.015 CrossRefGoogle Scholar
  129. 129.
    Liu, L., Burns, S.A., Feng, C.W.: Construction time-cost trade-off analysis using LP/IP hybrid method. J. Constr. Eng. Manag. 121(4), 446–454 (1995). https://doi.org/10.1061/(ASCE)0733-9364(1995)121:4(446) CrossRefGoogle Scholar
  130. 130.
    Liu, C., Gao, Z., Zhao, W.: A new path planning method based on firefly algorithm. In: 2012 Fifth International Joint Conference on Computational Sciences and Optimization, pp. 775–778 (2012).  https://doi.org/10.1109/CSO.2012.174
  131. 131.
    Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Cost optimization of virtual infrastructures in dynamic multi-cloud scenarios. Concurrency Comput. Pract. Exp. 27(9), 2260–2277 (2015).  https://doi.org/10.1002/cpe.2972 CrossRefGoogle Scholar
  132. 132.
    Lund, J.R., Ferreira, I.: Operating rule optimization for Missouri river reservoir system. J. Water Resour. Plan. Manag. 122(4), 287–295 (1996). https://doi.org/10.1061/(ASCE)0733-9496(1996)122:4(287) CrossRefGoogle Scholar
  133. 133.
    Maier, H.R., Simpson, A.R., Zecchin, A.C., Foong, W.K., Phang, K.Y., Seah, H.Y., Tan, C.L.: Ant colony optimization for design of water distribution systems. J. Water Resour. Plan. Manag. 129(3), 200–209 (2003). https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(200) CrossRefGoogle Scholar
  134. 134.
    Marano, G.C., Greco, R., Chiaia, B.: A comparison between different optimization criteria for tuned mass dampers design. J. Sound Vib. 329(23), 4880–4890 (2010). https://doi.org/10.1016/j.jsv.2010.05.015 CrossRefGoogle Scholar
  135. 135.
    Martínez, F.J., González-Vidosa, F., Hospitaler, A., Yepes, V.: Heuristic optimization of RC bridge piers with rectangular hollow sections. Comput. Struct. 88(5), 375–386 (2010). https://doi.org/10.1016/j.compstruc.2009.11.009 CrossRefGoogle Scholar
  136. 136.
    Martínez, F.J., González-Vidosa, F., Hospitaler, A., Alcalá, J.: Design of tall bridge piers by ant colony optimization. Eng. Struct. 33(8), 2320–2329 (2011). https://doi.org/10.1016/j.engstruct.2011.04.005 CrossRefGoogle Scholar
  137. 137.
    Martinez-Martin, F.J., Gonzalez-Vidosa, F., Hospitaler, A., Yepes, V.: Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J. Zhejiang Univ. Sci. A 13(6), 420–432 (2012).  https://doi.org/10.1631/jzus.A1100304 CrossRefGoogle Scholar
  138. 138.
    Mauder, T., Sandera, C., Stetina, J., Seda, M.: Optimization of the quality of continuously cast steel slabs using the firefly algorithm. Mater. Technol. 45(4), 4551–4565 (2011)Google Scholar
  139. 139.
    Middleton, R.S., Brandt, A.R.: Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing. Environ. Sci. Technol. 47(3), 1735–1744 (2013). https://doi.org/10.1021/es3035895 Google Scholar
  140. 140.
    Miguel, L.F.F., Lopez, R.H., Miguel, L.F.F.: Multimodal size, shape, and topology optimisation of truss structures using the firefly algorithm. Adv. Eng. Softw. 56, 23–37 (2013). https://doi.org/10.1016/j.advengsoft.2012.11.006 CrossRefGoogle Scholar
  141. 141.
    Mijar, A.R., Swan, C.C., Arora, J.S., Kosaka, I.: Continuum topology optimization for concept design of frame bracing systems. J. Struct. Eng. 124(5), 541–550 (1998). https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(541) CrossRefGoogle Scholar
  142. 142.
    Mohammadi, K., Eslami, H.R., Kahawita, R.: Parameter estimation of an ARMA model for river flow forecasting using goal programming. J. Hydrol. 331(1), 293–299 (2006). https://doi.org/10.1016/j.jhydrol.2006.05.017. Water Resources in Regional Development: The Okavango RiverCrossRefGoogle Scholar
  143. 143.
