New Counts for the Number of Triangulations of Cyclic Polytopes

  • Michael JoswigEmail author
  • Lars Kastner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)


We report on enumerating the triangulations of cyclic polytopes with the new software MPTOPCOM. This is relevant for its connection with higher Stasheff–Tamari orders, which occur in category theory and algebraic combinatorics.


Cyclic Polytopes Finite Point Configurations Rambau Reverse Search Weak Partial Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Avis, D., Devroye, L.: An analysis of budgeted parallel search on conditional Galton-Watson trees. Preprint arXiv 1703.10731 (2017)Google Scholar
  2. 2.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1996). (English)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Avis, D., Jordan, C.: A parallel framework for reverse search using mts. arXiv Preprint arXiv:1610.07735 (2016)
  4. 4.
    Azaola, M., Santos, F.: The number of triangulations of the cyclic polytope \(C(n, n-4)\). Discrete Comput. Geom. 27(1), 29–48 (2002). (English)MathSciNetCrossRefGoogle Scholar
  5. 5.
    De Loera, J., Rambau, J., Santos, F.: Triangulations, Algorithms and Computation in Mathematics, vol. 25. Springer, Heidelberg (2010). MR2743368 (2011j:52037)CrossRefzbMATHGoogle Scholar
  6. 6.
    Edelman, P.H., Reiner, V.: The higher Stasheff-Tamari posets. Mathematika 43(1), 127–154 (1996). (English)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gawrilow, E., Joswig, M.: polymake:a framework for analyzing convex polytopes, Polytopes–combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, Birkhäuser, Basel, pp. 43–73 (2000). MRMR1785292 (2001f:52033)Google Scholar
  8. 8.
    Imai, H., Masada, T., Takeuchi, F., Imai, K.: Enumerating triangulations in general dimensions. Int. J. Comput. Geom. Appl. 12(6), 455–480 (2002). MR1945594MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jordan, C., Joswig, M., Kastner, L.: Parallel enumeration of triangulations. Preprint arXiv:1709.04746 (2017)
  10. 10.
    Kapranov, M.M., Voevodsky, V.A.: Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results). Cahiers Topologie Géom. Différentielle Catég 32(1), 11–27 (1991). International Category Theory Meeting (Bangor, 1989 and Cambridge, 1990). MR1130400MathSciNetzbMATHGoogle Scholar
  11. 11.
    Oppermann, S., Thomas, H.: Higher-dimensional cluster combinatorics and representation theory. J. Eur. Math. Soc. (JEMS) 14(6), 1679–1737 (2012). MR2984586MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rambau, J.: Triangulations of cyclic polytopes and higher Bruhat orders. Mathematika 44(1), 162–194 (1997). MR1464385MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rambau, J.: TOPCOM: triangulations of point configurations and oriented matroids, Mathematical software (Beijing, 2002), pp. 330–340. World Sci. Publ., River Edge, NJ (2002). MR1932619Google Scholar
  14. 14.
    Rambau, J., Reiner, V.: A survey of the higher Stasheff-Tamari orders. In: Müller-Hoissen, F., Pallo, J., Stasheff, J. (eds.) Associahedra, Tamari Lattices and Related Structures. Tamari memorial Festschrift. PM, vol. 299, pp. 351–390. Birkhäuser, Basel (2012). Scholar
  15. 15.
    Thomas, H.: New combinatorial descriptions of the triangulations of cyclic polytopes and the second higher Stasheff-Tamari posets. Order 19(4), 327–342 (2002). MR1964443MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995). MR1311028CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für MathematikTU BerlinBerlinGermany

Personalised recommendations