    Montalvo, I., Izquierdo, J., Pérez-García, R., Herrera, M.: Water distribution system computer-aided design by agent swarm optimization. J. Comput. Aided Civ. Infrastruct. Eng. 29(6), 433–448 (2014).  https://doi.org/10.1111/mice.12062 CrossRefGoogle Scholar
  144. 144.
    Mugisha, S.: Infrastructure optimization and performance monitoring: empirical findings from the water sector in Uganda. Afr. J. Bus. Manag. 2(1), 13–25 (2008)MathSciNetGoogle Scholar
  145. 145.
    Nicholson, J.C.: Design of wind turbine tower and foundation systems: optimization approach. Master’s thesis, University of Iowa, Iowa (2011)Google Scholar
  146. 146.
    Nigdeli, S.M., Bekdaş, G.: Optimum tuned mass damper design for preventing brittle fracture of RC buildings. Smart Struct. Syst. 12, 137–155 (2013).  https://doi.org/10.12989/sss.2013.12.2.137 CrossRefGoogle Scholar
  147. 147.
    Nigdeli, S.M., Bekdaş, G.: Optimum tuned mass damper approaches for adjacent structures. Earthq. Struct. 7, 1071–1091 (2014).  https://doi.org/10.12989/eas.2014.7.6.1071 CrossRefGoogle Scholar
  148. 148.
    Nigdeli, S.M., Bekdaş, G.: Optimum design of RC continuous beams considering unfavourable live-load distributions. KSCE J. Civil Eng. 21(4), 1410–1416 (2017). https://doi.org/10.1007/s12205-016-2045-5 CrossRefGoogle Scholar
  149. 149.
    Nigdeli, S.M., Bekdaş, G., Kim, S., Geem, Z.W.: A novel harmony search based optimization of reinforced concrete biaxially loaded columns. Struct. Eng. Mech. 54(6), 1097–110 (2015).  https://doi.org/10.12989/sem.2015.54.6.1097 CrossRefGoogle Scholar
  150. 150.
    Nigdeli, S.M., Bekdaş, G., Yang, X.S.: Application of the Flower Pollination Algorithm in Structural Engineering, pp. 25–42. Springer International Publishing, Cham (2016)zbMATHGoogle Scholar
  151. 151.
    Nikolić, M., Teodorović, D., Vukadinović, K.: Disruption management in public transit: the bee colony optimization approach. Transport. Plann. Technol. 38(2), 162–180 (2015). https://doi.org/10.1080/03081060.2014.997447 CrossRefGoogle Scholar
  152. 152.
    Paya, I., Yepes, V., González-Vidosa, F., Hospitaler, A.: Multiobjective optimization of concrete frames by simulated annealing. Comput. Aided Civ. Inf. Eng. 23(8), 596–610 (2008). https://doi.org/10.1111/j.1467-8667.2008.00561.x zbMATHCrossRefGoogle Scholar
  153. 153.
    Paya-Zaforteza, I., Yepes, V., Hospitaler, A., González-Vidosa, F.: CO2-optimization of reinforced concrete frames by simulated annealing. Eng. Struct. 31(7), 1501–1508 (2009). https://doi.org/10.1016/j.engstruct.2009.02.034 zbMATHCrossRefGoogle Scholar
  154. 154.
    Perea, C., Alcala, J., Yepes, V., Gonzalez-Vidosa, F., Hospitaler, A.: Design of reinforced concrete bridge frames by heuristic optimization. Adv. Eng. Softw. 39(8), 676–688 (2008). https://doi.org/10.1016/j.advengsoft.2007.07.007 CrossRefGoogle Scholar
  155. 155.
    Perez, R.E., Behdinan, K.: Particle swarm approach for structural design optimization. Comput. Struct. 85(19), 1579–1588 (2007). https://doi.org/10.1016/j.compstruc.2006.10.013 CrossRefGoogle Scholar
  156. 156.
    Pezeshk, S., Camp, C.V., Chen, D.: Design of nonlinear framed structures using genetic optimization. J. Struct. Eng. 126(3), 382–388 (2000). https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382) CrossRefGoogle Scholar
  157. 157.
    Pourzeynali, S., Lavasani, H.H., Modarayi, A.H.: Active control of high rise building structures using fuzzy logic and genetic algorithms. Eng. Struct. 29(3), 346–357 (2007). https://doi.org/10.1016/j.engstruct.2006.04.015 CrossRefGoogle Scholar
  158. 158.
    Putha, R., Quadrifoglio, L., Zechman, E.: Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions. Comput. Aided Civ. Inf. Eng. 27(1), 14–28 (2012). https://doi.org/10.1111/j.1467-8667.2010.00715.x CrossRefGoogle Scholar
  159. 159.
    Rajan, S.D.: Sizing, shape, and topology design optimization of trusses using genetic algorithm. J. Struct. Eng. 121(10), 1480–1487 (1995). https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1480) CrossRefGoogle Scholar
  160. 160.
    Rajeev, S., Krishnamoorthy, C.S.: Discrete optimization of structures using genetic algorithms. J. Struct. Eng. 118(5), 1233–1250 (1992). https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233) CrossRefGoogle Scholar
  161. 161.
    Rajeev, S., Krishnamoorthy, C.S.: Genetic algorithm-based methodology for design optimization of reinforced concrete frames. Comput. Aided Civ. Inf. Eng. 13(1), 63–74 (1998). https://doi.org/10.1111/0885-9507.00086 CrossRefGoogle Scholar
  162. 162.
    Reed, M., Yiannakou, A., Evering, R.: An ant colony algorithm for the multi-compartment vehicle routing problem. Appl. Soft Comput. 15, 169–176 (2014). https://doi.org/10.1016/j.asoc.2013.10.017 CrossRefGoogle Scholar
  163. 163.
    Richardson, J.N., Adriaenssens, S., Bouillard, P., Filomeno Coelho, R.: Multiobjective topology optimization of truss structures with kinematic stability repair. Struct. Multidiscip. Optim. 46(4), 513–532 (2012). https://doi.org/10.1007/s00158-012-0777-5 zbMATHCrossRefGoogle Scholar
  164. 164.
    Robelin, C.A., Madanat, S.M.: History-dependent bridge deck maintenance and replacement optimization with Markov decision processes. J. Inf. Syst. 13(3), 195–201 (2007). https://doi.org/10.1061/(ASCE)1076-0342(2007)13:3(195) Google Scholar
  165. 165.
    Saad, L., Aissani, A., Chateauneuf, A., Raphael, W.: Reliability-based optimization of direct and indirect LCC of RC bridge elements under coupled fatigue-corrosion deterioration processes. Eng. Fail. Anal. 59, 570–587 (2016). https://doi.org/10.1016/j.engfailanal.2015.11.006 CrossRefGoogle Scholar
  166. 166.
    Sabzkouhi, A.M., Haghighi, A.: Uncertainty analysis of pipe-network hydraulics using a many-objective particle swarm optimization. J. Hydraul. Eng. 142(9), 04016030 (2016). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001148 CrossRefGoogle Scholar
  167. 167.
    Sadek, F., Mohraz, B., Taylor, A.W., Chung, R.M.: A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq. Eng. Struct. Dyn. 26(6), 617–635 (1997). https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z CrossRefGoogle Scholar
  168. 168.
    Sahab, M.G., Ashour, A.F., Toropov, V.V.: Cost optimisation of reinforced concrete flat slab buildings. Eng. Struct. 27(3), 313–322 (2005). https://doi.org/10.1016/j.engstruct.2004.10.002 CrossRefGoogle Scholar
  169. 169.
    Sahab, M.G., Toropov, V.V., Gandomi, A.H.: A review on traditional and modern structural optimization: problems and techniques. In: Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H. (eds.) Metaheuristic Applications in Structures and Infrastructures, pp. 25–47. Elsevier, Oxford (2013). https://doi.org/10.1016/B978-0-12-398364-0.00002-4 CrossRefGoogle Scholar
  170. 170.
    Saka, M.P.: Optimum design of steel frames using stochastic search techniques based on natural phenomena: a review. In: Topping, B.H.V. (ed.) Civil Engineering Computations: Tools and Techniques, Stirlingshire, pp. 105–147 (2007).  https://doi.org/10.4203/csets.16.6
  171. 171.
    Schutte, J.F., Groenwold, A.A.: Sizing design of truss structures using particle swarms. Struct. Multidiscip. Optim. 25(4), 261–269 (2003). https://doi.org/10.1007/s00158-003-0316-5 CrossRefGoogle Scholar
  172. 172.
    Senouci, A.B., Eldin, N.N.: Use of genetic algorithms in resource scheduling of construction projects. J. Constr. Eng. Manag. 130(6), 869–877 (2004). https://doi.org/10.1061/(ASCE)0733-9364(2004)130:6(869) CrossRefGoogle Scholar
  173. 173.
    Šešok, D., Belevičius, R.: Global optimization of trusses with a modified genetic algorithm. J. Civil Eng. Manag. 14(3), 147–154 (2008). https://doi.org/10.3846/1392-3730.2008.14.10 CrossRefGoogle Scholar
  174. 174.
    Sgambi, L., Gkoumas, K., Bontempi, F.: Genetic algorithms for the dependability assurance in the design of a long-span suspension bridge. Comput. Aided Civ. Inf. Eng. 27(9), 655–675 (2012). https://doi.org/10.1111/j.1467-8667.2012.00780.x CrossRefGoogle Scholar
  175. 175.
    Singh, M.P., Singh, S., Moreschi, L.M.: Tuned mass dampers for response control of torsional buildings. Earthq. Eng. Struct. Dyn. 31(4), 749–769 (2002).  https://doi.org/10.1002/eqe.119 CrossRefGoogle Scholar
  176. 176.
    Smith, C.C., Cubrinovski, M.: Pseudo-static limit analysis by discontinuity layout optimization: application to seismic analysis of retaining walls. Soil Dyn. Earthq. Eng. 31(10), 1311–1323 (2011). https://doi.org/10.1016/j.soildyn.2011.03.014 CrossRefGoogle Scholar
  177. 177.
    Sonmez, M.: Artificial bee colony algorithm for optimization of truss structures. Appl. Soft Comput. 11(2), 2406–2418 (2011). https://doi.org/10.1016/j.asoc.2010.09.003 CrossRefGoogle Scholar
  178. 178.
    Steinbuch, R.: Bionic optimisation of the earthquake resistance of high buildings by tuned mass dampers. J. Bionic Eng. 8(3), 335–344 (2011). https://doi.org/10.1016/S1672-6529(11)60036-X CrossRefGoogle Scholar
  179. 179.
    Talatahari, S., Sheikholeslami, R., Shadfaran, M., Pourbaba, M.: Optimum design of gravity retaining walls using charged system search algorithm. Math. Prob. Eng. 2012, 1–10 (2012). https://doi.org/10.1155/2012/301628 CrossRefGoogle Scholar
  180. 180.
    Talatahari, S., Gandomi, A.H., Yun, G.J.: Optimum design of tower structures using firefly algorithm. Struct. Design Tall Spec. Build. 23(5), 350–361 (2014).  https://doi.org/10.1002/tal.1043 CrossRefGoogle Scholar
  181. 181.
    Talatahari, S., Gandomi, A.H., Yang, X.S., Deb, S.: Optimum design of frame structures using the eagle strategy with differential evolution. Eng. Struct. 91, 16–25 (2015). https://doi.org/10.1016/j.engstruct.2015.02.026 CrossRefGoogle Scholar
  182. 182.
    Talatahariand, S., Kaveh, A.: Improved bat algorithm for optimum design of large-scale truss structures. Int. J. Optim. Civil Eng. 5(2), 241–254 (2015)Google Scholar
  183. 183.
    Tang, H., Zhou, J., Xue, S., Xie, L.: Big bang-big crunch optimization for parameter estimation in structural systems. Mech. Syst. Signal Process. 24(8), 2888–2897 (2010). https://doi.org/10.1016/j.ymssp.2010.03.012 CrossRefGoogle Scholar
  184. 184.
    Temur, R., Bekdaş, G.: Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm. Struct. Eng. Mech. 57(4), 763–783 (2016).  https://doi.org/10.12989/sem.2016.57.4.763 CrossRefGoogle Scholar
  185. 185.
    Temür, R., Türkan, Y.S., Toklu, Y.C.: Geometrically Nonlinear Analysis of Trusses Using Particle Swarm Optimization, pp. 283–300. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-13826-8_15 Google Scholar
  186. 186.
    Toğan, V.: Design of planar steel frames using teaching-learning based optimization. Eng. Struct. 34, 225–232 (2012). https://doi.org/10.1016/j.engstruct.2011.08.035 CrossRefGoogle Scholar
  187. 187.
    Toğan, V., Daloğlu, A.T.: An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput. Struct. 86(11), 1204–1218 (2008). https://doi.org/10.1016/j.compstruc.2007.11.006 CrossRefGoogle Scholar
  188. 188.
    Toklu, Y.C., Bekdas, G., Temur, R.: Analysis of trusses by total potential optimization method coupled with harmony search. Struct. Eng. Mech. 45(2), 183–199 (2013).  https://doi.org/10.12989/sem.2013.45.2.183 CrossRefGoogle Scholar
  189. 189.
    Tong, K.H., Bakhary, N., Kueh, A.B.H., Yassin, A.Y.M.: Optimal sensor placement for mode shapes using improved simulated annealing. Smart Struct. Syst. 13, 389–406 (2014).  https://doi.org/10.12989/sss.2014.13.3.389 CrossRefGoogle Scholar
  190. 190.
    Torii, A.J., Lopez, R.H., Miguel, L.F.F.: Design complexity control in truss optimization. Struct. Multidiscip. Optim. 54(2), 289–299 (2016). https://doi.org/10.1007/s00158-016-1403-8 MathSciNetCrossRefGoogle Scholar
  191. 191.
    Tran, D.H., Cheng, M.Y., Cao, M.T.: Hybrid multiple objective artificial bee colony with differential evolution for the time-cost-quality tradeoff problem. Knowl. Based Syst. 74, 176–186 (2015). https://doi.org/10.1016/j.knosys.2014.11.018 CrossRefGoogle Scholar
  192. 192.
    Tran, D.H., Cheng, M.Y., Prayogo, D.: A novel multiple objective symbiotic organisms search (MOSOS) for time-cost-labor utilization tradeoff problem. Knowl. Based Syst. 94, 132–145 (2016). https://doi.org/10.1016/j.knosys.2015.11.016 CrossRefGoogle Scholar
  193. 193.
    Walraven, E., Spaan, M.T.J., Bakker, B.: Traffic flow optimization: a reinforcement learning approach. Eng. Appl. Artif. Intell. 52, 203–212 (2016). https://doi.org/10.1016/j.engappai.2016.01.001 CrossRefGoogle Scholar
  194. 194.
    Warburton, G.B.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthq. Eng. Struct. Dyn. 10(3), 381–401 (1982).  https://doi.org/10.1002/eqe.4290100304 CrossRefGoogle Scholar
  195. 195.
    Wiering, M., Vreeken, J., van Veenen, J., Koopman, A.: Simulation and optimization of traffic in a city. In: IEEE Intelligent Vehicles Symposium, pp. 453–458 (2004).  https://doi.org/10.1109/IVS.2004.1336426
  196. 196.
    Woo, S., Yeo, H.: Optimization of pavement inspection schedule with traffic demand prediction. Procedia Soc. Behav. Sci. 218, 95–103 (2016). https://doi.org/10.1016/j.sbspro.2016.04.013. International Institute for Infrastructure Renewal and Reconstruction (I3R2)CrossRefGoogle Scholar
  197. 197.
    Wurbs, R.A.: Reservoir-system simulation and optimization models. J. Water Resour. Plan. Manag. 119(4), 455–472 (1993). https://doi.org/10.1061/(ASCE)0733-9496(1993)119:4(455) CrossRefGoogle Scholar
  198. 198.
    Xiong, Y., Kuang, Y.: Applying an ant colony optimization algorithm-based multiobjective approach for time-Cost Trade-Off. J. Constr. Eng. Manag. 134(2), 153–156 (2008). https://doi.org/10.1061/(ASCE)0733-9364(2008)134:2(153) CrossRefGoogle Scholar
  199. 199.
    Yang, I.T.: Using elitist particle swarm optimization to facilitate bicriterion time-cost trade-off analysis. J. Constr. Eng. Manag. 133(7), 498–505 (2007). https://doi.org/10.1061/(ASCE)0733-9364(2007)133:7(498) CrossRefGoogle Scholar
  200. 200.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2008)Google Scholar
  201. 201.
    Yang, X.S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) Stochastic Algorithms: Foundations and Applications, pp. 169–178. Springer, Berlin (2009)CrossRefGoogle Scholar
  202. 202.
    Yang, X.S.: A New Metaheuristic Bat-Inspired Algorithm, pp. 65–74. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12538-6_6 CrossRefGoogle Scholar
  203. 203.
    Yang, X.L.: Seismic passive pressures of earth structures by nonlinear optimization. Arch. Appl. Mech. 81(9), 1195–1202 (2011). https://doi.org/10.1007/s00419-010-0478-8 zbMATHCrossRefGoogle Scholar
  204. 204.
    Yang, X.S.: Flower pollination algorithm for global optimization. In: Durand-Lose, J., Jonoska, N. (eds.) Unconventional Computation and Natural Computation, pp. 240–249. Springer, Berlin (2012)CrossRefGoogle Scholar
  205. 205.
    Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature Biologically Inspired Computing (NaBIC), pp. 210–214 (2009).  https://doi.org/10.1109/NABIC.2009.5393690
  206. 206.
    Yang, X., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012). https://doi.org/10.1108/02644401211235834 CrossRefGoogle Scholar
  207. 207.
    Yang, L., Li, K., Gao, Z., Li, X.: Optimizing trains movement on a railway network. Omega 40(5), 619–633 (2012). https://doi.org/10.1016/j.omega.2011.12.001 CrossRefGoogle Scholar
  208. 208.
    Yang, L., Zhou, X., Gao, Z.: Credibility-based rescheduling model in a double-track railway network: a fuzzy reliable optimization approach. Omega 48, 75–93 (2014). https://doi.org/10.1016/j.omega.2013.11.004 CrossRefGoogle Scholar
  209. 209.
    Yang, X.S., Bekdaş, G., Nigdeli, S.M.: Metaheuristics and Optimization in Civil Engineering, 1st edn. Modeling and Optimization in Science and Technologies. Springer International Publishing, Cham (2016)zbMATHCrossRefGoogle Scholar
  210. 210.
    Yepes, V., Alcala, J., Perea, C., González-Vidosa, F.: A parametric study of optimum earth-retaining walls by simulated annealing. Eng. Struct. 30(3), 821–830 (2008). https://doi.org/10.1016/j.engstruct.2007.05.023 CrossRefGoogle Scholar
  211. 211.
    Yepes, V., Gonzalez-Vidosa, F., Alcala, J., Villalba, P.: CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. J. Comput. Civil Eng. 26(3), 378–386 (2012). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000140 CrossRefGoogle Scholar
  212. 212.
    Yoo, D.G., Kim, J.H., Geem, Z.W.: Overview of harmony search algorithm and its applications in civil engineering. Evol. Intel. 7(1), 3–16 (2014). https://doi.org/10.1007/s12065-013-0100-4 CrossRefGoogle Scholar
  213. 213.
    Yu, D., Tian, X., Xing, X., Gao, S.: Signal timing optimization based on fuzzy compromise programming for isolated signalized intersection. Math. Probl. Eng. 2016, 1–12 (2016). https://doi.org/10.1155/2016/1682394 MathSciNetGoogle Scholar
  214. 214.
    Zhang, Y., Ng, S.T.: An ant colony system based decision support system for construction time-cost optimization. J. Civil Eng. Manag. 18(4), 580–589 (2012). https://doi.org/10.3846/13923730.2012.704164 CrossRefGoogle Scholar
  215. 215.
    Zhao, F., Zeng, X.: Simulated annealing-genetic algorithm for transit network optimization. J. Comput. Civil Eng. 20(1), 57–68 (2006). https://doi.org/10.1061/(ASCE)0887-3801(2006)20:1(57) MathSciNetCrossRefGoogle Scholar
  216. 216.
    Zheng, D.X.M., Ng, S.T., Kumaraswamy, M.M.: Applying Pareto ranking and niche formation to genetic algorithm-based multiobjective time-cost optimization. J. Constr. Eng. Manag. 131(1), 81–91 (2005). https://doi.org/10.1061/(ASCE)0733-9364(2005)131:1(81) CrossRefGoogle Scholar
  217. 217.
    Zhu, W., Hu, H., Huang, Z.: Calibrating rail transit assignment models with genetic algorithm and automated fare collection data. Comput. Aided Civ. Inf. Eng. 29(7), 518–530 (2014).  https://doi.org/10.1111/mice.12075 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gebrail Bekdaş
    • 1
  • Sinan Melih Nigdeli
    • 1
  • Aylin Ece Kayabekir
    • 1
  • Xin-She Yang
    • 2
    Email author
  1. 1.Department of Civil EngineeringIstanbul UniversityAvcılar, IstanbulTurkey
  2. 2.School of Science and TechnologyMiddlesex UniversityLondonUK

Personalised recommendations